In Silico Evaluation of Oligomeric Representations for Molecularly Imprinted Polymer Modeling Using a Biological Template
Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, es...
Saved in:
Published in | Journal of chemical information and modeling Vol. 63; no. 21; pp. 6740 - 6755 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington
American Chemical Society
13.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-9596 1549-960X 1549-960X |
DOI | 10.1021/acs.jcim.3c01461 |
Cover
Loading…
Abstract | Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand–template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand–template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject. |
---|---|
AbstractList | Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand–template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand–template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject. Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand-template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand-template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject.Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand-template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand-template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject. |
Author | Oliveira Soté, William Comar Junior, Moacyr de Araújo Rodrigues, Aurélia Aparecida |
AuthorAffiliation | Federal University of Uberlândia Institute of Chemistry Faculty of Mathematics |
AuthorAffiliation_xml | – name: Federal University of Uberlândia – name: Institute of Chemistry – name: Faculty of Mathematics |
Author_xml | – sequence: 1 givenname: William orcidid: 0000-0002-1621-624X surname: Oliveira Soté fullname: Oliveira Soté, William organization: Institute of Chemistry – sequence: 2 givenname: Aurélia Aparecida surname: de Araújo Rodrigues fullname: de Araújo Rodrigues, Aurélia Aparecida organization: Federal University of Uberlândia – sequence: 3 givenname: Moacyr surname: Comar Junior fullname: Comar Junior, Moacyr email: mcomjr@ufu.br organization: Institute of Chemistry |
BookMark | eNp9kc9rHCEYhqWk0PzovUehlx6yGx0dZzw2IU0WElLaBHobnG8_FxdHNzoT2P--bja5BJKLCu_zyKfvETkIMSAh3zibc1bxMwN5vgY3zAUwLhX_RA55LfVMK_bv4PVca_WFHOW8ZkwIrapDsl0E-td5B5FePhk_mdHFQKOld96t4oDJAf2Dm4QZw_gcZmpjorfRI0zeJL-li2GTXBhxSX9Hvy1OSZfoXVjRh7xbDT130ceVA-PpPQ4bb0Y8IZ-t8Rm_vuzH5OHX5f3F9ezm7mpx8fNmZgST4wxkXbVWCdYrU2vgpufK1pUWRkFTCW6XWDVSQNOodgm6Rm4r6K2sFfAe-kYckx_7ezcpPk6Yx25wGdB7EzBOuavaVvKWS8YL-v0Nuo5TCmW6QmnGGqmFKhTbU5BizgltV54_mLTtOOt2XXSli27XRffSRVHUGwXc_jfHZJz_SDzdi8_J6zDv4v8BvY-jQw |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_131101 |
Cites_doi | 10.1016/j.polymer.2022.125253 10.1515/molim-2016-0001 10.1016/S0040-4039(01)81566-5 10.1021/acs.analchem.9b03813 10.1039/C4CC06366J 10.1016/j.msec.2017.02.138 10.1002/jcc.21224 10.1016/j.comptc.2018.11.012 10.1063/1.328693 10.1016/S1093-3263(00)00138-8 10.1080/00268978300102851 10.1093/nar/gkv951 10.1063/1.464397 10.1002/jssc.201800945 10.1093/oso/9780198803195.001.0001 10.1093/nar/gkx312 10.1021/ct700200b 10.1021/acssensors.0c01634 10.3390/s16081274 10.1016/j.trac.2019.02.008 10.1186/s13321-017-0247-6 10.1016/j.bios.2014.09.014 10.1021/acs.jpcb.7b00272 10.1016/j.tibtech.2010.08.006 10.1016/0167-6989(85)90017-0 10.1063/1.2408420 10.3390/jfb13010012 10.1038/s41421-019-0140-8 10.1016/B0-12-227410-5/00322-7 10.1021/ac9022605 10.1016/B978-0-12-803581-8.10410-2 10.1002/9780470015902.a0003011.pub2 10.1007/s10544-012-9648-5 10.1021/ja005661a 10.1007/s00894-022-05371-w 10.1063/1.445869 10.1016/j.trac.2017.02.002 10.1002/jmr.760 10.1039/C6CS00061D 10.1016/j.str.2018.05.006 10.3390/s17040718 10.1002/adfm.201807332 10.1063/1.470117 10.1039/C6AN00293E 10.3390/polym13172841 10.1039/C6RA27785C 10.2174/157341108785914925 10.1016/j.aca.2016.07.027 10.1016/j.eurpolymj.2022.111024 10.1021/ja9621760 10.1016/0263-7855(96)00018-5 10.1021/acs.chemrev.8b00171 10.1021/jp807315p 10.3390/i7050155 10.1039/C5RA06889D 10.1002/bip.360221211 10.1016/j.softx.2015.06.001 10.1016/j.snb.2014.09.094 10.3389/fbioe.2019.00115 10.1093/nar/gku1028 10.1016/S0167-7799(99)01351-7 10.1021/ed100697w 10.1039/C7ME00084G |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society Copyright American Chemical Society Nov 13, 2023 |
Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Nov 13, 2023 |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1021/acs.jcim.3c01461 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-960X |
EndPage | 6755 |
ExternalDocumentID | 10_1021_acs_jcim_3c01461 c084832999 |
GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-a304t-c4528f630b6a59c1ab16f5293a6c7231fde2743c7768dc95e1f2cbf456c1bcb73 |
IEDL.DBID | ACS |
ISSN | 1549-9596 1549-960X |
IngestDate | Fri Jul 11 12:05:52 EDT 2025 Mon Jun 30 08:45:54 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Tue Jul 01 03:04:54 EDT 2025 Tue Nov 14 03:10:47 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a304t-c4528f630b6a59c1ab16f5293a6c7231fde2743c7768dc95e1f2cbf456c1bcb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1621-624X |
PQID | 2890074936 |
PQPubID | 28739 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2884181401 proquest_journals_2890074936 crossref_primary_10_1021_acs_jcim_3c01461 crossref_citationtrail_10_1021_acs_jcim_3c01461 acs_journals_10_1021_acs_jcim_3c01461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-13 |
PublicationDateYYYYMMDD | 2023-11-13 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of chemical information and modeling |
PublicationTitleAlternate | J. Chem. Inf. Model |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 Szalewicz K. (ref64/cit64) 2003 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Polyakov M. V. (ref8/cit8) 1931; 2 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 Allen M. P. (ref33/cit33) 2017 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref4/cit4 ref30/cit30 ref47/cit47 Zuber A. A. (ref1/cit1) 2019; 1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.1016/j.polymer.2022.125253 – ident: ref6/cit6 doi: 10.1515/molim-2016-0001 – ident: ref9/cit9 doi: 10.1016/S0040-4039(01)81566-5 – ident: ref20/cit20 doi: 10.1021/acs.analchem.9b03813 – ident: ref4/cit4 doi: 10.1039/C4CC06366J – ident: ref11/cit11 doi: 10.1016/j.msec.2017.02.138 – ident: ref47/cit47 doi: 10.1002/jcc.21224 – ident: ref35/cit35 doi: 10.1016/j.comptc.2018.11.012 – ident: ref54/cit54 doi: 10.1063/1.328693 – ident: ref60/cit60 doi: 10.1016/S1093-3263(00)00138-8 – ident: ref53/cit53 doi: 10.1080/00268978300102851 – ident: ref39/cit39 doi: 10.1093/nar/gkv951 – ident: ref55/cit55 doi: 10.1063/1.464397 – ident: ref12/cit12 doi: 10.1002/jssc.201800945 – volume-title: Computer Simulation of Liquids year: 2017 ident: ref33/cit33 doi: 10.1093/oso/9780198803195.001.0001 – ident: ref42/cit42 doi: 10.1093/nar/gkx312 – ident: ref57/cit57 doi: 10.1021/ct700200b – ident: ref59/cit59 doi: 10.1021/acssensors.0c01634 – ident: ref3/cit3 doi: 10.3390/s16081274 – ident: ref19/cit19 doi: 10.1016/j.trac.2019.02.008 – volume: 2 start-page: 799 year: 1931 ident: ref8/cit8 publication-title: Zhurnal Fizieskoj Khimii – ident: ref40/cit40 doi: 10.1186/s13321-017-0247-6 – ident: ref30/cit30 doi: 10.1016/j.bios.2014.09.014 – ident: ref43/cit43 doi: 10.1021/acs.jpcb.7b00272 – ident: ref23/cit23 doi: 10.1016/j.tibtech.2010.08.006 – ident: ref10/cit10 doi: 10.1016/0167-6989(85)90017-0 – ident: ref52/cit52 doi: 10.1063/1.2408420 – ident: ref37/cit37 doi: 10.3390/jfb13010012 – ident: ref41/cit41 doi: 10.1038/s41421-019-0140-8 – start-page: 505 volume-title: Encyclopedia of Physical Science and Technology year: 2003 ident: ref64/cit64 doi: 10.1016/B0-12-227410-5/00322-7 – ident: ref5/cit5 doi: 10.1021/ac9022605 – volume: 1 start-page: 105 volume-title: Comprehensive Nanoscience and Nanotechnology year: 2019 ident: ref1/cit1 doi: 10.1016/B978-0-12-803581-8.10410-2 – ident: ref63/cit63 doi: 10.1002/9780470015902.a0003011.pub2 – ident: ref48/cit48 doi: 10.1007/s10544-012-9648-5 – ident: ref7/cit7 doi: 10.1021/ja005661a – ident: ref36/cit36 doi: 10.1007/s00894-022-05371-w – ident: ref49/cit49 doi: 10.1063/1.445869 – ident: ref34/cit34 doi: 10.1016/j.trac.2017.02.002 – ident: ref17/cit17 doi: 10.1002/jmr.760 – ident: ref18/cit18 doi: 10.1039/C6CS00061D – ident: ref46/cit46 doi: 10.1016/j.str.2018.05.006 – ident: ref16/cit16 doi: 10.3390/s17040718 – ident: ref25/cit25 doi: 10.1002/adfm.201807332 – ident: ref56/cit56 doi: 10.1063/1.470117 – ident: ref14/cit14 doi: 10.1039/C6AN00293E – ident: ref32/cit32 doi: 10.3390/polym13172841 – ident: ref45/cit45 doi: 10.1039/C6RA27785C – ident: ref22/cit22 doi: 10.2174/157341108785914925 – ident: ref26/cit26 doi: 10.1016/j.aca.2016.07.027 – ident: ref27/cit27 doi: 10.1016/j.eurpolymj.2022.111024 – ident: ref51/cit51 doi: 10.1021/ja9621760 – ident: ref58/cit58 doi: 10.1016/0263-7855(96)00018-5 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.8b00171 – ident: ref44/cit44 doi: 10.1021/jp807315p – ident: ref24/cit24 doi: 10.3390/i7050155 – ident: ref31/cit31 doi: 10.1039/C5RA06889D – ident: ref61/cit61 doi: 10.1002/bip.360221211 – ident: ref50/cit50 doi: 10.1016/j.softx.2015.06.001 – ident: ref15/cit15 doi: 10.1016/j.snb.2014.09.094 – ident: ref21/cit21 doi: 10.3389/fbioe.2019.00115 – ident: ref62/cit62 doi: 10.1093/nar/gku1028 – ident: ref13/cit13 doi: 10.1016/S0167-7799(99)01351-7 – ident: ref38/cit38 doi: 10.1021/ed100697w – ident: ref29/cit29 doi: 10.1039/C7ME00084G |
SSID | ssj0033962 |
Score | 2.4286942 |
Snippet | Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6740 |
SubjectTerms | Acrylamide Acrylic acid Biological activity Complex formation Computational Chemistry Correlation Hydrogen bonding Imprinted polymers Ligands Molecular dynamics Monomers Representations Software Trimers |
Title | In Silico Evaluation of Oligomeric Representations for Molecularly Imprinted Polymer Modeling Using a Biological Template |
URI | http://dx.doi.org/10.1021/acs.jcim.3c01461 https://www.proquest.com/docview/2890074936 https://www.proquest.com/docview/2884181401 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwGA2iB724i-NGBD146DhJukyPMigquOAC3kpWGa2t2JnD-Ov9vkw74oJ4bZOSJl-Sl7zkPUL2nOaWO2ECiIduEBqeBGnS6QRWM2scco8G9zsuLuPT-_D8IXr4lMn5zuBzdih11X7S_Ze20Ch0AiudGR5DH0YY1LttRl0hUm8eiopjQRqlDSX52xdwItLV14no6zjsJ5eThbFLUeU1CfFMyXN7OFBt_f5TsfEf5V4k8zXGpEfjoFgiU7ZYJrO9xtpthYzOCnrbzyEI6PFE7ZuWjl7l_cfSczj0xh-RrW8mFRUFcEsvGi_dfERxNwK1Jgy9LvMR5KFoq4aX26k_hkAlHftcYhTQO_vymgOsXSX3J8d3vdOg9mAIpOiEg0CHEe-6WHRULKNUM6lY7CLACDLWCWBDZyysa4VOYNlidBpZ5rhWDmCZZkqrRKyR6aIs7DqhxkQutDIOZTcJlQIkIqD_M8kjYxSTcYvsQ51ldR-qMk-Pc5b5h1CRWV2RLXLYNFymayFz9NPI_8hxMMnxOhbx-CPtVhMLn0VBNhawViqgkLuT19BoyK7IwpZDTNMNGeqHsY1__sgmmUPzerzZyMQWmR68De02QJyB2vGx_QE_pPiJ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQe4ALsDxEoewaCQ4cUuo4j-ZYVaDyKCAoErfIT1QICSLtofvrmXGTIlYrtFwT25rYE_uzx_N9hBxY5Rvfcu2BP3S8QPuxl8TttmcUM9pi7FHjecfgKurfB-cP4cMCYXUuDBhRQkulC-J_sAuwY3z2pEYvLa6Q7wQ2PD8Ai_jo1N3eXT35cp44DVEkHvOSMKkjk_9qAdcjVX5ejz5Px26NOV0lt3Pr3NWS59ZkLFvqz1_Ejd8yf42sVIiTdmcu8pMsmHydLPVqobcNMj3L6d0oA5egJ3Pub1pYep2NHgsX0aG37sJslaeUlxSgLh3UyrrZlOLZBDJPaHpTZFOoQ1FkDVPdqbuUQAWdqV6iT9CheXnNAORukvvTk2Gv71WKDJ7g7WDsqSD0OzbibRmJMFFMSBbZEBCDiFQMSNFqA7tcrmLYxGiVhIZZX0kLIE0xqWTMt8hiXuRmm1CtQxsYEQWiEwdSAi7hMBsw4YdaSyaiBjmEPkurP6pMXbDcZ6l7CB2ZVh3ZIMf1-KWqojVHdY3sixpH8xqvM0qPL8o2a5f4MAVjs4C8Eg5G7s9fw6BhrEXkpphgmU7AkE2M7fznh_wmS_3h4DK9PLu62CXLKGuPOY-MN8ni-G1i9gD8jOUv5-7vSj8A-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFLYQlQoXugBiKKWuVA4cMozjOJkc0cCIpSxiE7fIKxoIyaiZOQy_nvc8ySBQhdqrE1tenu3Pfn7fR8gvp0MbOm4CsIduEJkwCdKk0wmsZtY49D0avO84OY0PrqOjW3E7R0QTCwOVqKCkyjvxcVYPjasZBtgOpt_rwWOba-Q8gUPPB_TaoWHv9i6bBZjz1OuIIvlYkIq08U7-rQTck3T1ek96vST7fab_idzMauiflzy0xyPV1k9vyBv_uwmfyVKNPOnu1FS-kDlbfCULvUbwbZlMDgt6OcjBNOj-jAOclo6e5YO70nt26IV_OFvHKxUVBchLTxqF3XxC8Y4CGSgMPS_zCeShKLaGIe_UP06gkk7VL9E26JV9HOYAdlfIdX__qncQ1MoMgeSdaBToSIRdF_OOiqVINZOKxU4AcpCxTgAxOmPhtMt1AocZo1NhmQu1cgDWNFNaJXyVzBdlYdcINUa4yMo4kt0kUgrwCYdVgclQGKOYjFtkC_osq2dWlXmnecgynwgdmdUd2SI7zRhmuqY3R5WN_J0c27Mcwym1xzv_bjRm8VIV9NECAks5VPLn7DMMGvpcZGHLMf7TjRiyirH1f2zID_LxfK-f_T48Pf5GFlHdHkMfGd8g86M_Y_sdMNBIbXqLfwaOYwN8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Silico+Evaluation+of+Oligomeric+Representations+for+Molecularly+Imprinted+Polymer+Modeling+Using+a+Biological+Template&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Sot%C3%A9%2C+William+Oliveira&rft.au=Rodrigues%2C+Aur%C3%A9lia+Aparecida+De+Ara%C3%BAjo&rft.au=Comar%2C+Moacyr&rft.date=2023-11-13&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=63&rft.issue=21&rft.spage=6740&rft_id=info:doi/10.1021%2Facs.jcim.3c01461&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |