In Silico Evaluation of Oligomeric Representations for Molecularly Imprinted Polymer Modeling Using a Biological Template

Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, es...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 63; no. 21; pp. 6740 - 6755
Main Authors Oliveira Soté, William, de Araújo Rodrigues, Aurélia Aparecida, Comar Junior, Moacyr
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 13.11.2023
Subjects
Online AccessGet full text
ISSN1549-9596
1549-960X
1549-960X
DOI10.1021/acs.jcim.3c01461

Cover

Loading…
Abstract Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand–template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand–template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject.
AbstractList Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand–template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand–template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject.
Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand-template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand-template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject.Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand-template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand-template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject.
Author Oliveira Soté, William
Comar Junior, Moacyr
de Araújo Rodrigues, Aurélia Aparecida
AuthorAffiliation Federal University of Uberlândia
Institute of Chemistry
Faculty of Mathematics
AuthorAffiliation_xml – name: Federal University of Uberlândia
– name: Institute of Chemistry
– name: Faculty of Mathematics
Author_xml – sequence: 1
  givenname: William
  orcidid: 0000-0002-1621-624X
  surname: Oliveira Soté
  fullname: Oliveira Soté, William
  organization: Institute of Chemistry
– sequence: 2
  givenname: Aurélia Aparecida
  surname: de Araújo Rodrigues
  fullname: de Araújo Rodrigues, Aurélia Aparecida
  organization: Federal University of Uberlândia
– sequence: 3
  givenname: Moacyr
  surname: Comar Junior
  fullname: Comar Junior, Moacyr
  email: mcomjr@ufu.br
  organization: Institute of Chemistry
BookMark eNp9kc9rHCEYhqWk0PzovUehlx6yGx0dZzw2IU0WElLaBHobnG8_FxdHNzoT2P--bja5BJKLCu_zyKfvETkIMSAh3zibc1bxMwN5vgY3zAUwLhX_RA55LfVMK_bv4PVca_WFHOW8ZkwIrapDsl0E-td5B5FePhk_mdHFQKOld96t4oDJAf2Dm4QZw_gcZmpjorfRI0zeJL-li2GTXBhxSX9Hvy1OSZfoXVjRh7xbDT130ceVA-PpPQ4bb0Y8IZ-t8Rm_vuzH5OHX5f3F9ezm7mpx8fNmZgST4wxkXbVWCdYrU2vgpufK1pUWRkFTCW6XWDVSQNOodgm6Rm4r6K2sFfAe-kYckx_7ezcpPk6Yx25wGdB7EzBOuavaVvKWS8YL-v0Nuo5TCmW6QmnGGqmFKhTbU5BizgltV54_mLTtOOt2XXSli27XRffSRVHUGwXc_jfHZJz_SDzdi8_J6zDv4v8BvY-jQw
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_131101
Cites_doi 10.1016/j.polymer.2022.125253
10.1515/molim-2016-0001
10.1016/S0040-4039(01)81566-5
10.1021/acs.analchem.9b03813
10.1039/C4CC06366J
10.1016/j.msec.2017.02.138
10.1002/jcc.21224
10.1016/j.comptc.2018.11.012
10.1063/1.328693
10.1016/S1093-3263(00)00138-8
10.1080/00268978300102851
10.1093/nar/gkv951
10.1063/1.464397
10.1002/jssc.201800945
10.1093/oso/9780198803195.001.0001
10.1093/nar/gkx312
10.1021/ct700200b
10.1021/acssensors.0c01634
10.3390/s16081274
10.1016/j.trac.2019.02.008
10.1186/s13321-017-0247-6
10.1016/j.bios.2014.09.014
10.1021/acs.jpcb.7b00272
10.1016/j.tibtech.2010.08.006
10.1016/0167-6989(85)90017-0
10.1063/1.2408420
10.3390/jfb13010012
10.1038/s41421-019-0140-8
10.1016/B0-12-227410-5/00322-7
10.1021/ac9022605
10.1016/B978-0-12-803581-8.10410-2
10.1002/9780470015902.a0003011.pub2
10.1007/s10544-012-9648-5
10.1021/ja005661a
10.1007/s00894-022-05371-w
10.1063/1.445869
10.1016/j.trac.2017.02.002
10.1002/jmr.760
10.1039/C6CS00061D
10.1016/j.str.2018.05.006
10.3390/s17040718
10.1002/adfm.201807332
10.1063/1.470117
10.1039/C6AN00293E
10.3390/polym13172841
10.1039/C6RA27785C
10.2174/157341108785914925
10.1016/j.aca.2016.07.027
10.1016/j.eurpolymj.2022.111024
10.1021/ja9621760
10.1016/0263-7855(96)00018-5
10.1021/acs.chemrev.8b00171
10.1021/jp807315p
10.3390/i7050155
10.1039/C5RA06889D
10.1002/bip.360221211
10.1016/j.softx.2015.06.001
10.1016/j.snb.2014.09.094
10.3389/fbioe.2019.00115
10.1093/nar/gku1028
10.1016/S0167-7799(99)01351-7
10.1021/ed100697w
10.1039/C7ME00084G
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Nov 13, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Nov 13, 2023
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jcim.3c01461
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 6755
ExternalDocumentID 10_1021_acs_jcim_3c01461
c084832999
GroupedDBID ---
-~X
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a304t-c4528f630b6a59c1ab16f5293a6c7231fde2743c7768dc95e1f2cbf456c1bcb73
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Fri Jul 11 12:05:52 EDT 2025
Mon Jun 30 08:45:54 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Tue Jul 01 03:04:54 EDT 2025
Tue Nov 14 03:10:47 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a304t-c4528f630b6a59c1ab16f5293a6c7231fde2743c7768dc95e1f2cbf456c1bcb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1621-624X
PQID 2890074936
PQPubID 28739
PageCount 16
ParticipantIDs proquest_miscellaneous_2884181401
proquest_journals_2890074936
crossref_primary_10_1021_acs_jcim_3c01461
crossref_citationtrail_10_1021_acs_jcim_3c01461
acs_journals_10_1021_acs_jcim_3c01461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-13
PublicationDateYYYYMMDD 2023-11-13
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-13
  day: 13
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Szalewicz K. (ref64/cit64) 2003
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Polyakov M. V. (ref8/cit8) 1931; 2
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Allen M. P. (ref33/cit33) 2017
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref4/cit4
ref30/cit30
ref47/cit47
Zuber A. A. (ref1/cit1) 2019; 1
ref44/cit44
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1016/j.polymer.2022.125253
– ident: ref6/cit6
  doi: 10.1515/molim-2016-0001
– ident: ref9/cit9
  doi: 10.1016/S0040-4039(01)81566-5
– ident: ref20/cit20
  doi: 10.1021/acs.analchem.9b03813
– ident: ref4/cit4
  doi: 10.1039/C4CC06366J
– ident: ref11/cit11
  doi: 10.1016/j.msec.2017.02.138
– ident: ref47/cit47
  doi: 10.1002/jcc.21224
– ident: ref35/cit35
  doi: 10.1016/j.comptc.2018.11.012
– ident: ref54/cit54
  doi: 10.1063/1.328693
– ident: ref60/cit60
  doi: 10.1016/S1093-3263(00)00138-8
– ident: ref53/cit53
  doi: 10.1080/00268978300102851
– ident: ref39/cit39
  doi: 10.1093/nar/gkv951
– ident: ref55/cit55
  doi: 10.1063/1.464397
– ident: ref12/cit12
  doi: 10.1002/jssc.201800945
– volume-title: Computer Simulation of Liquids
  year: 2017
  ident: ref33/cit33
  doi: 10.1093/oso/9780198803195.001.0001
– ident: ref42/cit42
  doi: 10.1093/nar/gkx312
– ident: ref57/cit57
  doi: 10.1021/ct700200b
– ident: ref59/cit59
  doi: 10.1021/acssensors.0c01634
– ident: ref3/cit3
  doi: 10.3390/s16081274
– ident: ref19/cit19
  doi: 10.1016/j.trac.2019.02.008
– volume: 2
  start-page: 799
  year: 1931
  ident: ref8/cit8
  publication-title: Zhurnal Fizieskoj Khimii
– ident: ref40/cit40
  doi: 10.1186/s13321-017-0247-6
– ident: ref30/cit30
  doi: 10.1016/j.bios.2014.09.014
– ident: ref43/cit43
  doi: 10.1021/acs.jpcb.7b00272
– ident: ref23/cit23
  doi: 10.1016/j.tibtech.2010.08.006
– ident: ref10/cit10
  doi: 10.1016/0167-6989(85)90017-0
– ident: ref52/cit52
  doi: 10.1063/1.2408420
– ident: ref37/cit37
  doi: 10.3390/jfb13010012
– ident: ref41/cit41
  doi: 10.1038/s41421-019-0140-8
– start-page: 505
  volume-title: Encyclopedia of Physical Science and Technology
  year: 2003
  ident: ref64/cit64
  doi: 10.1016/B0-12-227410-5/00322-7
– ident: ref5/cit5
  doi: 10.1021/ac9022605
– volume: 1
  start-page: 105
  volume-title: Comprehensive Nanoscience and Nanotechnology
  year: 2019
  ident: ref1/cit1
  doi: 10.1016/B978-0-12-803581-8.10410-2
– ident: ref63/cit63
  doi: 10.1002/9780470015902.a0003011.pub2
– ident: ref48/cit48
  doi: 10.1007/s10544-012-9648-5
– ident: ref7/cit7
  doi: 10.1021/ja005661a
– ident: ref36/cit36
  doi: 10.1007/s00894-022-05371-w
– ident: ref49/cit49
  doi: 10.1063/1.445869
– ident: ref34/cit34
  doi: 10.1016/j.trac.2017.02.002
– ident: ref17/cit17
  doi: 10.1002/jmr.760
– ident: ref18/cit18
  doi: 10.1039/C6CS00061D
– ident: ref46/cit46
  doi: 10.1016/j.str.2018.05.006
– ident: ref16/cit16
  doi: 10.3390/s17040718
– ident: ref25/cit25
  doi: 10.1002/adfm.201807332
– ident: ref56/cit56
  doi: 10.1063/1.470117
– ident: ref14/cit14
  doi: 10.1039/C6AN00293E
– ident: ref32/cit32
  doi: 10.3390/polym13172841
– ident: ref45/cit45
  doi: 10.1039/C6RA27785C
– ident: ref22/cit22
  doi: 10.2174/157341108785914925
– ident: ref26/cit26
  doi: 10.1016/j.aca.2016.07.027
– ident: ref27/cit27
  doi: 10.1016/j.eurpolymj.2022.111024
– ident: ref51/cit51
  doi: 10.1021/ja9621760
– ident: ref58/cit58
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.8b00171
– ident: ref44/cit44
  doi: 10.1021/jp807315p
– ident: ref24/cit24
  doi: 10.3390/i7050155
– ident: ref31/cit31
  doi: 10.1039/C5RA06889D
– ident: ref61/cit61
  doi: 10.1002/bip.360221211
– ident: ref50/cit50
  doi: 10.1016/j.softx.2015.06.001
– ident: ref15/cit15
  doi: 10.1016/j.snb.2014.09.094
– ident: ref21/cit21
  doi: 10.3389/fbioe.2019.00115
– ident: ref62/cit62
  doi: 10.1093/nar/gku1028
– ident: ref13/cit13
  doi: 10.1016/S0167-7799(99)01351-7
– ident: ref38/cit38
  doi: 10.1021/ed100697w
– ident: ref29/cit29
  doi: 10.1039/C7ME00084G
SSID ssj0033962
Score 2.4286942
Snippet Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6740
SubjectTerms Acrylamide
Acrylic acid
Biological activity
Complex formation
Computational Chemistry
Correlation
Hydrogen bonding
Imprinted polymers
Ligands
Molecular dynamics
Monomers
Representations
Software
Trimers
Title In Silico Evaluation of Oligomeric Representations for Molecularly Imprinted Polymer Modeling Using a Biological Template
URI http://dx.doi.org/10.1021/acs.jcim.3c01461
https://www.proquest.com/docview/2890074936
https://www.proquest.com/docview/2884181401
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwGA2iB724i-NGBD146DhJukyPMigquOAC3kpWGa2t2JnD-Ov9vkw74oJ4bZOSJl-Sl7zkPUL2nOaWO2ECiIduEBqeBGnS6QRWM2scco8G9zsuLuPT-_D8IXr4lMn5zuBzdih11X7S_Ze20Ch0AiudGR5DH0YY1LttRl0hUm8eiopjQRqlDSX52xdwItLV14no6zjsJ5eThbFLUeU1CfFMyXN7OFBt_f5TsfEf5V4k8zXGpEfjoFgiU7ZYJrO9xtpthYzOCnrbzyEI6PFE7ZuWjl7l_cfSczj0xh-RrW8mFRUFcEsvGi_dfERxNwK1Jgy9LvMR5KFoq4aX26k_hkAlHftcYhTQO_vymgOsXSX3J8d3vdOg9mAIpOiEg0CHEe-6WHRULKNUM6lY7CLACDLWCWBDZyysa4VOYNlidBpZ5rhWDmCZZkqrRKyR6aIs7DqhxkQutDIOZTcJlQIkIqD_M8kjYxSTcYvsQ51ldR-qMk-Pc5b5h1CRWV2RLXLYNFymayFz9NPI_8hxMMnxOhbx-CPtVhMLn0VBNhawViqgkLuT19BoyK7IwpZDTNMNGeqHsY1__sgmmUPzerzZyMQWmR68De02QJyB2vGx_QE_pPiJ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQe4ALsDxEoewaCQ4cUuo4j-ZYVaDyKCAoErfIT1QICSLtofvrmXGTIlYrtFwT25rYE_uzx_N9hBxY5Rvfcu2BP3S8QPuxl8TttmcUM9pi7FHjecfgKurfB-cP4cMCYXUuDBhRQkulC-J_sAuwY3z2pEYvLa6Q7wQ2PD8Ai_jo1N3eXT35cp44DVEkHvOSMKkjk_9qAdcjVX5ejz5Px26NOV0lt3Pr3NWS59ZkLFvqz1_Ejd8yf42sVIiTdmcu8pMsmHydLPVqobcNMj3L6d0oA5egJ3Pub1pYep2NHgsX0aG37sJslaeUlxSgLh3UyrrZlOLZBDJPaHpTZFOoQ1FkDVPdqbuUQAWdqV6iT9CheXnNAORukvvTk2Gv71WKDJ7g7WDsqSD0OzbibRmJMFFMSBbZEBCDiFQMSNFqA7tcrmLYxGiVhIZZX0kLIE0xqWTMt8hiXuRmm1CtQxsYEQWiEwdSAi7hMBsw4YdaSyaiBjmEPkurP6pMXbDcZ6l7CB2ZVh3ZIMf1-KWqojVHdY3sixpH8xqvM0qPL8o2a5f4MAVjs4C8Eg5G7s9fw6BhrEXkpphgmU7AkE2M7fznh_wmS_3h4DK9PLu62CXLKGuPOY-MN8ni-G1i9gD8jOUv5-7vSj8A-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFLYQlQoXugBiKKWuVA4cMozjOJkc0cCIpSxiE7fIKxoIyaiZOQy_nvc8ySBQhdqrE1tenu3Pfn7fR8gvp0MbOm4CsIduEJkwCdKk0wmsZtY49D0avO84OY0PrqOjW3E7R0QTCwOVqKCkyjvxcVYPjasZBtgOpt_rwWOba-Q8gUPPB_TaoWHv9i6bBZjz1OuIIvlYkIq08U7-rQTck3T1ek96vST7fab_idzMauiflzy0xyPV1k9vyBv_uwmfyVKNPOnu1FS-kDlbfCULvUbwbZlMDgt6OcjBNOj-jAOclo6e5YO70nt26IV_OFvHKxUVBchLTxqF3XxC8Y4CGSgMPS_zCeShKLaGIe_UP06gkk7VL9E26JV9HOYAdlfIdX__qncQ1MoMgeSdaBToSIRdF_OOiqVINZOKxU4AcpCxTgAxOmPhtMt1AocZo1NhmQu1cgDWNFNaJXyVzBdlYdcINUa4yMo4kt0kUgrwCYdVgclQGKOYjFtkC_osq2dWlXmnecgynwgdmdUd2SI7zRhmuqY3R5WN_J0c27Mcwym1xzv_bjRm8VIV9NECAks5VPLn7DMMGvpcZGHLMf7TjRiyirH1f2zID_LxfK-f_T48Pf5GFlHdHkMfGd8g86M_Y_sdMNBIbXqLfwaOYwN8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+Evaluation+of+Oligomeric+Representations+for+Molecularly+Imprinted+Polymer+Modeling+Using+a+Biological+Template&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Sot%C3%A9%2C+William+Oliveira&rft.au=Rodrigues%2C+Aur%C3%A9lia+Aparecida+De+Ara%C3%BAjo&rft.au=Comar%2C+Moacyr&rft.date=2023-11-13&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=63&rft.issue=21&rft.spage=6740&rft_id=info:doi/10.1021%2Facs.jcim.3c01461&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon