Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress
Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant resources, making them highly promising candidates to replace graphite anodes in the next generation of high specific energy lithium-ion batteries (LI...
Saved in:
Published in | ACS materials letters Vol. 5; no. 11; pp. 2948 - 2970 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
06.11.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant resources, making them highly promising candidates to replace graphite anodes in the next generation of high specific energy lithium-ion batteries (LIBs). However, the commercialization of Si-based anodes for LIBs encounters significant barriers due to inherent challenges. These challenges encompass a range of issues, including poor electrical conductivity, substantial volume expansion during the lithiation–delithiation process, severe pulverization of the electrodes, pronounced thickening of the solid electrolyte interphase film, low Coulombic efficiency, and limited cycling performance. Each of these factors leads to the complexity of realizing the full potential of Si-based anodes in commercial LIBs applications. This review provides a comprehensive summary and discussion of recent research on Si-based LIB anodes, focusing on the microscopic morphology of Si and the development of Si-based composite materials. By offering a novel perspective, this review aims to provide an overview and insightful discussion of Si-based anodes. The latest research findings are presented, and innovative viewpoints and reasonable insights are addressed, shedding light on the potential solutions to overcome the limitations associated with Si-based anodes. |
---|---|
AbstractList | Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant resources, making them highly promising candidates to replace graphite anodes in the next generation of high specific energy lithium-ion batteries (LIBs). However, the commercialization of Si-based anodes for LIBs encounters significant barriers due to inherent challenges. These challenges encompass a range of issues, including poor electrical conductivity, substantial volume expansion during the lithiation–delithiation process, severe pulverization of the electrodes, pronounced thickening of the solid electrolyte interphase film, low Coulombic efficiency, and limited cycling performance. Each of these factors leads to the complexity of realizing the full potential of Si-based anodes in commercial LIBs applications. This review provides a comprehensive summary and discussion of recent research on Si-based LIB anodes, focusing on the microscopic morphology of Si and the development of Si-based composite materials. By offering a novel perspective, this review aims to provide an overview and insightful discussion of Si-based anodes. The latest research findings are presented, and innovative viewpoints and reasonable insights are addressed, shedding light on the potential solutions to overcome the limitations associated with Si-based anodes. |
Author | Chen, Zhiyuan Wang, Yiting Rui, Yichuan Chai, Jiali Li, Yifei Du, Jiakai Li, Qingmeng Jiang, Lei Tang, Bohejin |
AuthorAffiliation | Department of Chemical Engineering College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: College of Chemistry and Chemical Engineering – name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Yifei surname: Li fullname: Li, Yifei organization: College of Chemistry and Chemical Engineering – sequence: 2 givenname: Qingmeng surname: Li fullname: Li, Qingmeng organization: College of Chemistry and Chemical Engineering – sequence: 3 givenname: Jiali surname: Chai fullname: Chai, Jiali organization: College of Chemistry and Chemical Engineering – sequence: 4 givenname: Yiting surname: Wang fullname: Wang, Yiting organization: College of Chemistry and Chemical Engineering – sequence: 5 givenname: Jiakai surname: Du fullname: Du, Jiakai organization: College of Chemistry and Chemical Engineering – sequence: 6 givenname: Zhiyuan surname: Chen fullname: Chen, Zhiyuan organization: College of Chemistry and Chemical Engineering – sequence: 7 givenname: Yichuan surname: Rui fullname: Rui, Yichuan email: ruiyc@sues.edu.cn organization: College of Chemistry and Chemical Engineering – sequence: 8 givenname: Lei surname: Jiang fullname: Jiang, Lei email: lei.jiang@kuleuven.be organization: Department of Chemical Engineering – sequence: 9 givenname: Bohejin orcidid: 0000-0002-1144-3355 surname: Tang fullname: Tang, Bohejin email: tangbohejin@sues.edu.cn organization: College of Chemistry and Chemical Engineering |
BookMark | eNqNkM1OAjEUhRuDiYi8Q19gsJ12furCBIkiCQnGn_WktLdSwrSkLRjf3iGwMGx0dc_ifF9uzjXqOe8AIUzJiJKc3koVW5kgWLmJG0hpxBQhecEuUD8vmci4qETvV75CwxjXpOvQkgrO-2jxZrOljKDx2HkNeG7Tyu7abOYdfpDp4IZ4h8d44tttgBW4aPeAX2Fv4Qt70yUFLuGX4D8DxHiDLk33DAxPd4A-nh7fJ8_ZfDGdTcbzTDLCUyb0ssplzpQuSVUsGS9prUvDQAhTm7ysuVHAiionugJKmSy41gpMURpVaCPYAN0fvSr4GAOYRtkkk_UuBWk3DSXNYaHmfKHmtFAnqM8E22BbGb7_g_Ij2jWatd8F1zX-xn4AQ3aH8A |
CitedBy_id | crossref_primary_10_3390_polym16243544 crossref_primary_10_1016_j_electacta_2024_145440 crossref_primary_10_1021_acsaem_4c02276 crossref_primary_10_26599_EMD_2023_9370019 crossref_primary_10_1016_j_susmat_2025_e01281 crossref_primary_10_1016_j_cej_2024_152180 crossref_primary_10_1039_D4CC05415F crossref_primary_10_3390_batteries11030114 crossref_primary_10_3390_en17143520 crossref_primary_10_1002_smll_202408457 crossref_primary_10_1039_D4TA07073A crossref_primary_10_1016_j_est_2024_113049 crossref_primary_10_1016_j_est_2024_113126 crossref_primary_10_1016_j_jcis_2024_10_038 crossref_primary_10_1016_j_est_2025_115838 crossref_primary_10_1016_j_jallcom_2024_174379 crossref_primary_10_1039_D4TA07201D crossref_primary_10_1021_acsami_4c07377 crossref_primary_10_1016_j_jallcom_2024_176597 crossref_primary_10_1021_acsmaterialslett_4c00517 crossref_primary_10_1002_ente_202400664 crossref_primary_10_1016_j_ceramint_2024_09_057 crossref_primary_10_1021_acsami_4c01976 crossref_primary_10_1021_acsami_4c22814 crossref_primary_10_1039_D4GC04971C crossref_primary_10_1016_j_carbon_2024_119615 crossref_primary_10_1038_s41598_024_83808_3 crossref_primary_10_1149_1945_7111_ada370 crossref_primary_10_1016_j_nxmate_2024_100371 crossref_primary_10_1021_acsanm_4c03078 crossref_primary_10_1016_j_est_2025_115362 crossref_primary_10_1016_j_surfin_2024_104468 crossref_primary_10_1016_j_elecom_2024_107726 crossref_primary_10_1021_acsenergylett_4c00856 crossref_primary_10_1039_D4EE05595K crossref_primary_10_1016_j_electacta_2024_145536 crossref_primary_10_1021_acsami_4c09120 crossref_primary_10_1021_acs_energyfuels_4c03525 crossref_primary_10_1039_D4CS00366G crossref_primary_10_1016_j_est_2024_113794 crossref_primary_10_1016_j_est_2024_112784 crossref_primary_10_34133_energymatadv_0095 crossref_primary_10_1016_j_xcrp_2024_102032 crossref_primary_10_1002_chem_202400063 crossref_primary_10_1002_cssc_202400971 crossref_primary_10_1016_j_jallcom_2024_176400 |
Cites_doi | 10.1021/acsami.1c18481 10.1002/adfm.201806383 10.1039/D1NA00012H 10.1039/D3CC00834G 10.1002/aenm.201300394 10.1016/j.nanoen.2020.105092 10.1007/978-3-319-57003-7 10.1002/eom2.12172 10.1039/C9CC09558F 10.1021/ja501520b 10.1016/j.electacta.2021.137924 10.1007/s10904-019-01201-4 10.1021/acsnano.1c05898 10.1039/C9TA00519F 10.1007/978-981-15-8844-0 10.1016/j.mattod.2020.09.027 10.1016/j.matchemphys.2020.122666 10.1016/j.jallcom.2014.10.028 10.1039/c0ee00428f 10.1016/j.electacta.2018.10.186 10.1016/j.jpowsour.2021.229709 10.1021/acs.chemmater.5b03524 10.1021/acsnano.7b09175 10.1021/acsanm.3c02440 10.1149/1.3574027 10.1016/j.mssp.2015.07.024 10.1016/B978-0-12-819660-1.00002-5 10.1007/s12613-022-2422-7 10.1021/acsaem.3c00797 10.1039/D0QI00302F 10.1007/978-3-319-05744-6 10.1021/am4056672 10.1021/acs.energyfuels.2c00693 10.1007/s12274-020-3142-9 10.1021/acsami.2c21866 10.1016/j.apsusc.2022.155873 10.1149/2.1401910jes 10.1021/acs.nanolett.8b05127 10.1016/j.matlet.2021.129712 10.1039/c0cc01578d 10.1021/acsami.1c15763 10.1126/science.1209150 10.1016/j.jpowsour.2018.07.116 10.1007/s12613-021-2335-x 10.3390/nano11113137 10.1201/b15492-6 10.1021/acsapm.3c00531 10.1021/cr500207g 10.1016/j.pnsc.2023.02.001 10.1016/j.micromeso.2020.110666 10.1016/j.surfcoat.2021.127262 10.1002/aenm.201300882 10.1002/adma.200903328 10.1021/jp404155y 10.1016/j.procir.2019.01.004 10.1016/j.jmat.2019.03.005 10.1016/j.jallcom.2022.167737 10.1021/jacs.7b07584 10.3390/ma15031130 10.1021/acs.inorgchem.3c00783 10.1021/acs.energyfuels.2c03702 10.1021/acs.energyfuels.0c02948 10.1039/D1SE01494C 10.3390/molecules28052079 10.1021/acsami.0c02445 10.1016/j.coco.2022.101157 10.1021/jp5121965 10.1021/acsaem.0c02091 10.1149/1945-7111/ab6318 10.1016/j.electacta.2022.140515 10.1021/acs.energyfuels.2c04024 10.1016/j.cej.2023.141451 10.1038/s41467-019-09510-5 10.1039/D2DT01415G 10.1021/nl202630n 10.3390/nano11123454 10.1021/acsami.2c21884 10.1021/acsnano.3c02892 10.1021/acs.chemrev.9b00466 10.1016/j.ensm.2019.12.025 10.1016/j.ceramint.2019.09.174 10.1021/cm00012a019 10.1016/j.cej.2020.126963 10.1016/j.jechem.2018.07.008 10.1063/1.5132578 10.1039/C7RA10905A 10.1021/acsnano.5b07674 10.1016/j.jpowsour.2018.12.068 10.1039/C7NR08886H 10.1680/jsuin.20.00055 10.1016/j.ceramint.2022.03.015 10.3390/ma14185397 10.1039/D1DT01165K 10.1021/acsaem.1c00523 10.1021/acs.energyfuels.0c04272 10.1039/b816681c 10.1007/s40843-019-9464-0 10.1021/acs.energyfuels.0c02618 10.1016/j.electacta.2019.134975 10.1016/j.electacta.2019.02.080 10.1038/s41557-022-01071-3 10.3390/ma15124264 10.1007/s41918-020-00070-7 10.1021/acs.energyfuels.1c02485 10.1016/j.electacta.2020.137278 10.1002/aenm.201700071 10.1016/j.jechem.2019.11.005 10.1016/j.est.2021.102989 10.1016/j.electacta.2020.136037 10.1021/acsami.9b00939 10.1021/acs.energyfuels.0c03671 10.1016/j.nanoen.2022.107779 10.1002/cssc.202201252 10.1002/cey2.24 10.1002/slct.202201269 10.1016/j.seppur.2021.119461 10.1016/j.ijhydene.2021.02.024 10.1007/s10008-022-05141-x 10.1016/j.electacta.2019.135331 10.1021/acsami.7b10639 10.1016/j.ensm.2022.08.003 10.1021/acs.nanolett.9b02835 10.1007/978-3-031-23401-9 10.1016/j.cej.2019.123821 10.1002/aenm.202200850 10.1021/nl403197m 10.1186/s11671-019-3024-9 10.3390/nano12101649 10.1016/j.cej.2019.123198 10.1039/C3RA44752A 10.1016/j.cej.2018.09.027 10.1038/s41560-021-00918-2 10.1016/j.apsusc.2019.01.220 10.1021/acssuschemeng.9b00616 10.1016/j.colsurfa.2022.129193 10.1002/aenm.201700715 10.1002/adma.201301795 10.1021/nn901409q 10.1021/acs.energyfuels.1c02138 10.1149/1.1792242 10.1021/ja3091438 10.1021/acs.jpcc.5b02073 10.1039/C9TA12923E 10.1021/acs.energyfuels.1c03452 10.1002/advs.201500286 10.1016/j.jallcom.2020.155135 10.1021/acs.jpcc.7b07793 10.1021/acsaem.8b01422 10.1016/j.est.2019.101141 10.1016/j.jallcom.2020.153664 10.1016/j.jpowsour.2017.07.048 10.1038/s41598-022-20026-9 10.1016/j.cplett.2019.06.010 10.1016/j.jallcom.2023.170713 10.1021/acsami.0c12747 10.1016/j.cej.2021.133568 10.1016/j.jpowsour.2019.227692 10.1007/s11581-022-04622-3 10.1016/j.nanoen.2020.105506 10.1002/ange.201608146 10.1016/j.electacta.2022.140337 10.1016/j.jallcom.2020.155774 10.1088/1361-6528/acc5f2 10.1016/j.matchemphys.2019.122160 10.1021/acsanm.1c01061 10.1002/adfm.202301109 10.1016/j.apsusc.2023.157293 10.1038/nnano.2007.411 10.1021/acs.iecr.9b05838 10.1021/acsaem.1c00938 10.1016/j.ensm.2018.10.011 10.20964/2022.06.29 10.1039/D0QM00120A 10.1039/C7QI00184C 10.1016/j.apsusc.2021.151294 10.1016/j.jallcom.2021.160945 10.1002/smll.202001714 10.1021/acsami.0c10418 10.1021/acs.accounts.7b00450 10.1021/acsnano.8b08821 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsmaterialslett.3c00253 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2639-4979 |
EndPage | 2970 |
ExternalDocumentID | 10_1021_acsmaterialslett_3c00253 c434633521 |
GroupedDBID | ABQRX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK M~E VF5 VG9 AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a304t-9db72a23cd6075b34618d6f3e99f8f2684fce35720d7e113a54ddcef56fc5df93 |
IEDL.DBID | ACS |
ISSN | 2639-4979 |
IngestDate | Tue Jul 01 04:21:57 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Nov 07 03:10:42 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a304t-9db72a23cd6075b34618d6f3e99f8f2684fce35720d7e113a54ddcef56fc5df93 |
ORCID | 0000-0002-1144-3355 |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1021_acsmaterialslett_3c00253 crossref_primary_10_1021_acsmaterialslett_3c00253 acs_journals_10_1021_acsmaterialslett_3c00253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-06 |
PublicationDateYYYYMMDD | 2023-11-06 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | ACS materials letters |
PublicationTitleAlternate | ACS Materials Lett |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref137/cit137b ref23/cit23 ref137/cit137a ref116/cit116 ref110/cit110 ref111/cit111 Balakrishnan N. T. (ref133/cit133a) 2021 ref112/cit112 ref77/cit77 ref113/cit113 ref1/cit1a ref71/cit71 ref1/cit1b ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref35/cit35 ref89/cit89 ref19/cit19 ref3/cit3b ref22/cit22a ref42/cit42 ref96/cit96 ref3/cit3a ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref22/cit22b ref122/cit122 ref7/cit7b ref105/cit105 ref7/cit7a ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref18/cit18 ref136/cit136 ref97/cit97 ref101/cit101 ref102/cit102 ref29/cit29 ref8/cit8a ref10/cit10a ref10/cit10b ref76/cit76 ref86/cit86 ref8/cit8b ref10/cit10c ref32/cit32 ref39/cit39 ref5/cit5 Canham L. (ref115/cit115) 2014 ref51/cit51b ref43/cit43 ref51/cit51a ref80/cit80 ref132/cit132 ref91/cit91 ref55/cit55 ref4/cit4a ref4/cit4b ref144/cit144 ref4/cit4c ref28/cit28a ref100/cit100a ref12/cit12 ref79/cit79a ref100/cit100b ref79/cit79b ref28/cit28b ref66/cit66 ref121/cit121 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref133/cit133b ref33/cit33a ref63/cit63 ref56/cit56 ref27/cit27a ref92/cit92 ref27/cit27b ref2/cit2b ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2a ref33/cit33c ref33/cit33b ref33/cit33e ref37/cit37 ref33/cit33d ref33/cit33g ref33/cit33f ref60/cit60 ref88/cit88 ref33/cit33h ref17/cit17 ref125/cit125a ref82/cit82 ref147/cit147 ref125/cit125c ref125/cit125b ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 Lin Z. (ref58/cit58) 2017 ref11/cit11c ref11/cit11b ref46/cit46 ref11/cit11d ref11/cit11a ref49/cit49 ref75/cit75 ref93/cit93a ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref93/cit93b ref45/cit45b ref36/cit36 ref45/cit45a ref83/cit83 ref138/cit138 ref139/cit139 ref65/cit65a ref25/cit25 ref65/cit65b ref103/cit103 ref72/cit72 ref57/cit57 Ezema F. I. (ref95/cit95c) 2023 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref34/cit34b ref142/cit142 ref73/cit73 ref34/cit34a ref14/cit14a ref69/cit69 ref14/cit14b ref15/cit15 ref62/cit62 ref41/cit41 ref95/cit95a ref108/cit108 ref104/cit104 ref30/cit30 ref6/cit6a ref47/cit47 ref84/cit84 ref127/cit127 ref6/cit6b ref123/cit123 ref95/cit95b |
References_xml | – ident: ref89/cit89 doi: 10.1021/acsami.1c18481 – ident: ref46/cit46 doi: 10.1002/adfm.201806383 – ident: ref106/cit106 doi: 10.1039/D1NA00012H – ident: ref51/cit51b doi: 10.1039/D3CC00834G – ident: ref66/cit66 doi: 10.1002/aenm.201300394 – ident: ref90/cit90 doi: 10.1016/j.nanoen.2020.105092 – volume-title: Polymer-engineered nanostructures for advanced energy applications year: 2017 ident: ref58/cit58 doi: 10.1007/978-3-319-57003-7 – ident: ref101/cit101 doi: 10.1002/eom2.12172 – ident: ref97/cit97 doi: 10.1039/C9CC09558F – ident: ref3/cit3a doi: 10.1021/ja501520b – ident: ref80/cit80 doi: 10.1016/j.electacta.2021.137924 – ident: ref117/cit117 doi: 10.1007/s10904-019-01201-4 – ident: ref7/cit7b doi: 10.1021/acsnano.1c05898 – ident: ref41/cit41 doi: 10.1039/C9TA00519F – volume-title: Electrospinning for Advanced Energy Storage Applications year: 2021 ident: ref133/cit133a doi: 10.1007/978-981-15-8844-0 – ident: ref10/cit10c doi: 10.1016/j.mattod.2020.09.027 – ident: ref103/cit103 doi: 10.1016/j.matchemphys.2020.122666 – ident: ref110/cit110 doi: 10.1016/j.jallcom.2014.10.028 – ident: ref8/cit8b doi: 10.1039/c0ee00428f – ident: ref62/cit62 doi: 10.1016/j.electacta.2018.10.186 – ident: ref79/cit79b doi: 10.1016/j.jpowsour.2021.229709 – ident: ref145/cit145 doi: 10.1021/acs.chemmater.5b03524 – ident: ref64/cit64 doi: 10.1021/acsnano.7b09175 – ident: ref122/cit122 doi: 10.1021/acsanm.3c02440 – ident: ref48/cit48 doi: 10.1149/1.3574027 – ident: ref52/cit52 doi: 10.1016/j.mssp.2015.07.024 – ident: ref147/cit147 doi: 10.1016/B978-0-12-819660-1.00002-5 – ident: ref67/cit67 doi: 10.1007/s12613-022-2422-7 – ident: ref45/cit45b doi: 10.1021/acsaem.3c00797 – ident: ref88/cit88 doi: 10.1039/D0QI00302F – volume-title: Handbook of Porous Silicon year: 2014 ident: ref115/cit115 doi: 10.1007/978-3-319-05744-6 – ident: ref32/cit32 doi: 10.1021/am4056672 – ident: ref1/cit1a doi: 10.1021/acs.energyfuels.2c00693 – ident: ref86/cit86 doi: 10.1007/s12274-020-3142-9 – ident: ref134/cit134 doi: 10.1021/acsami.2c21866 – ident: ref78/cit78 doi: 10.1016/j.apsusc.2022.155873 – ident: ref104/cit104 doi: 10.1149/2.1401910jes – ident: ref33/cit33h doi: 10.1021/acs.nanolett.8b05127 – ident: ref126/cit126 doi: 10.1016/j.matlet.2021.129712 – ident: ref138/cit138 doi: 10.1039/c0cc01578d – ident: ref140/cit140 doi: 10.1021/acsami.1c15763 – ident: ref141/cit141 doi: 10.1126/science.1209150 – ident: ref4/cit4a doi: 10.1016/j.jpowsour.2018.07.116 – ident: ref18/cit18 doi: 10.1007/s12613-021-2335-x – ident: ref33/cit33c doi: 10.3390/nano11113137 – ident: ref82/cit82 doi: 10.1201/b15492-6 – ident: ref22/cit22b doi: 10.1021/acsapm.3c00531 – ident: ref94/cit94 doi: 10.1021/cr500207g – ident: ref42/cit42 doi: 10.1016/j.pnsc.2023.02.001 – ident: ref30/cit30 doi: 10.1016/j.micromeso.2020.110666 – ident: ref61/cit61 doi: 10.1016/j.surfcoat.2021.127262 – ident: ref7/cit7a doi: 10.1002/aenm.201300882 – ident: ref4/cit4c doi: 10.1002/adma.200903328 – ident: ref43/cit43 doi: 10.1021/jp404155y – ident: ref60/cit60 doi: 10.1016/j.procir.2019.01.004 – ident: ref33/cit33b doi: 10.1016/j.jmat.2019.03.005 – ident: ref102/cit102 doi: 10.1016/j.jallcom.2022.167737 – ident: ref14/cit14a doi: 10.1021/jacs.7b07584 – ident: ref93/cit93b doi: 10.3390/ma15031130 – ident: ref95/cit95a doi: 10.1021/acs.inorgchem.3c00783 – ident: ref34/cit34b doi: 10.1021/acs.energyfuels.2c03702 – ident: ref14/cit14b doi: 10.1021/acs.energyfuels.0c02948 – ident: ref25/cit25 doi: 10.1039/D1SE01494C – ident: ref36/cit36 doi: 10.3390/molecules28052079 – ident: ref44/cit44 doi: 10.1021/acsami.0c02445 – ident: ref50/cit50 doi: 10.1039/D3CC00834G – ident: ref109/cit109 doi: 10.1016/j.coco.2022.101157 – ident: ref11/cit11a doi: 10.1021/jp5121965 – ident: ref35/cit35 doi: 10.1021/acsaem.0c02091 – ident: ref118/cit118 doi: 10.1149/1945-7111/ab6318 – ident: ref21/cit21 doi: 10.1016/j.electacta.2022.140515 – ident: ref65/cit65a doi: 10.1021/acs.energyfuels.2c04024 – ident: ref144/cit144 doi: 10.1016/j.cej.2023.141451 – ident: ref56/cit56 doi: 10.1038/s41467-019-09510-5 – ident: ref132/cit132 doi: 10.1039/D2DT01415G – ident: ref37/cit37 doi: 10.1021/nl202630n – ident: ref70/cit70 doi: 10.3390/nano11123454 – ident: ref6/cit6b doi: 10.1021/acsami.2c21884 – ident: ref19/cit19 doi: 10.1021/acsnano.3c02892 – ident: ref51/cit51a doi: 10.1021/acs.chemrev.9b00466 – ident: ref114/cit114 doi: 10.1016/j.ensm.2019.12.025 – ident: ref100/cit100a doi: 10.1016/j.ceramint.2019.09.174 – ident: ref53/cit53 doi: 10.1021/cm00012a019 – ident: ref95/cit95b doi: 10.1016/j.cej.2020.126963 – ident: ref81/cit81 doi: 10.1016/j.jechem.2018.07.008 – ident: ref47/cit47 doi: 10.1063/1.5132578 – ident: ref98/cit98 doi: 10.1039/C7RA10905A – ident: ref100/cit100b doi: 10.1021/acsnano.5b07674 – ident: ref10/cit10b doi: 10.1016/j.jpowsour.2018.12.068 – ident: ref24/cit24 doi: 10.1039/C7NR08886H – ident: ref136/cit136 doi: 10.1680/jsuin.20.00055 – ident: ref26/cit26 doi: 10.1016/j.ceramint.2022.03.015 – ident: ref105/cit105 doi: 10.3390/ma14185397 – ident: ref131/cit131 doi: 10.1039/D1DT01165K – ident: ref142/cit142 doi: 10.1021/acsaem.1c00523 – ident: ref12/cit12 doi: 10.1021/acs.energyfuels.0c04272 – ident: ref124/cit124 doi: 10.1039/b816681c – ident: ref11/cit11c doi: 10.1007/s40843-019-9464-0 – ident: ref49/cit49 doi: 10.1021/acs.energyfuels.0c02618 – ident: ref91/cit91 doi: 10.1016/j.electacta.2019.134975 – ident: ref125/cit125c doi: 10.1016/j.electacta.2019.02.080 – ident: ref139/cit139 doi: 10.1038/s41557-022-01071-3 – ident: ref73/cit73 doi: 10.3390/ma15124264 – ident: ref123/cit123 doi: 10.1007/s41918-020-00070-7 – ident: ref146/cit146 doi: 10.1021/acs.energyfuels.1c02485 – ident: ref71/cit71 doi: 10.1016/j.electacta.2020.137278 – ident: ref34/cit34a doi: 10.1002/aenm.201700071 – ident: ref38/cit38 doi: 10.1016/j.jechem.2019.11.005 – ident: ref137/cit137b doi: 10.1016/j.est.2021.102989 – ident: ref111/cit111 doi: 10.1016/j.electacta.2020.136037 – ident: ref120/cit120 doi: 10.1021/acsami.9b00939 – ident: ref133/cit133b doi: 10.1021/acs.energyfuels.0c03671 – ident: ref99/cit99 doi: 10.1016/j.nanoen.2022.107779 – ident: ref3/cit3b doi: 10.1002/cssc.202201252 – ident: ref11/cit11b doi: 10.1007/s12613-021-2335-x – ident: ref11/cit11d doi: 10.1002/cey2.24 – ident: ref83/cit83 doi: 10.1002/slct.202201269 – ident: ref93/cit93a doi: 10.1016/j.seppur.2021.119461 – ident: ref107/cit107 doi: 10.1016/j.ijhydene.2021.02.024 – ident: ref112/cit112 doi: 10.1007/s10008-022-05141-x – ident: ref74/cit74 doi: 10.1016/j.electacta.2019.135331 – ident: ref29/cit29 doi: 10.1021/acsami.7b10639 – ident: ref77/cit77 doi: 10.1016/j.ensm.2022.08.003 – ident: ref72/cit72 doi: 10.1021/acs.nanolett.9b02835 – volume-title: Chemically Deposited Metal Chalcogenide-Based Carbon Composites for Versatile Applications year: 2023 ident: ref95/cit95c doi: 10.1007/978-3-031-23401-9 – ident: ref16/cit16 doi: 10.1016/j.cej.2019.123821 – ident: ref125/cit125a doi: 10.1002/aenm.202200850 – ident: ref45/cit45a doi: 10.1021/nl403197m – ident: ref55/cit55 doi: 10.1186/s11671-019-3024-9 – ident: ref69/cit69 doi: 10.3390/nano12101649 – ident: ref119/cit119 doi: 10.1016/j.cej.2019.123198 – ident: ref79/cit79a doi: 10.1039/C3RA44752A – ident: ref121/cit121 doi: 10.1016/j.cej.2018.09.027 – ident: ref137/cit137a doi: 10.1038/s41560-021-00918-2 – ident: ref130/cit130 doi: 10.1016/j.apsusc.2019.01.220 – ident: ref20/cit20 doi: 10.1021/acssuschemeng.9b00616 – ident: ref108/cit108 doi: 10.1016/j.colsurfa.2022.129193 – ident: ref10/cit10a doi: 10.1002/aenm.201700715 – ident: ref31/cit31 doi: 10.1002/adma.201301795 – ident: ref6/cit6a doi: 10.1021/nn901409q – ident: ref63/cit63 doi: 10.1021/acs.energyfuels.1c02138 – ident: ref13/cit13 doi: 10.1149/1.1792242 – ident: ref4/cit4b doi: 10.1021/ja3091438 – ident: ref8/cit8a doi: 10.1021/acs.jpcc.5b02073 – ident: ref33/cit33e doi: 10.1039/C9TA12923E – ident: ref143/cit143 doi: 10.1021/acs.energyfuels.1c03452 – ident: ref1/cit1b doi: 10.1002/advs.201500286 – ident: ref40/cit40 doi: 10.1016/j.jallcom.2020.155135 – ident: ref5/cit5 doi: 10.1021/acs.jpcc.7b07793 – ident: ref75/cit75 doi: 10.1021/acsaem.8b01422 – ident: ref127/cit127 doi: 10.1016/j.est.2019.101141 – ident: ref2/cit2b doi: 10.1016/j.jallcom.2020.153664 – ident: ref57/cit57 doi: 10.1016/j.jpowsour.2017.07.048 – ident: ref27/cit27a doi: 10.1038/s41598-022-20026-9 – ident: ref33/cit33f doi: 10.1016/j.cplett.2019.06.010 – ident: ref85/cit85 doi: 10.1007/s12274-020-3142-9 – ident: ref28/cit28a doi: 10.1016/j.jallcom.2023.170713 – ident: ref33/cit33g doi: 10.1021/acsami.0c12747 – ident: ref96/cit96 doi: 10.1016/j.cej.2021.133568 – ident: ref92/cit92 doi: 10.1016/j.jpowsour.2019.227692 – ident: ref9/cit9 doi: 10.1007/s11581-022-04622-3 – ident: ref113/cit113 doi: 10.1016/j.nanoen.2020.105506 – ident: ref23/cit23 doi: 10.1002/ange.201608146 – ident: ref116/cit116 doi: 10.1016/j.electacta.2022.140337 – ident: ref15/cit15 doi: 10.1016/j.jallcom.2020.155774 – ident: ref59/cit59 doi: 10.1088/1361-6528/acc5f2 – ident: ref129/cit129 doi: 10.1016/j.matchemphys.2019.122160 – ident: ref33/cit33d doi: 10.1021/acsanm.1c01061 – ident: ref17/cit17 doi: 10.1002/adfm.202301109 – ident: ref28/cit28b doi: 10.1016/j.apsusc.2023.157293 – ident: ref39/cit39 doi: 10.1038/nnano.2007.411 – ident: ref125/cit125b doi: 10.1021/acs.iecr.9b05838 – ident: ref33/cit33a doi: 10.1021/acsaem.1c00938 – ident: ref76/cit76 doi: 10.1016/j.ensm.2018.10.011 – ident: ref54/cit54 doi: 10.20964/2022.06.29 – ident: ref65/cit65b doi: 10.1021/acs.energyfuels.2c04024 – ident: ref84/cit84 doi: 10.1039/D0QM00120A – ident: ref87/cit87 doi: 10.1039/C7QI00184C – ident: ref128/cit128 doi: 10.1016/j.apsusc.2021.151294 – ident: ref68/cit68 doi: 10.1016/j.jallcom.2021.160945 – ident: ref22/cit22a doi: 10.1002/smll.202001714 – ident: ref27/cit27b doi: 10.1021/acsami.0c10418 – ident: ref135/cit135 doi: 10.1021/acs.accounts.7b00450 – ident: ref2/cit2a doi: 10.1021/acsnano.8b08821 |
SSID | ssj0002161944 |
Score | 2.49386 |
SecondaryResourceType | review_article |
Snippet | Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2948 |
Title | Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress |
URI | http://dx.doi.org/10.1021/acsmaterialslett.3c00253 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7UetGDb2N9ZQ9et8IuLOCNNG2qsWpSm_RGYB9po4Ip9OLB3-4sYNNofPRCCGHIMrvsN8PMfIPQhQXXlWUp4gJWg4MiOEnAESG-VErDCuKy5Jkd3PH-yLkZu-MGoj9E8Kl9GYscbLdqOuBVijYTBqjZGlqn3PeMwxV2hov_KtQ2frkJJlPOygZqQZ3A89vDDDaJfAmblkCmt10V_uUlN6HJLXlqz4ukLd6-MzeuMP4dtFXbnDisFskuaqh0D20uMRHuo_sh-MgAaBKHaSYVvp0Wk-n8hVxnKa4oOMGjvsIhNvvHTE2qtHdcRRZwpuHMpHniB5PuBZvnARr1uo-dPql7LZCYWU5BApl4NKZMSA5GRMIcbvuSa6aCQPvaUMJooZjrUUt6yrZZ7DpSCqVdroUrdcAOUTPNUnWEcMCNEehom3uWw1Tsw33Kik2FLtNauS1EQCdR_a3kURkGp3b0VVFRragW8j5nJRI1cbnpn_H8D0l7IflakXf8KXO84uhO0IbpQF-WJ_JT1Cxmc3UGdkqRnJcLE46D9-4H4zzpvg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIADb8R45sA1o23atOVWTUwDtoG0TZq4VG0e2gS0aO0u_HqctoxpB163Kqojx3Fju3Y-I3RpwLg0DEkcsNUQoHBGYghEiCekVKBBTBQ4s90eaw_tu5EzWmj1BUxkMFNWJPG_0AXMKxgDF67cFVhR3qBc22u6itbAJ7F03BU0-_PfK5apw3OdU7YYLfqo-VUdz3eTaRPFswUTtWBrWtvoac5lUWLy3JjlcYO_LwE4_msZO2ir8kBxUKrMLlqRyR7aXMAl3EcPfYiYwbwJHCSpkLgzyceT2Su5TRNcAnJCfH2NA6xPk6kcl0XwuMwz4FTBky76xI-6-AuO0gM0bN0Mmm1SdV4gETXsnPgidq3IolwwcCliajPTE0xR6fvKUxogRnFJHdcyhCtNk0aOLQSXymGKO0L59BDVkjSRRwj7TLuEtjKZa9hURh68J41I39elSkmnjgjIJKy-nCwskuKWGS4LKqwEVUfu5-aEvIIx1900Xn5Bac4p30oojx9pjv_I3QVabw-6nbBz27s_QRu6N31xcZGdolo-nckz8GDy-LzQ1Q993vDu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSAgOvBHjmQPXjLZp05ZbNZg2GGPSmLRb1eahTUA7rd2FX4_TlmnagdetiprIcR62Y_szQtcGtEvDkMQBWQ0GCmckBkOEeEJKBTuIiQJn9qnH2kP7YeSMqtgcnQsDRGQwUlY48fWpngpVIQyYN9AOaly5MjCrvEG5ltl0HW1o7522vYLmYPHEYpnaRNd-ZYvRopaaX8XyfDeYFlM8WxJTS_KmtVsWVS0oLcJMXhvzPG7wjxUQx39PZQ_tVJooDsqts4_WZHKAtpfwCQ_R8wAsZxBzAgdJKiTuTvLxZP5OOmmCS2BOsLNvcYD1rTKT4zIYHpf-Bpwq-NLBn7ivg8DgSj1Cw9b9S7NNqgoMJKKGnRNfxK4VWZQLBqpFTG1meoIpKn1feUoDxSguqeNahnCladLIsYXgUjlMcUconx6jWpIm8gRhn2nV0FYmcw2bysiD_6QR6bxdqpR06ogAT8LqBGVh4Ry3zHCVUWHFqDpyvxYo5BWcua6q8faLnuai57SE9Pixz-kfqbtCm_27Vtjt9B7P0JYuUV_kL7JzVMtnc3kBikweXxbb9RMun_Nx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Si-based+Anode+Lithium-Ion+Batteries%3A+A+Comprehensive+Review+of+Recent+Progress&rft.jtitle=ACS+materials+letters&rft.au=Li%2C+Yifei&rft.au=Li%2C+Qingmeng&rft.au=Chai%2C+Jiali&rft.au=Wang%2C+Yiting&rft.date=2023-11-06&rft.pub=American+Chemical+Society&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=5&rft.issue=11&rft.spage=2948&rft.epage=2970&rft_id=info:doi/10.1021%2Facsmaterialslett.3c00253&rft.externalDocID=c434633521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon |