The Yeast eIF2 Kinase Gcn2 Facilitates H2O2-Mediated Feedback Inhibition of Both Protein Synthesis and Endoplasmic Reticulum Oxidative Folding during Recombinant Protein Production

Recombinant protein production is a known source of oxidative stress. However, knowledge of which reactive oxygen species are involved or the specific growth phase in which stress occurs remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, microcultivation, and continuous meas...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 87; no. 15; p. e0030121
Main Authors Gast, Veronica, Campbell, Kate, Picazo, Cecilia, Engqvist, Martin, Siewers, Verena, Molin, Mikael
Format Journal Article
LanguageEnglish
Published 1752 N St., N.W., Washington, DC American Society for Microbiology 13.07.2021
Subjects
Online AccessGet full text
ISSN0099-2240
1098-5336
1098-5336
DOI10.1128/AEM.00301-21

Cover

Loading…
Abstract Recombinant protein production is a known source of oxidative stress. However, knowledge of which reactive oxygen species are involved or the specific growth phase in which stress occurs remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, microcultivation, and continuous measurements in batch culture, we observed H2O2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae, correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H2O2, we find that Gcn2-dependent phosphorylation of eIF2α increases alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains but not in the wild type. Gcn2 deficiency furthermore reduced intracellular H2O2 levels and the Hac1 splicing ratio, while expression of antioxidants and the endoplasmic reticulum (ER) disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding are coupled and subject to feedback inhibition by H2O2. IMPORTANCE Recombinant protein production is a multibillion dollar industry. Optimizing the productivity of host cells is, therefore, of great interest. In several hosts, oxidants are produced as an unwanted side product of recombinant protein production. The buildup of oxidants can result in intracellular stress responses that could compromise the productivity of the host cell. Here, we document a novel protein synthesis inhibitory mechanism that is activated by the buildup of a specific oxidant (H2O2) in the cytosol of yeast cells upon the production of recombinant proteins. At the center of this inhibitory mechanism lies the protein kinase Gcn2. By removing Gcn2, we observed a doubling of recombinant protein productivity in addition to reduced H2O2 levels in the cytosol. In this study, we want to raise awareness of this inhibitory mechanism in eukaryotic cells to further improve protein production and contribute to the development of novel protein-based therapeutic strategies.
AbstractList Recombinant protein production is a known source of oxidative stress. However, knowledge of which reactive oxygen species are involved or the specific growth phase in which stress occurs remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, microcultivation, and continuous measurements in batch culture, we observed H2O2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae, correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H2O2, we find that Gcn2-dependent phosphorylation of eIF2α increases alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains but not in the wild type. Gcn2 deficiency furthermore reduced intracellular H2O2 levels and the Hac1 splicing ratio, while expression of antioxidants and the endoplasmic reticulum (ER) disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding are coupled and subject to feedback inhibition by H2O2. IMPORTANCE Recombinant protein production is a multibillion dollar industry. Optimizing the productivity of host cells is, therefore, of great interest. In several hosts, oxidants are produced as an unwanted side product of recombinant protein production. The buildup of oxidants can result in intracellular stress responses that could compromise the productivity of the host cell. Here, we document a novel protein synthesis inhibitory mechanism that is activated by the buildup of a specific oxidant (H2O2) in the cytosol of yeast cells upon the production of recombinant proteins. At the center of this inhibitory mechanism lies the protein kinase Gcn2. By removing Gcn2, we observed a doubling of recombinant protein productivity in addition to reduced H2O2 levels in the cytosol. In this study, we want to raise awareness of this inhibitory mechanism in eukaryotic cells to further improve protein production and contribute to the development of novel protein-based therapeutic strategies.
Recombinant protein production is a known source of oxidative stress. However, knowledge of which reactive oxygen species are involved or the specific growth phase in which stress occurs remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, microcultivation, and continuous measurements in batch culture, we observed H2O2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae, correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H2O2, we find that Gcn2-dependent phosphorylation of eIF2α increases alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains but not in the wild type. Gcn2 deficiency furthermore reduced intracellular H2O2 levels and the Hac1 splicing ratio, while expression of antioxidants and the endoplasmic reticulum (ER) disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding are coupled and subject to feedback inhibition by H2O2. IMPORTANCE Recombinant protein production is a multibillion dollar industry. Optimizing the productivity of host cells is, therefore, of great interest. In several hosts, oxidants are produced as an unwanted side product of recombinant protein production. The buildup of oxidants can result in intracellular stress responses that could compromise the productivity of the host cell. Here, we document a novel protein synthesis inhibitory mechanism that is activated by the buildup of a specific oxidant (H2O2) in the cytosol of yeast cells upon the production of recombinant proteins. At the center of this inhibitory mechanism lies the protein kinase Gcn2. By removing Gcn2, we observed a doubling of recombinant protein productivity in addition to reduced H2O2 levels in the cytosol. In this study, we want to raise awareness of this inhibitory mechanism in eukaryotic cells to further improve protein production and contribute to the development of novel protein-based therapeutic strategies.Recombinant protein production is a known source of oxidative stress. However, knowledge of which reactive oxygen species are involved or the specific growth phase in which stress occurs remains lacking. Using modern, hypersensitive genetic H2O2-specific probes, microcultivation, and continuous measurements in batch culture, we observed H2O2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae, correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H2O2, we find that Gcn2-dependent phosphorylation of eIF2α increases alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains but not in the wild type. Gcn2 deficiency furthermore reduced intracellular H2O2 levels and the Hac1 splicing ratio, while expression of antioxidants and the endoplasmic reticulum (ER) disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding are coupled and subject to feedback inhibition by H2O2. IMPORTANCE Recombinant protein production is a multibillion dollar industry. Optimizing the productivity of host cells is, therefore, of great interest. In several hosts, oxidants are produced as an unwanted side product of recombinant protein production. The buildup of oxidants can result in intracellular stress responses that could compromise the productivity of the host cell. Here, we document a novel protein synthesis inhibitory mechanism that is activated by the buildup of a specific oxidant (H2O2) in the cytosol of yeast cells upon the production of recombinant proteins. At the center of this inhibitory mechanism lies the protein kinase Gcn2. By removing Gcn2, we observed a doubling of recombinant protein productivity in addition to reduced H2O2 levels in the cytosol. In this study, we want to raise awareness of this inhibitory mechanism in eukaryotic cells to further improve protein production and contribute to the development of novel protein-based therapeutic strategies.
Recombinant protein production is a known source of oxidative stress. However, knowledge of which reactive oxygen species are involved or the specific growth phase in which stress occurs remains lacking. Using modern, hypersensitive genetic H 2 O 2 -specific probes, microcultivation, and continuous measurements in batch culture, we observed H 2 O 2 accumulation during and following the diauxic shift in engineered Saccharomyces cerevisiae , correlating with peak α-amylase production. In agreement with previous studies supporting a role of the translation initiation factor kinase Gcn2 in the response to H 2 O 2 , we find that Gcn2-dependent phosphorylation of eIF2α increases alongside translational attenuation in strains engineered to produce large amounts of α-amylase. Gcn2 removal significantly improved α-amylase production in two previously optimized high-producing strains but not in the wild type. Gcn2 deficiency furthermore reduced intracellular H 2 O 2 levels and the Hac1 splicing ratio, while expression of antioxidants and the endoplasmic reticulum (ER) disulfide isomerase PDI1 increased. These results suggest protein synthesis and ER oxidative folding are coupled and subject to feedback inhibition by H 2 O 2 . IMPORTANCE Recombinant protein production is a multibillion dollar industry. Optimizing the productivity of host cells is, therefore, of great interest. In several hosts, oxidants are produced as an unwanted side product of recombinant protein production. The buildup of oxidants can result in intracellular stress responses that could compromise the productivity of the host cell. Here, we document a novel protein synthesis inhibitory mechanism that is activated by the buildup of a specific oxidant (H 2 O 2 ) in the cytosol of yeast cells upon the production of recombinant proteins. At the center of this inhibitory mechanism lies the protein kinase Gcn2. By removing Gcn2, we observed a doubling of recombinant protein productivity in addition to reduced H 2 O 2 levels in the cytosol. In this study, we want to raise awareness of this inhibitory mechanism in eukaryotic cells to further improve protein production and contribute to the development of novel protein-based therapeutic strategies.
Author Engqvist, Martin
Molin, Mikael
Gast, Veronica
Siewers, Verena
Campbell, Kate
Picazo, Cecilia
Author_xml – sequence: 1
  givenname: Veronica
  surname: Gast
  fullname: Gast, Veronica
– sequence: 2
  givenname: Kate
  surname: Campbell
  fullname: Campbell, Kate
– sequence: 3
  givenname: Cecilia
  surname: Picazo
  fullname: Picazo, Cecilia
– sequence: 4
  givenname: Martin
  surname: Engqvist
  fullname: Engqvist, Martin
– sequence: 5
  givenname: Verena
  surname: Siewers
  fullname: Siewers, Verena
– sequence: 6
  givenname: Mikael
  surname: Molin
  fullname: Molin, Mikael
BookMark eNpdks1u1DAUhS1URKeFHQ9giQ0sUvybnw1SW03aEa0GlbJgZTn2TcclsYfYqeh78YD1tBUIVsf2_XSu79U5QHs-eEDoLSVHlLL64_Hy8ogQTmjB6Au0oKSpC8l5uYcWhDRNwZgg--ggxltCiCBl_Qrtc0FEVXK-QL-vN4C_g44Jw6pl-LPzOgI-M57hVhs3uKQTRHzO1qy4BOvyzeIWwHba_MArv3GdSy54HHp8EtIGf5lCAufx13ufNhBdxNpbvPQ2bAcdR2fwFSRn5mEe8fqXszq5O8BtGKzzN9jO006uwISxy3_x6Y9hVjubXa_X6GWvhwhvnvUQfWuX16fnxcX6bHV6fFFoTmQqmLW8z0PLhvf5WPcgTdNVNSVCQt0xrjshykpTSstOWFMx2ktJG855nR8tP0Sfnny3czeCNeDTpAe1ndyop3sVtFP_VrzbqJtwp2pWlTWR2eD9s8EUfs4QkxpdNDAM2kOYo2KSi5KWXOzQd_-ht2GefB4vU5JRRiSlmfrwROVNsr8EJWqXBZWzoB6zoBjlD2ngqBI
Cites_doi 10.1083/jcb.145.4.757
10.1371/journal.pbio.0020246
10.1016/j.molcel.2004.08.025
10.1002/yea.3298
10.1016/j.molcel.2011.07.027
10.1093/femsyr/fov061
10.1038/nchembio.2067
10.1128/ec.01.1.22-32.2002
10.1016/j.celrep.2016.06.025
10.1016/j.molcel.2017.08.012
10.1038/s41467-017-00999-2
10.1016/j.freeradbiomed.2007.04.007
10.1016/0378-1119(90)90336-p
10.1073/pnas.1506460112
10.1128/mcb.15.8.4497
10.1038/ncomms14791
10.1021/acssynbio.9b00144
10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
10.1128/AEM.03400-16
10.1016/j.copbio.2017.03.017
10.1038/nchembio.2536
10.1073/pnas.1809921115
10.1038/nrm2240
10.4161/bioe.22856
10.1016/j.cell.2008.02.037
10.1111/j.1365-2958.1995.tb02407.x
10.1073/pnas.0809677105
10.1002/yea.715
10.1016/j.ymben.2017.09.007
10.3390/ijms20122860
10.1091/mbc.11.3.833
10.1089/ars.2007.1782
10.1128/MCB.21.13.4347-4368.2001
10.1111/j.1365-2443.2005.00921.x
10.1186/s12934-016-0488-5
10.1534/genetics.111.128033
10.1128/mcb.20.8.2706-2717.2000
10.1002/yea.1905
10.1128/MCB.13.8.5099
10.1038/nbt0494-381
10.1007/s00253-010-2447-0
10.4155/pbp.14.8
10.1038/nmeth.1314
10.1146/annurev.micro.59.031805.133833
10.1074/jbc.M601545200
10.1016/j.ymben.2012.01.002
10.1016/j.bbamcr.2014.04.006
10.15698/mic2017.11.597
10.1016/j.cmet.2011.03.010
10.1016/j.redox.2017.10.017
10.1186/1741-7007-10-16
10.1002/yea.320080703
10.1038/s41467-017-02694-8
10.1038/nprot.2007.13
10.1371/journal.pone.0014564
10.1016/s0092-8674(02)01048-6
10.1002/bit.24409
10.1073/pnas.1212457109
10.1099/mic.0.2008/017392-0
10.1016/s1097-2765(03)00105-9
10.1083/jcb.201110090
10.1002/bit.25596
10.1038/ng2012
10.1016/j.ymben.2019.06.010
10.1083/jcb.201506123
10.15698/mic2014.11.173
ContentType Journal Article
Copyright Copyright © 2021 Gast et al.
Copyright American Society for Microbiology Jul 2021
Copyright © 2021 Gast et al. 2021 Gast et al.
Copyright_xml – notice: Copyright © 2021 Gast et al.
– notice: Copyright American Society for Microbiology Jul 2021
– notice: Copyright © 2021 Gast et al. 2021 Gast et al.
DBID 7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/AEM.00301-21
DatabaseName Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
Editor Druzhinina, Irina S
Editor_xml – sequence: 1
  givenname: Irina S
  surname: Druzhinina
  fullname: Druzhinina, Irina S
ExternalDocumentID PMC8276805
00301-21
GrantInformation_xml – fundername: VINNOVA
  grantid: CellNova (2017-02105)
  funderid: https://doi.org/10.13039/501100001858
– fundername: Cancerfonden (Swedish Cancer Society)
  grantid: 2017-0778
  funderid: https://doi.org/10.13039/501100002794
– fundername: Aforsk
  grantid: 2019-649
– fundername: ;
  grantid: 2017-0778
– fundername: ;
  grantid: CellNova (2017-02105)
– fundername: ;
  grantid: 2019-649
GroupedDBID -
02
0R
23M
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAPBV
ABFLS
ABOGM
ABPPZ
ABPTK
ACBTR
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BXI
CS3
D0L
DIK
E.-
E3Z
EBS
F5P
GX1
HZ
K-O
KM
KQ8
L7B
O9-
OK1
P2P
PQEST
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TN5
TR2
TWZ
UCJ
UHB
WH7
WOQ
X
X6Y
ZA5
---
-~X
0R~
6J9
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
AAGFI
AAZTW
ACGFO
ADUKH
AGVNZ
BTFSW
C1K
FR3
H13
H94
HYE
HZ~
M7N
P64
RC3
SOI
W8F
~02
~KM
7X8
5PM
ID FETCH-LOGICAL-a305t-2dd3f000593fdd38fe5c9b781045e8b23ab4467a1116b4dc721f55193338a11d3
ISSN 0099-2240
1098-5336
IngestDate Thu Aug 21 13:49:18 EDT 2025
Fri Jul 11 10:18:52 EDT 2025
Mon Jun 30 10:34:17 EDT 2025
Tue Dec 28 13:59:14 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords heterologous protein production
Gcn4
protein kinase Gcn2
recombinant protein production
hydrogen peroxide
ER stress
translational control
H2O2
oxidative stress
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a305t-2dd3f000593fdd38fe5c9b781045e8b23ab4467a1116b4dc721f55193338a11d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Citation Gast V, Campbell K, Picazo C, Engqvist M, Siewers V, Molin M. 2021. The yeast eIF2 kinase Gcn2 facilitates H2O2-mediated feedback inhibition of both protein synthesis and endoplasmic reticulum oxidative folding during recombinant protein production. Appl Environ Microbiol 87:e00301-21. https://doi.org/10.1128/AEM.00301-21.
ORCID 0000-0002-3903-8503
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8276805
PMID 34047633
PQID 2552120511
PQPubID 42251
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8276805
proquest_miscellaneous_2534616345
proquest_journals_2552120511
asm2_journals_10_1128_AEM_00301_21
PublicationCentury 2000
PublicationDate 20210713
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 7
  year: 2021
  text: 20210713
  day: 13
PublicationDecade 2020
PublicationPlace 1752 N St., N.W., Washington, DC
PublicationPlace_xml – name: 1752 N St., N.W., Washington, DC
– name: Washington
PublicationTitle Applied and environmental microbiology
PublicationTitleAbbrev Appl Environ Microbiol
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References B65
Huang, M, Wang, G, Qin, J, Petranovic, D, Nielsen, J (B5) 2018; 115
Molin, M, Renault, JP, Lagniel, G, Pin, S, Toledano, M, Labarre, J (B62) 2007; 43
Chen, X, Petranovic, D (B66) 2015; 15
Madeo, F, Fröhlich, E, Ligr, M, Grey, M, Sigrist, SJ, Wolf, DH, Fröhlich, KU (B22) 1999; 145
Yang, R, Wek, SA, Wek, RC (B17) 2000; 20
Topf, U, Suppanz, I, Samluk, L, Wrobel, L, Böser, A, Sakowska, P, Knapp, B, Pietrzyk, MK, Chacinska, A, Warscheid, B (B42) 2018; 9
de Ruijter, JC, Koskela, EV, Frey, AD (B8) 2016; 15
Idiris, A, Tohda, H, Kumagai, H, Takegawa, K (B10) 2010; 86
Jamieson, DJ (B55) 1998; 14
Nielsen, J (B1) 2013; 4
Steffen, KK, MacKay, VL, Kerr, EO, Tsuchiya, M, Hu, D, Fox, LA, Dang, N, Johnston, ED, Oakes, JA, Tchao, BN, Pak, DN, Fields, S, Kennedy, BK, Kaeberlein, M (B39) 2008; 133
de Ruijter, JC, Koskela, EV, Nandania, J, Frey, AD, Velagapudi, V (B11) 2018; 35
Tang, H, Bao, X, Shen, Y, Song, M, Wang, S, Wang, C, Hou, J (B12) 2015; 112
Stephen, DWS, Rivers, SL, Jamieson, DJ (B54) 1995; 16
Cipollina, C, van den Brink, J, Daran-Lapujade, P, Pronk, JT, Porro, D, de Winde, JH (B43) 2008; 154
Xia, X (B13) 2019; 20
Fordyce, PM, Pincus, D, Kimmig, P, Nelson, CS, El-Samad, H, Walter, P, DeRisi, JL (B46) 2012; 109
Delic, M, Graf, AB, Koellensperger, G, Haberhauer-Troyer, C, Hann, S, Mattanovich, D, Gasser, B (B57) 2014; 1
Natarajan, K, Meyer, MR, Jackson, BM, Slade, D, Roberts, C, Hinnebusch, AG, Marton, MJ (B38) 2001; 21
Gietz, RD, Schiestl, RH (B64) 2007; 2
Wang, G, Huang, M, Nielsen, J (B3) 2017; 48
Malinouski, M, Zhou, Y, Belousov, VV, Hatfield, DL, Gladyshev, VN (B27) 2011; 6
Hinnebusch, AG, Natarajan, K (B40) 2002; 1
Ashe, MP, De Long, SK, Sachs, AB (B20) 2000; 11
Malhotra, JD, Miao, H, Zhang, K, Wolfson, A, Pennathur, S, Pipe, SW, Kaufman, RJ (B26) 2008; 105
Tyo, KEJ, Liu, Z, Petranovic, D, Nielsen, J (B48) 2012; 10
Zhu, Z, Zhou, YJ, Kang, MK, Krivoruchko, A, Buijs, NA, Nielsen, J (B59) 2017; 44
Schmidt, EK, Clavarino, G, Ceppi, M, Pierre, P (B36) 2009; 6
Maity, S, Rajkumar, A, Matai, L, Bhat, A, Ghosh, A, Agam, G, Kaur, S, Bhatt, NR, Mukhopadhyay, A, Sengupta, S, Chakraborty, K (B41) 2016; 16
Inoue, H, Nojima, H, Okayama, H (B63) 1990; 96
Zhang, T, Lei, J, Yang, H, Xu, K, Wang, R, Zhang, Z (B67) 2011; 28
Shenton, D, Smirnova, JB, Selley, JN, Carroll, K, Hubbard, SJ, Pavitt, GD, Ashe, MP, Grant, CM (B21) 2006; 281
Morgan, B, Van Laer, K, Owusu, TNE, Ezeriņa, D, Pastor-Flores, D, Amponsah, PS, Tursch, A, Dick, TP (B29) 2016; 12
Giorgio, M, Trinei, M, Migliaccio, E, Pelicci, PG (B24) 2007; 8
Postnikoff, SDL, Johnson, JE, Tyler, JK (B16) 2017; 4
Morano, KA, Grant, CM, Moye-Rowley, WS (B25) 2012; 190
Konno, T, Melo, EP, Lopes, C, Mehmeti, I, Lenzen, S, Ron, D, Avezov, E (B52) 2015; 211
Hinnebusch, AG (B37) 2005; 59
Verduyn, C, Postma, E, Scheffers, WA, Van Dijken, JP (B61) 1992; 8
Robinson, AS, Hines, V, Wittrup, KD (B7) 1994; 12
Rolfes, RJ, Hinnebusch, AG (B18) 1993; 13
Malhotra, JD, Kaufman, RJ (B47) 2007; 9
Compagno, C, Brambilla, L, Capitanio, D, Boschi, F, Ranzi, BM, Porro, D (B60) 2001; 18
Huang, M, Bao, J, Nielsen, J (B2) 2014; 2
Harding, HP, Zhang, Y, Zeng, H, Novoa, I, Lu, PD, Calfon, M, Sadri, N, Yun, C, Popko, B, Paules, R, Stojdl, DF, Bell, JC, Hettmann, T, Leiden, JM, Ron, D (B15) 2003; 11
Kim, S, Sideris, DP, Sevier, CS, Kaiser, CA (B50) 2012; 196
Stöcker, S, Maurer, M, Ruppert, T, Dick, TP (B32) 2018; 14
Castilho, BA, Shanmugam, R, Silva, RC, Ramesh, R, Himme, BM, Sattlegger, E (B14) 2014; 1843
Liu, Z, Tyo, KEJ, Martínez, JL, Petranovic, D, Nielsen, J (B58) 2012; 109
Bodvard, K, Peeters, K, Roger, F, Romanov, N, Igbaria, A, Welkenhuysen, N, Palais, G, Reiter, W, Toledano, MB, Käll, M, Molin, M (B23) 2017; 8
Molin, M, Yang, J, Hanzén, S, Toledano, MB, Labarre, J, Nyström, T (B53) 2011; 43
Hu, Z, Killion, PJ, Iyer, VR (B44) 2007; 39
Bao, J, Huang, M, Petranovic, D, Nielsen, J (B6) 2017; 83
Staudacher, V, Trujillo, M, Diederichs, T, Dick, TP, Radi, R, Morgan, B, Deponte, M (B33) 2018; 14
Patil, CK, Li, H, Walter, P (B45) 2004; 2
Dabirian, Y, Li, X, Chen, Y, David, F, Nielsen, J, Siewers, V (B31) 2019; 8
Huang, M, Bao, J, Hallström, BM, Petranovic, D, Nielsen, J (B35) 2017; 8
Besada-Lombana, PB, Da Silva, NA (B4) 2019; 55
Delaunay, A, Pflieger, D, Barrault, MB, Vinh, J, Toledano, MB (B56) 2002; 111
Hou, J, Tyo, K, Liu, Z, Petranovic, D, Nielsen, J (B9) 2012; 14
Huang, M, Bai, Y, Sjostrom, SL, Hallström, BM, Liu, Z, Petranovic, D, Uhlén, M, Joensson, HN, Andersson-Svahn, H, Nielsen, J (B34) 2015; 112
Kimata, Y, Ishiwata-Kimata, Y, Yamada, S, Kohno, K (B49) 2006; 11
Murphy, MP, Holmgren, A, Larsson, NG, Halliwell, B, Chang, CJ, Kalyanaraman, B, Rhee, SG, Thornalley, PJ, Partridge, L, Gems, D, Nyström, T, Belousov, V, Schumacker, PT, Winterbourn, CC (B30) 2011; 13
Wek, SA, Zhu, S, Wek, RC (B19) 1995; 15
Haynes, CM, Titus, EA, Cooper, AA (B28) 2004; 15
Ponsero, AJ, Igbaria, A, Darch, MA, Miled, S, Outten, CE, Winther, JR, Palais, G, D'Autréaux, B, Delaunay-Moisan, A, Toledano, MB (B51) 2017; 67
References_xml – volume: 145
  start-page: 757
  year: 1999
  end-page: 767
  ident: B22
  article-title: Oxygen stress: a regulator of apoptosis in yeast
  publication-title: J Cell Biol
  doi: 10.1083/jcb.145.4.757
– volume: 2
  year: 2004
  ident: B45
  article-title: Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020246
– volume: 15
  start-page: 767
  year: 2004
  end-page: 776
  ident: B28
  article-title: Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.08.025
– ident: B65
  article-title: RStudio Team . 2021 . RStudio: integrated development environment for R . RStudio Team , Vienna, Austria .
– volume: 35
  start-page: 331
  year: 2018
  end-page: 341
  ident: B11
  article-title: Understanding the metabolic burden of recombinant antibody production in Saccharomyces cerevisiae using a quantitative metabolomics approach
  publication-title: Yeast
  doi: 10.1002/yea.3298
– volume: 43
  start-page: 823
  year: 2011
  end-page: 833
  ident: B53
  article-title: Life span extension and H2O2 resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.07.027
– volume: 15
  start-page: fov061
  year: 2015
  ident: B66
  article-title: Amyloid-β peptide-induced cytotoxicity and mitochondrial dysfunction in yeast
  publication-title: FEMS Yeast Res
  doi: 10.1093/femsyr/fov061
– volume: 12
  start-page: 437
  year: 2016
  end-page: 443
  ident: B29
  article-title: Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2067
– volume: 1
  start-page: 22
  year: 2002
  end-page: 32
  ident: B40
  article-title: Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress
  publication-title: Eukaryot Cell
  doi: 10.1128/ec.01.1.22-32.2002
– volume: 16
  start-page: 851
  year: 2016
  end-page: 865
  ident: B41
  article-title: Oxidative homeostasis regulates the response to reductive endoplasmic reticulum stress through translation control
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.06.025
– volume: 67
  start-page: 962
  year: 2017
  end-page: 973
  ident: B51
  article-title: Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.08.012
– volume: 8
  start-page: 1131
  year: 2017
  ident: B35
  article-title: Efficient protein production by yeast requires global tuning of metabolism
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00999-2
– volume: 43
  start-page: 136
  year: 2007
  end-page: 144
  ident: B62
  article-title: Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2007.04.007
– volume: 96
  start-page: 23
  year: 1990
  end-page: 28
  ident: B63
  article-title: High efficiency transformation of Escherichia coli with plasmids
  publication-title: Gene
  doi: 10.1016/0378-1119(90)90336-p
– volume: 112
  start-page: E4689
  year: 2015
  end-page: E4696
  ident: B34
  article-title: Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1506460112
– volume: 15
  start-page: 4497
  year: 1995
  end-page: 4506
  ident: B19
  article-title: The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.15.8.4497
– volume: 8
  start-page: 757
  year: 2017
  end-page: 767
  ident: B23
  article-title: Light-sensing via hydrogen peroxide and a peroxiredoxin
  publication-title: Nat Commun
  doi: 10.1038/ncomms14791
– volume: 8
  start-page: 1968
  year: 2019
  end-page: 1975
  ident: B31
  article-title: Expanding the dynamic range of a transcription factor-based biosensor in Saccharomyces cerevisiae
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.9b00144
– volume: 14
  start-page: 1511
  year: 1998
  end-page: 1527
  ident: B55
  article-title: Oxidative stress responses of the yeast Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
– volume: 83
  start-page: e03400
  year: 2017
  end-page: 16
  ident: B6
  article-title: Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03400-16
– volume: 48
  start-page: 77
  year: 2017
  end-page: 84
  ident: B3
  article-title: Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2017.03.017
– volume: 14
  start-page: 148
  year: 2018
  end-page: 155
  ident: B32
  article-title: A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2536
– volume: 115
  start-page: E11025
  year: 2018
  end-page: E11032
  ident: B5
  article-title: Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1809921115
– volume: 8
  start-page: 722
  year: 2007
  end-page: 728
  ident: B24
  article-title: Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2240
– volume: 4
  start-page: 207
  year: 2013
  end-page: 211
  ident: B1
  article-title: Production of biopharmaceutical proteins by yeast: advances through metabolic engineering
  publication-title: Bioengineered
  doi: 10.4161/bioe.22856
– volume: 133
  start-page: 292
  year: 2008
  end-page: 302
  ident: B39
  article-title: Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.037
– volume: 16
  start-page: 415
  year: 1995
  end-page: 423
  ident: B54
  article-title: The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1995.tb02407.x
– volume: 105
  start-page: 18525
  year: 2008
  end-page: 18530
  ident: B26
  article-title: Antioxidants reduce endoplasmic reticulum stress and improve protein secretion
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0809677105
– volume: 18
  start-page: 663
  year: 2001
  end-page: 670
  ident: B60
  article-title: Alterations of the glucose metabolism in a triose phosphate isomerase-negative Saccharomyces cerevisiae mutant
  publication-title: Yeast
  doi: 10.1002/yea.715
– volume: 44
  start-page: 81
  year: 2017
  end-page: 88
  ident: B59
  article-title: Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2017.09.007
– volume: 20
  start-page: 2860
  year: 2019
  ident: B13
  article-title: Translation control of HAC1 by regulation of splicing in Saccharomyces cerevisiae
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20122860
– volume: 11
  start-page: 833
  year: 2000
  end-page: 848
  ident: B20
  article-title: Glucose depletion rapidly inhibits translation initiation in yeast
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.11.3.833
– volume: 9
  start-page: 2277
  year: 2007
  end-page: 2293
  ident: B47
  article-title: Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2007.1782
– volume: 21
  start-page: 4347
  year: 2001
  end-page: 4368
  ident: B38
  article-title: Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.13.4347-4368.2001
– volume: 11
  start-page: 59
  year: 2006
  end-page: 69
  ident: B49
  article-title: Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2005.00921.x
– volume: 15
  start-page: 87
  year: 2016
  ident: B8
  article-title: Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-016-0488-5
– volume: 190
  start-page: 1157
  year: 2012
  end-page: 1195
  ident: B25
  article-title: The response to heat shock and oxidative stress in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1534/genetics.111.128033
– volume: 20
  start-page: 2706
  year: 2000
  end-page: 2717
  ident: B17
  article-title: Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.20.8.2706-2717.2000
– volume: 28
  start-page: 795
  year: 2011
  end-page: 768
  ident: B67
  article-title: An improved method for whole protein extraction from yeast Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.1905
– volume: 13
  start-page: 5099
  year: 1993
  end-page: 5111
  ident: B18
  article-title: Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.13.8.5099
– volume: 12
  start-page: 381
  year: 1994
  end-page: 384
  ident: B7
  article-title: Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae
  publication-title: Biotechnology
  doi: 10.1038/nbt0494-381
– volume: 86
  start-page: 403
  year: 2010
  end-page: 417
  ident: B10
  article-title: Engineering of protein secretion in yeast: strategies and impact on protein production
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-010-2447-0
– volume: 2
  start-page: 167
  year: 2014
  end-page: 182
  ident: B2
  article-title: Biopharmaceutical protein production by Saccharomyces cerevisiae: current state and future prospects
  publication-title: Pharm Bioprocess
  doi: 10.4155/pbp.14.8
– volume: 6
  start-page: 275
  year: 2009
  end-page: 277
  ident: B36
  article-title: SUnSET, a nonradioactive method to monitor protein synthesis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1314
– volume: 59
  start-page: 407
  year: 2005
  end-page: 450
  ident: B37
  article-title: Translational regulation of GCN4 and the general amino acid control of yeast
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.59.031805.133833
– volume: 281
  start-page: 29011
  year: 2006
  end-page: 29021
  ident: B21
  article-title: Global translational responses to oxidative stress impact upon multiple levels of protein synthesis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601545200
– volume: 14
  start-page: 120
  year: 2012
  end-page: 127
  ident: B9
  article-title: Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2012.01.002
– volume: 1843
  start-page: 1948
  year: 2014
  end-page: 1968
  ident: B14
  article-title: Keeping the eIF2 alpha kinase Gcn2 in check
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2014.04.006
– volume: 4
  start-page: 368
  year: 2017
  end-page: 375
  ident: B16
  article-title: The integrated stress response in budding yeast lifespan extension
  publication-title: Microb Cell
  doi: 10.15698/mic2017.11.597
– volume: 13
  start-page: 361
  year: 2011
  end-page: 366
  ident: B30
  article-title: Unraveling the biological roles of reactive oxygen species
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.03.010
– volume: 14
  start-page: 549
  year: 2018
  end-page: 556
  ident: B33
  article-title: Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2017.10.017
– volume: 10
  start-page: 16
  year: 2012
  ident: B48
  article-title: Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-10-16
– volume: 8
  start-page: 501
  year: 1992
  end-page: 517
  ident: B61
  article-title: Effect of benzoic acid on metabolic fluxes in yeasts: a continuous‐culture study on the regulation of respiration and alcoholic fermentation
  publication-title: Yeast
  doi: 10.1002/yea.320080703
– volume: 9
  start-page: 324
  year: 2018
  ident: B42
  article-title: Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02694-8
– volume: 2
  start-page: 31
  year: 2007
  end-page: 34
  ident: B64
  article-title: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.13
– volume: 6
  year: 2011
  ident: B27
  article-title: Hydrogen peroxide probes directed to different cellular compartments
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014564
– volume: 111
  start-page: 471
  year: 2002
  end-page: 481
  ident: B56
  article-title: A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation
  publication-title: Cell
  doi: 10.1016/s0092-8674(02)01048-6
– volume: 109
  start-page: 1259
  year: 2012
  end-page: 1268
  ident: B58
  article-title: Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24409
– volume: 109
  start-page: E3084
  year: 2012
  end-page: E3093
  ident: B46
  article-title: Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1212457109
– volume: 154
  start-page: 1686
  year: 2008
  end-page: 1699
  ident: B43
  article-title: Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis
  publication-title: Microbiology
  doi: 10.1099/mic.0.2008/017392-0
– volume: 11
  start-page: 619
  year: 2003
  end-page: 633
  ident: B15
  article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
  publication-title: Mol Cell
  doi: 10.1016/s1097-2765(03)00105-9
– volume: 196
  start-page: 713
  year: 2012
  end-page: 725
  ident: B50
  article-title: Balanced Ero1 activation and inactivation establishes ER redox homeostasis
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201110090
– volume: 112
  start-page: 1872
  year: 2015
  end-page: 1882
  ident: B12
  article-title: Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25596
– volume: 39
  start-page: 683
  year: 2007
  end-page: 687
  ident: B44
  article-title: Genetic reconstruction of a functional transcriptional regulatory network
  publication-title: Nat Genet
  doi: 10.1038/ng2012
– volume: 55
  start-page: 142
  year: 2019
  end-page: 151
  ident: B4
  article-title: Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2019.06.010
– volume: 211
  start-page: 253
  year: 2015
  end-page: 259
  ident: B52
  article-title: ERO1-independent production of H2O2 within the endoplasmic reticulum fuels Prdx4-mediated oxidative protein folding
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201506123
– volume: 1
  start-page: 376
  year: 2014
  end-page: 386
  ident: B57
  article-title: Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion
  publication-title: Microb Cell
  doi: 10.15698/mic2014.11.173
SSID ssj0004068
Score 2.4197152
Snippet Recombinant protein production is a known source of oxidative stress. However, knowledge of which reactive oxygen species are involved or the specific growth...
SourceID pubmedcentral
proquest
asm2
SourceType Open Access Repository
Aggregation Database
StartPage e0030121
SubjectTerms Amylases
Antioxidants
Attenuation
Batch culture
Biotechnology
Cell culture
Cytosol
Endoplasmic reticulum
Feedback
Feedback inhibition
Folding
Hydrogen peroxide
Initiation factor eIF-2α
Intracellular
Kinases
Oxidants
Oxidative stress
Oxidizing agents
Phosphorylation
Productivity
Protein biosynthesis
Protein folding
Protein kinase
Protein synthesis
Proteins
Reactive oxygen species
Splicing
Spotlight
Yeast
α-Amylase
Title The Yeast eIF2 Kinase Gcn2 Facilitates H2O2-Mediated Feedback Inhibition of Both Protein Synthesis and Endoplasmic Reticulum Oxidative Folding during Recombinant Protein Production
URI https://journals.asm.org/doi/10.1128/AEM.00301-21
https://www.proquest.com/docview/2552120511
https://www.proquest.com/docview/2534616345
https://pubmed.ncbi.nlm.nih.gov/PMC8276805
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FIgQcEAQqAgUtiJvlEq8_4hwLihVI0xSRoHKyvPaaWqhOIQ6i_V38Hf4LM7tee40qBFwsy3bWludlZ2Y97w0hL4bY5Qgcg-1LUW0ucptnQW77fAjuToBLTZE7PD8Kpivv7Yl_0uv9NKqWthXfTy-v5JX8j1XhGNgVWbL_YNlmUDgA-2Bf2IKFYfvXNv6IzXcs8SZi1qwoE1SSTktmRUmq9LfFxpqyBbPnsicHhJcR-CuepJ9hajgteKEjxldgMqQNYPdL6_1FCYEhapXguvqkzNbnEGWfyaL7Sq0YWovvRaZUwyP1BUtTHjGjPeOywqYZ8FgJy2oQaNnbOgTGmxiMOyS0FK1AVFMilCh-ygch9XzbEiPj88ksqRqkHsM1l2olWODLaH4wKT99-VZsNFdJi4_Xax_MwUVVRV016AY4DxoVrvPfH7Ce-cdjG8MX5ffUZI9aqhDuBqY3qN1_jXr_ai_DkDlxMJnvy4zSVhzvrpj30SKOVoeH8XJysrxGrjPIYrDBxuydIWY_DEItkoqPpnkZLHxpjg3BAliYdVKgbgGvEREt75I7dSpDDxQu75GeKPvkhmpuetEnNzXnfdMntw3Zy_vkB-CWStxSxC1VuKWIW2rglnZwSzVuaYtbus4p4pbWMKMNbilAihq4pQ1uaYNbWuOWKtxSA7fNgC1uH5BVNFm-ntp19xA7AR9W2SzL3FzqD7k57Ia58NMxH4UOJDEi5MxNuAdRQgLOPuBelo6Yk_uYz7huCAczd5fslOtSPCSUc5bCzOWFPB97KYPwJufY9MvJHDeHDGlAnqOF4npq2MQys2ZhDGaMpRlj5gzInrZfeyEk9BA7gmOE08-a0zDD42e7pBTrLV7jegGkTZ4_IKOO3eNzpUgTo0Z890xZnEqt-JCNgnDoP_rzzR-TW-3fa4_sVF-34gkE2xV_KiH7C84K3fU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Yeast+eIF2+Kinase+Gcn2+Facilitates+H2O2-Mediated+Feedback+Inhibition+of+Both+Protein+Synthesis+and+Endoplasmic+Reticulum+Oxidative+Folding+during+Recombinant+Protein+Production&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Gast%2C+Veronica&rft.au=Campbell%2C+Kate&rft.au=Picazo%2C+Cecilia&rft.au=Engqvist%2C+Martin&rft.date=2021-07-13&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=87&rft.issue=15&rft_id=info:doi/10.1128%2FAEM.00301-21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon