Rugged High-Entropy Alloy Nanowires with in Situ Formed Surface Spinel Oxide As Highly Stable Electrocatalyst in Zn–Air Batteries

Noble metal elements are the key to many high-performance heterogeneous catalytic processes; nevertheless, how to reduce the usage of such scarce and prohibitive materials while maintaining or even enhancing the desired catalytic performance has always been a grand challenge. In this work, we introd...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 2; no. 12; pp. 1698 - 1706
Main Authors Jin, Zeyu, Lyu, Juan, Zhao, Yi-Lu, Li, Huanglong, Lin, Xi, Xie, Guoqiang, Liu, Xingjun, Kai, Ji-Jung, Qiu, Hua-Jun
Format Journal Article
LanguageEnglish
Published American Chemical Society 07.12.2020
Online AccessGet full text

Cover

Loading…
Abstract Noble metal elements are the key to many high-performance heterogeneous catalytic processes; nevertheless, how to reduce the usage of such scarce and prohibitive materials while maintaining or even enhancing the desired catalytic performance has always been a grand challenge. In this work, we introduce a general dealloying procedure to synthesize a series of predesigned rugged high-entropy alloy (HEA) nanowires, including Al–Ni–Co–Ru–X, where X = Mo, Cu, V, Fe as the trifunctional electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). These mechanically and chemically stable HEAs can not only significantly reduce the noble-metal contents but also effectively enhance the flexibility in their electronic structures suitable for broad catalytic functionalities. Specifically, our etched Al–Ni–Co–Ru–Mo nanowires exhibit a similarly high electrocatalytic activity as commercial Pt/C for HER. Its OER activity is much higher than the commercial RuO2 and among the highest ever-reported Ru-based OER catalysts. Its ORR catalytic activity is even higher than Pt/C, although Ru is not considered as a good ORR catalyst. Moreover, the oxidized surfaces of these HEAs are highly stable during continuous working conditions, which is crucial for overall water splitting and rechargeable Zn–air batteries.
AbstractList Noble metal elements are the key to many high-performance heterogeneous catalytic processes; nevertheless, how to reduce the usage of such scarce and prohibitive materials while maintaining or even enhancing the desired catalytic performance has always been a grand challenge. In this work, we introduce a general dealloying procedure to synthesize a series of predesigned rugged high-entropy alloy (HEA) nanowires, including Al–Ni–Co–Ru–X, where X = Mo, Cu, V, Fe as the trifunctional electrocatalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). These mechanically and chemically stable HEAs can not only significantly reduce the noble-metal contents but also effectively enhance the flexibility in their electronic structures suitable for broad catalytic functionalities. Specifically, our etched Al–Ni–Co–Ru–Mo nanowires exhibit a similarly high electrocatalytic activity as commercial Pt/C for HER. Its OER activity is much higher than the commercial RuO2 and among the highest ever-reported Ru-based OER catalysts. Its ORR catalytic activity is even higher than Pt/C, although Ru is not considered as a good ORR catalyst. Moreover, the oxidized surfaces of these HEAs are highly stable during continuous working conditions, which is crucial for overall water splitting and rechargeable Zn–air batteries.
Author Li, Huanglong
Lyu, Juan
Zhao, Yi-Lu
Xie, Guoqiang
Jin, Zeyu
Kai, Ji-Jung
Qiu, Hua-Jun
Liu, Xingjun
Lin, Xi
AuthorAffiliation Department of Mechanical Engineering
School of Materials Science and Engineering
Department of Precision Instrument
State Key Laboratory of Advanced Welding and Joining
AuthorAffiliation_xml – name: State Key Laboratory of Advanced Welding and Joining
– name: Department of Precision Instrument
– name: Department of Mechanical Engineering
– name: School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Zeyu
  surname: Jin
  fullname: Jin, Zeyu
  organization: School of Materials Science and Engineering
– sequence: 2
  givenname: Juan
  surname: Lyu
  fullname: Lyu, Juan
  organization: Department of Precision Instrument
– sequence: 3
  givenname: Yi-Lu
  surname: Zhao
  fullname: Zhao, Yi-Lu
  organization: Department of Mechanical Engineering
– sequence: 4
  givenname: Huanglong
  orcidid: 0000-0002-1777-7807
  surname: Li
  fullname: Li, Huanglong
  email: li_huanglong@mail.tsinghua.edu.cn
  organization: Department of Precision Instrument
– sequence: 5
  givenname: Xi
  surname: Lin
  fullname: Lin, Xi
  organization: Department of Mechanical Engineering
– sequence: 6
  givenname: Guoqiang
  surname: Xie
  fullname: Xie, Guoqiang
  organization: School of Materials Science and Engineering
– sequence: 7
  givenname: Xingjun
  surname: Liu
  fullname: Liu, Xingjun
  organization: State Key Laboratory of Advanced Welding and Joining
– sequence: 8
  givenname: Ji-Jung
  orcidid: 0000-0001-7848-8753
  surname: Kai
  fullname: Kai, Ji-Jung
  organization: Department of Mechanical Engineering
– sequence: 9
  givenname: Hua-Jun
  orcidid: 0000-0003-0396-1942
  surname: Qiu
  fullname: Qiu, Hua-Jun
  email: qiuhuajun@hit.edu.cn
  organization: School of Materials Science and Engineering
BookMark eNqNkM1OAjEURhuDiYi8Q19gsNOfYboxGQmICZHE0Y2bSWk7UFJmSFuCszPxEXxDn8RBWBg3urp38Z2Te79L0KnqSgMAYzSIEY6vhfQbEbQzwnqrQxggiRAl9Ax0cUJ4RPmQd37sF6Dv_Rqhlk1iTmkXvD_ulkut4NQsV9G4Cq7eNjCztm7gg6jqvXHaw70JK2gqmJuwg5PabVog37lSSA3zram0hfNXozTM_LfINjAPYmE1HFstW6cUQdjGh4Pkpfp8-8iMg7ciHE7X_gqcl-0Dun-aPfA8GT-NptFsfnc_ymaRIIiGSC0IE8M0ZbxMUsqw4gnGDCERU0YpYYkaakmYVChOGMVkgVNeMs5ZgglXipAeuDl6pau9d7ospAkimLp9WxhbxKg4tFr8brU4tdoK0l-CrTMb4Zr_oPSItoliXe9c1Sb-xr4A4SqaBg
CitedBy_id crossref_primary_10_1007_s41918_022_00144_8
crossref_primary_10_1002_smll_202311631
crossref_primary_10_1016_j_chemosphere_2024_143720
crossref_primary_10_1002_er_7639
crossref_primary_10_1016_j_cej_2021_131533
crossref_primary_10_1021_acsami_1c15119
crossref_primary_10_1021_acs_energyfuels_2c03011
crossref_primary_10_1007_s12274_023_5419_2
crossref_primary_10_1007_s12598_024_03065_1
crossref_primary_10_1126_sciadv_adq6758
crossref_primary_10_1016_j_nxmate_2024_100126
crossref_primary_10_1016_j_electacta_2022_141621
crossref_primary_10_1016_j_pmatsci_2024_101382
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_1016_j_nanoen_2023_108718
crossref_primary_10_1039_D3NR06065A
crossref_primary_10_1002_adma_202101845
crossref_primary_10_1016_j_pmatsci_2024_101300
crossref_primary_10_1016_j_jcis_2024_07_178
crossref_primary_10_1021_acscatal_2c02604
crossref_primary_10_1016_j_matt_2022_09_023
crossref_primary_10_1016_j_mtchem_2024_102229
crossref_primary_10_1021_acs_nanolett_3c03462
crossref_primary_10_1016_j_jallcom_2023_172232
crossref_primary_10_1039_D3CS00708A
crossref_primary_10_1016_j_apmt_2025_102631
crossref_primary_10_1016_j_jallcom_2022_165148
crossref_primary_10_1021_acs_energyfuels_3c00988
crossref_primary_10_3390_nano14100889
crossref_primary_10_1021_acs_cgd_3c00712
crossref_primary_10_1002_smsc_202200109
crossref_primary_10_1016_j_coche_2024_101020
crossref_primary_10_1063_5_0117046
crossref_primary_10_1002_smll_202300612
crossref_primary_10_1002_smll_202411479
crossref_primary_10_1002_adfm_202306889
crossref_primary_10_1002_elsa_202100105
crossref_primary_10_1039_D2SC04461G
crossref_primary_10_1016_j_jelechem_2025_118937
crossref_primary_10_1016_S1872_2067_21_63977_3
crossref_primary_10_1016_j_ensm_2024_103718
crossref_primary_10_1126_sciadv_adn2877
crossref_primary_10_1002_adma_202412337
crossref_primary_10_1016_j_jallcom_2024_178194
crossref_primary_10_1016_j_mser_2024_100813
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1016_j_ccr_2022_214952
crossref_primary_10_1016_j_jechem_2021_12_026
crossref_primary_10_1039_D3NR00514C
crossref_primary_10_1039_D4CY00066H
crossref_primary_10_1002_smll_202310006
crossref_primary_10_1021_acsaem_4c01227
crossref_primary_10_1007_s12274_022_5207_4
crossref_primary_10_1039_D1NR03539H
crossref_primary_10_1016_j_mtnano_2022_100282
crossref_primary_10_1016_j_mtcomm_2024_110969
crossref_primary_10_1016_j_coelec_2023_101264
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_1002_ente_202200573
crossref_primary_10_1016_j_ijhydene_2023_04_132
crossref_primary_10_1021_acs_energyfuels_4c03386
crossref_primary_10_1002_smtd_202301322
crossref_primary_10_1002_aenm_202100640
crossref_primary_10_1002_sus2_47
crossref_primary_10_1002_adfm_202310179
crossref_primary_10_1103_PRXEnergy_2_033011
crossref_primary_10_1002_metm_31
crossref_primary_10_1016_S1872_2067_21_63794_4
crossref_primary_10_1039_D2TA01376B
crossref_primary_10_3390_catal14010057
crossref_primary_10_1002_adfm_202106715
crossref_primary_10_1016_j_nanoen_2023_109153
crossref_primary_10_1016_j_jcis_2024_05_137
crossref_primary_10_1016_j_fuel_2025_134800
crossref_primary_10_1039_D3TA01592K
crossref_primary_10_1002_slct_202203929
crossref_primary_10_1016_j_cej_2023_143855
crossref_primary_10_1039_D2CS00684G
crossref_primary_10_1016_j_checat_2022_10_002
crossref_primary_10_1039_D3SE00736G
crossref_primary_10_1021_acs_inorgchem_3c00541
crossref_primary_10_1039_D1NR02074A
crossref_primary_10_1039_D4TA04984E
crossref_primary_10_1002_EXP_20230036
crossref_primary_10_1016_j_joule_2023_02_011
crossref_primary_10_1016_j_cej_2023_147099
crossref_primary_10_1021_acsmaterialslett_1c00762
crossref_primary_10_1016_j_jece_2022_109080
crossref_primary_10_1016_j_pnsc_2022_11_002
crossref_primary_10_1016_j_electacta_2024_144778
crossref_primary_10_1016_j_electacta_2024_144931
crossref_primary_10_1002_admi_202301020
crossref_primary_10_1016_j_ensm_2025_104064
crossref_primary_10_1016_j_jcis_2021_08_174
crossref_primary_10_1021_acs_chemmater_2c02842
crossref_primary_10_1002_smtd_202201138
crossref_primary_10_1002_smll_202408317
crossref_primary_10_1002_ange_202109212
crossref_primary_10_3390_chemengineering6010019
crossref_primary_10_1002_smll_202107207
crossref_primary_10_1039_D3SC06784J
crossref_primary_10_1016_j_est_2021_103405
crossref_primary_10_1039_D2SC06403K
crossref_primary_10_1002_smll_202104339
crossref_primary_10_1039_D2TA09052J
crossref_primary_10_1016_j_ensm_2024_103408
crossref_primary_10_1016_j_matt_2023_03_034
crossref_primary_10_2320_matertrans_MT_MH2022003
crossref_primary_10_1007_s12274_023_6095_y
crossref_primary_10_1016_j_jcis_2021_08_201
crossref_primary_10_1021_acsmaterialslett_2c00245
crossref_primary_10_1021_acsenergylett_4c01129
crossref_primary_10_1016_j_jallcom_2022_165585
crossref_primary_10_1007_s41403_023_00429_4
crossref_primary_10_1002_nano_202200081
crossref_primary_10_1016_j_jechem_2021_08_054
crossref_primary_10_1002_adfm_202309438
crossref_primary_10_1080_21663831_2023_2224397
crossref_primary_10_1002_smll_202106127
crossref_primary_10_1002_sus2_32
crossref_primary_10_1016_j_ijhydene_2024_09_379
crossref_primary_10_1016_j_intermet_2023_108132
crossref_primary_10_1016_j_ijhydene_2024_08_221
crossref_primary_10_1016_j_jmat_2025_101046
crossref_primary_10_1021_acs_energyfuels_2c02744
crossref_primary_10_1002_adts_202300327
crossref_primary_10_1002_adfm_202205142
crossref_primary_10_1016_j_chemosphere_2024_142610
crossref_primary_10_1016_j_apsusc_2023_158598
crossref_primary_10_1016_j_jallcom_2023_169319
crossref_primary_10_1021_acs_iecr_2c03876
crossref_primary_10_1002_anie_202109212
crossref_primary_10_1002_cssc_202300927
crossref_primary_10_3390_catal11091059
crossref_primary_10_1039_D4TA07090A
crossref_primary_10_1016_j_ijhydene_2022_04_255
crossref_primary_10_3866_PKU_WHXB202307057
crossref_primary_10_1021_acs_chemmater_0c04695
crossref_primary_10_1039_D3QM00638G
crossref_primary_10_1002_smll_202311929
crossref_primary_10_1039_D3TA04670B
crossref_primary_10_1016_j_jallcom_2023_170479
crossref_primary_10_1016_j_jallcom_2024_178435
crossref_primary_10_1016_j_nanoen_2024_109703
crossref_primary_10_1002_aesr_202400146
crossref_primary_10_1016_j_cej_2025_161377
crossref_primary_10_1080_21663831_2021_1896588
crossref_primary_10_1002_adma_202302499
crossref_primary_10_1039_D2TA06128G
crossref_primary_10_1039_D2NR06090F
crossref_primary_10_1002_adts_202200926
crossref_primary_10_1007_s42864_024_00286_w
crossref_primary_10_1016_j_jeurceramsoc_2022_12_047
crossref_primary_10_1088_2752_5724_accbd8
crossref_primary_10_1016_j_checat_2022_05_003
crossref_primary_10_1002_adfm_202301375
crossref_primary_10_1021_jacs_2c12887
crossref_primary_10_1016_j_ensm_2025_104054
crossref_primary_10_1016_j_ijhydene_2024_08_046
crossref_primary_10_1007_s10853_025_10700_4
crossref_primary_10_1016_j_ijhydene_2024_10_295
crossref_primary_10_1002_aic_18323
crossref_primary_10_1002_tcr_202200175
crossref_primary_10_1002_cssc_202201518
Cites_doi 10.1021/acsenergylett.9b02374
10.1002/adma.201606570
10.1126/science.aan5412
10.1021/acsenergylett.8b00303
10.1021/acscatal.9b02457
10.1021/jacs.9b12377
10.1021/acscatal.9b04343
10.1016/j.matt.2020.07.029
10.1038/s41467-019-11848-9
10.1039/C8TA11635K
10.1021/acsmaterialslett.0c00146
10.1021/acscatal.9b04302
10.1002/adma.201606800
10.1021/acsenergylett.6b00681
10.1021/acsmaterialslett.0c00339
10.1021/acsmaterialslett.9b00093
10.1021/cm4040903
10.1016/j.apcatb.2019.118431
10.1002/anie.201507381
10.1021/acsmaterialslett.9b00064
10.1016/j.mattod.2015.11.026
10.1002/aenm.201802269
10.1039/C6TA02030E
10.1021/acscatal.7b03529
10.1021/acsmaterialslett.9b00337
10.1016/j.electacta.2018.05.035
10.1016/j.nanoen.2018.02.017
10.1002/adma.201704681
10.1039/C7TA06247H
10.1021/acsmaterialslett.9b00414
10.1038/ncomms2812
10.1021/acscatal.7b02650
10.1021/acs.nanolett.7b04502
10.1126/science.1212858
10.1002/adfm.201902101
10.1021/acsmaterialslett.9b00088
10.1002/adma.201901666
10.1002/adma.201900592
10.1002/aenm.201701347
10.1021/jacs.0c04807
10.1002/smll.201904180
10.1021/acsnano.7b00417
10.1002/adma.201970275
10.1039/D0TA05176D
10.1021/acsenergylett.8b00696
10.1002/smtd.201800168
10.1002/adma.201900843
10.1016/j.actamat.2016.08.081
10.1021/acsmaterialslett.9b00094
10.1002/adma.201806296
10.1021/acsenergylett.6b00219
10.1021/acsmaterialslett.0c00209
10.1002/smll.201803009
10.1021/acsnano.9b02315
10.1016/j.joule.2018.12.015
10.1002/aenm.201801478
10.1021/acsami.9b13305
10.1002/adma.201806236
10.1021/ja104587v
10.1002/adem.200300567
10.1002/anie.201600750
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsmaterialslett.0c00434
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2639-4979
EndPage 1706
ExternalDocumentID 10_1021_acsmaterialslett_0c00434
d050325872
GroupedDBID ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
AAYXX
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
GGK
M~E
ID FETCH-LOGICAL-a304t-db35a78859f68452d9622500a14544356d7ec35cd0165423b289f59956239dd33
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Thu Apr 24 22:59:20 EDT 2025
Tue Jul 01 04:21:51 EDT 2025
Wed Dec 09 14:46:18 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a304t-db35a78859f68452d9622500a14544356d7ec35cd0165423b289f59956239dd33
ORCID 0000-0003-0396-1942
0000-0002-1777-7807
0000-0001-7848-8753
PageCount 9
ParticipantIDs crossref_citationtrail_10_1021_acsmaterialslett_0c00434
crossref_primary_10_1021_acsmaterialslett_0c00434
acs_journals_10_1021_acsmaterialslett_0c00434
ProviderPackageCode VF5
ACS
VG9
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201207
2020-12-07
PublicationDateYYYYMMDD 2020-12-07
PublicationDate_xml – month: 12
  year: 2020
  text: 20201207
  day: 07
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1021/acsenergylett.9b02374
– ident: ref39/cit39
  doi: 10.1002/adma.201606570
– ident: ref20/cit20
  doi: 10.1126/science.aan5412
– ident: ref59/cit59
  doi: 10.1021/acsenergylett.8b00303
– ident: ref37/cit37
  doi: 10.1021/acscatal.9b02457
– ident: ref22/cit22
  doi: 10.1021/jacs.9b12377
– ident: ref27/cit27
  doi: 10.1021/acscatal.9b04343
– ident: ref28/cit28
  doi: 10.1016/j.matt.2020.07.029
– ident: ref30/cit30
  doi: 10.1038/s41467-019-11848-9
– ident: ref35/cit35
  doi: 10.1039/C8TA11635K
– ident: ref5/cit5
  doi: 10.1021/acsmaterialslett.0c00146
– ident: ref26/cit26
  doi: 10.1021/acscatal.9b04302
– ident: ref48/cit48
  doi: 10.1002/adma.201606800
– ident: ref12/cit12
  doi: 10.1021/acsenergylett.6b00681
– ident: ref13/cit13
  doi: 10.1021/acsmaterialslett.0c00339
– ident: ref6/cit6
  doi: 10.1021/acsmaterialslett.9b00093
– ident: ref3/cit3
  doi: 10.1021/cm4040903
– ident: ref52/cit52
  doi: 10.1016/j.apcatb.2019.118431
– ident: ref15/cit15
  doi: 10.1002/anie.201507381
– ident: ref23/cit23
  doi: 10.1021/acsmaterialslett.9b00064
– ident: ref19/cit19
  doi: 10.1016/j.mattod.2015.11.026
– ident: ref32/cit32
  doi: 10.1002/aenm.201802269
– ident: ref45/cit45
  doi: 10.1039/C6TA02030E
– ident: ref40/cit40
  doi: 10.1021/acscatal.7b03529
– ident: ref56/cit56
  doi: 10.1021/acsmaterialslett.9b00337
– ident: ref25/cit25
  doi: 10.1016/j.electacta.2018.05.035
– ident: ref33/cit33
  doi: 10.1016/j.nanoen.2018.02.017
– ident: ref53/cit53
  doi: 10.1002/adma.201704681
– ident: ref43/cit43
  doi: 10.1039/C7TA06247H
– ident: ref42/cit42
  doi: 10.1021/acsmaterialslett.9b00414
– ident: ref55/cit55
  doi: 10.1038/ncomms2812
– ident: ref50/cit50
  doi: 10.1021/acscatal.7b02650
– ident: ref49/cit49
  doi: 10.1021/acs.nanolett.7b04502
– ident: ref47/cit47
  doi: 10.1126/science.1212858
– ident: ref7/cit7
  doi: 10.1002/adfm.201902101
– ident: ref9/cit9
  doi: 10.1021/acsmaterialslett.9b00088
– ident: ref51/cit51
  doi: 10.1002/adma.201901666
– ident: ref61/cit61
  doi: 10.1002/adma.201900592
– ident: ref11/cit11
  doi: 10.1002/aenm.201701347
– ident: ref29/cit29
  doi: 10.1021/jacs.0c04807
– ident: ref16/cit16
  doi: 10.1002/smll.201904180
– ident: ref57/cit57
  doi: 10.1021/acsnano.7b00417
– ident: ref58/cit58
  doi: 10.1002/adma.201970275
– ident: ref31/cit31
  doi: 10.1039/D0TA05176D
– ident: ref2/cit2
  doi: 10.1021/acsenergylett.8b00696
– ident: ref44/cit44
  doi: 10.1002/smtd.201800168
– ident: ref10/cit10
  doi: 10.1002/adma.201900843
– ident: ref17/cit17
  doi: 10.1016/j.actamat.2016.08.081
– ident: ref14/cit14
  doi: 10.1021/acsmaterialslett.9b00094
– ident: ref46/cit46
  doi: 10.1002/adma.201806296
– ident: ref41/cit41
  doi: 10.1021/acsenergylett.6b00219
– ident: ref1/cit1
  doi: 10.1021/acsmaterialslett.0c00209
– ident: ref8/cit8
  doi: 10.1002/smll.201803009
– ident: ref54/cit54
  doi: 10.1021/acsnano.9b02315
– ident: ref21/cit21
  doi: 10.1016/j.joule.2018.12.015
– ident: ref34/cit34
  doi: 10.1002/aenm.201801478
– ident: ref38/cit38
  doi: 10.1021/acsami.9b13305
– ident: ref24/cit24
  doi: 10.1002/adma.201806236
– ident: ref4/cit4
  doi: 10.1021/ja104587v
– ident: ref18/cit18
  doi: 10.1002/adem.200300567
– ident: ref60/cit60
  doi: 10.1002/anie.201600750
SSID ssj0002161944
Score 2.5430026
Snippet Noble metal elements are the key to many high-performance heterogeneous catalytic processes; nevertheless, how to reduce the usage of such scarce and...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1698
Title Rugged High-Entropy Alloy Nanowires with in Situ Formed Surface Spinel Oxide As Highly Stable Electrocatalyst in Zn–Air Batteries
URI http://dx.doi.org/10.1021/acsmaterialslett.0c00434
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnrwLa4vcvCatU36PBbZRQQVXAXxUtIkK4ulu2xbcD2I4E_wH_pLnGmrLIqvS0-dIc2k8843hBzYUrmg-A3zIUhmjs81CxPhM9cTYF8cREjDhP7pmXd85Zxcu9czhH9Twef2oVQ5-G61OOBTiralsHzlzJJ57gU-BlzRUe8jr8JtjMuxmMw9UQ1QC5sGnp-YoW1S-ZRtmjIy3eX64l9eYRNib8lduyyStnr4itz4j_WvkKXG56RRfUhWyYzJ1sjiFBLhOnm-KG9vjabY9sE62L0-mtAoTYcTCvp3iIDGOcWcLR1ktDcoStoFZxcIeuW4L5WhvREwS-n5_UAbGuUVo3RCwZdNUkM79bCdKlc0yQtkcpO9Pr1EgzGtET4hYN8gV93O5dExa-YzMCksp2A6Ea6EENoN-14AMtWhB9rBsqTtIKqe62nfKOEqXV2Z4iKB4K6PAGfgcoVaC7FJ5rJhZrYIlZ4AV0sqx0jQIpZKAkcHXAYGX01s3iIM9jFu_q88rkrn3I4_b27cbG6L-O-SjFUDdo4zN9I_UNoflKMa8ONXmu1_rm6HLHAM27Erxt8lc8W4NHvg2xTJfnWY4Xn62HkDUqv6Ww
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5V7QE4UJ6ilMce4LghXr_iQw9WSZTSBxJppYqLWe9uKgvLibK2WnNC4ifwK_gr_Ax-CTO2G6IeeBx64Gp5RuOd9bx29huAF45UPhp-w0NMkrkXCs2j1A25H7joXzxCSKOC_uFRMD7x3pz6p2vw7fIuDAphkZNtDvF_oQs4r_AZhnCtVvCLyl5f0SmW1_VT7pv6HLM1u7P3GlX7UojR8Hh3zLuBAlxi1l5ynbq-xJzPj6bBAIXQUYDbud-XjkcwcH6gQ6NcX-nmjo9wU8xGpoTIhTFCpDXVPtHab2AMJCjPi3cny3KOcKgcQGfYInCbuW1R1zf0O-HJJSq74hJXfNtoE74vV6VpafnYq8q0pz5dAYz8L5btDtzuImwWt7_EXVgzxT24tYK7eB--vKvOzoxm1OTCh9SrP69ZnOezmqG3mRF8s2VUoWZZwSZZWbERhvZIMKkWU6kMm8yRWc7eXmTasNg2jPKaYeSe5oYN29FCTWWstiUxeV_8-Pw1zhasxTPNjH0AJ9eyCg9hvZgV5hEwGbgYWErlGYk2s6_SgacHQg4MvZo6Ygs46i3prIlNmkYB4SRXlZl0ytyC8HIDJaqDdqcJI_lfUDpLynkLb_JHmsf_KN1zuDE-PjxIDvaO9rfhpqCCBfUDhU9gvVxU5ilGdWX6rPmfGHy47p34E1Q7Vp4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUL0QPlp1VJ-fICjl43ztzlwiNpdtRQKYqlU9ZI6treKGmVX60QQTkg8As_Bq_AQPAkzSbpa9QD00APXKDOaeOz5z2eA545UPhp-w0NMkrkXCs2j1A25H7joXzxCSKOC_tujYP_Ye33in6zAj8t_YVAIi5xs08SnUz3Tkw5hwHmJzzGMazWDX1X2-oo6WV43U3lo6k-YsdlXB3uo3hdCjIYfd_d5d6kAl5i5l1ynri8x7_OjSTBAQXQU4Jbu96XjERScH-jQKNdXuvnPR7gpZiQTQuXCOCHSmuqfaPFvUbeQcr14d7wo6QiHSgLUxxaB29zdFnWzQ38Sntyisktuccm_jdbh52JlmrGWi15Vpj315Qpo5H-zdPfgbhdps7g9GvdhxRQPYG0Jf_EhfPtQnZ8bzWjYhQ9pZn9WszjPpzVDrzMlGGfLqFLNsoKNs7JiIwzxkWBczSdSGTaeIbOcvfucacNi2zDKa4YRfJobNmyvGGoqZLUticlp8evr9zibsxbXNDN2A45vZBU2YbWYFmYLmAxcDDCl8oxE29lX6cDTAyEHhl5NHbENHPWWdFbFJs3AgHCSq8pMOmVuQ3i5iRLVQbzTTSP5P1A6C8pZC3PyV5pH15TuGdx-vzdK3hwcHe7AHUF1CxoLCh_DajmvzBMM7sr0aXOkGJzd9Eb8DZmcWSE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rugged+High-Entropy+Alloy+Nanowires+with+in+Situ+Formed+Surface+Spinel+Oxide+As+Highly+Stable+Electrocatalyst+in+Zn%E2%80%93Air+Batteries&rft.jtitle=ACS+materials+letters&rft.au=Jin%2C+Zeyu&rft.au=Lyu%2C+Juan&rft.au=Zhao%2C+Yi-Lu&rft.au=Li%2C+Huanglong&rft.date=2020-12-07&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=2&rft.issue=12&rft.spage=1698&rft.epage=1706&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00434&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsmaterialslett_0c00434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon