Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress

Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant resources, making them highly promising candidates to replace graphite anodes in the next generation of high specific energy lithium-ion batteries (LI...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 5; no. 11; pp. 2948 - 2970
Main Authors Li, Yifei, Li, Qingmeng, Chai, Jiali, Wang, Yiting, Du, Jiakai, Chen, Zhiyuan, Rui, Yichuan, Jiang, Lei, Tang, Bohejin
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.11.2023
Online AccessGet full text

Cover

Loading…
Abstract Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant resources, making them highly promising candidates to replace graphite anodes in the next generation of high specific energy lithium-ion batteries (LIBs). However, the commercialization of Si-based anodes for LIBs encounters significant barriers due to inherent challenges. These challenges encompass a range of issues, including poor electrical conductivity, substantial volume expansion during the lithiation–delithiation process, severe pulverization of the electrodes, pronounced thickening of the solid electrolyte interphase film, low Coulombic efficiency, and limited cycling performance. Each of these factors leads to the complexity of realizing the full potential of Si-based anodes in commercial LIBs applications. This review provides a comprehensive summary and discussion of recent research on Si-based LIB anodes, focusing on the microscopic morphology of Si and the development of Si-based composite materials. By offering a novel perspective, this review aims to provide an overview and insightful discussion of Si-based anodes. The latest research findings are presented, and innovative viewpoints and reasonable insights are addressed, shedding light on the potential solutions to overcome the limitations associated with Si-based anodes.
AbstractList Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant resources, making them highly promising candidates to replace graphite anodes in the next generation of high specific energy lithium-ion batteries (LIBs). However, the commercialization of Si-based anodes for LIBs encounters significant barriers due to inherent challenges. These challenges encompass a range of issues, including poor electrical conductivity, substantial volume expansion during the lithiation–delithiation process, severe pulverization of the electrodes, pronounced thickening of the solid electrolyte interphase film, low Coulombic efficiency, and limited cycling performance. Each of these factors leads to the complexity of realizing the full potential of Si-based anodes in commercial LIBs applications. This review provides a comprehensive summary and discussion of recent research on Si-based LIB anodes, focusing on the microscopic morphology of Si and the development of Si-based composite materials. By offering a novel perspective, this review aims to provide an overview and insightful discussion of Si-based anodes. The latest research findings are presented, and innovative viewpoints and reasonable insights are addressed, shedding light on the potential solutions to overcome the limitations associated with Si-based anodes.
Author Chen, Zhiyuan
Wang, Yiting
Rui, Yichuan
Chai, Jiali
Li, Yifei
Du, Jiakai
Li, Qingmeng
Jiang, Lei
Tang, Bohejin
AuthorAffiliation Department of Chemical Engineering
College of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: College of Chemistry and Chemical Engineering
– name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Yifei
  surname: Li
  fullname: Li, Yifei
  organization: College of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Qingmeng
  surname: Li
  fullname: Li, Qingmeng
  organization: College of Chemistry and Chemical Engineering
– sequence: 3
  givenname: Jiali
  surname: Chai
  fullname: Chai, Jiali
  organization: College of Chemistry and Chemical Engineering
– sequence: 4
  givenname: Yiting
  surname: Wang
  fullname: Wang, Yiting
  organization: College of Chemistry and Chemical Engineering
– sequence: 5
  givenname: Jiakai
  surname: Du
  fullname: Du, Jiakai
  organization: College of Chemistry and Chemical Engineering
– sequence: 6
  givenname: Zhiyuan
  surname: Chen
  fullname: Chen, Zhiyuan
  organization: College of Chemistry and Chemical Engineering
– sequence: 7
  givenname: Yichuan
  surname: Rui
  fullname: Rui, Yichuan
  email: ruiyc@sues.edu.cn
  organization: College of Chemistry and Chemical Engineering
– sequence: 8
  givenname: Lei
  surname: Jiang
  fullname: Jiang, Lei
  email: lei.jiang@kuleuven.be
  organization: Department of Chemical Engineering
– sequence: 9
  givenname: Bohejin
  orcidid: 0000-0002-1144-3355
  surname: Tang
  fullname: Tang, Bohejin
  email: tangbohejin@sues.edu.cn
  organization: College of Chemistry and Chemical Engineering
BookMark eNqNkM1OAjEUhRuDiYi8Q19gsJ12furCBIkiCQnGn_WktLdSwrSkLRjf3iGwMGx0dc_ifF9uzjXqOe8AIUzJiJKc3koVW5kgWLmJG0hpxBQhecEuUD8vmci4qETvV75CwxjXpOvQkgrO-2jxZrOljKDx2HkNeG7Tyu7abOYdfpDp4IZ4h8d44tttgBW4aPeAX2Fv4Qt70yUFLuGX4D8DxHiDLk33DAxPd4A-nh7fJ8_ZfDGdTcbzTDLCUyb0ssplzpQuSVUsGS9prUvDQAhTm7ysuVHAiionugJKmSy41gpMURpVaCPYAN0fvSr4GAOYRtkkk_UuBWk3DSXNYaHmfKHmtFAnqM8E22BbGb7_g_Ij2jWatd8F1zX-xn4AQ3aH8A
CitedBy_id crossref_primary_10_3390_polym16243544
crossref_primary_10_1016_j_electacta_2024_145440
crossref_primary_10_1021_acsaem_4c02276
crossref_primary_10_26599_EMD_2023_9370019
crossref_primary_10_1016_j_susmat_2025_e01281
crossref_primary_10_1016_j_cej_2024_152180
crossref_primary_10_1039_D4CC05415F
crossref_primary_10_3390_batteries11030114
crossref_primary_10_3390_en17143520
crossref_primary_10_1002_smll_202408457
crossref_primary_10_1039_D4TA07073A
crossref_primary_10_1016_j_est_2024_113049
crossref_primary_10_1016_j_est_2024_113126
crossref_primary_10_1016_j_jcis_2024_10_038
crossref_primary_10_1016_j_est_2025_115838
crossref_primary_10_1016_j_jallcom_2024_174379
crossref_primary_10_1039_D4TA07201D
crossref_primary_10_1021_acsami_4c07377
crossref_primary_10_1016_j_jallcom_2024_176597
crossref_primary_10_1021_acsmaterialslett_4c00517
crossref_primary_10_1002_ente_202400664
crossref_primary_10_1016_j_ceramint_2024_09_057
crossref_primary_10_1021_acsami_4c01976
crossref_primary_10_1021_acsami_4c22814
crossref_primary_10_1039_D4GC04971C
crossref_primary_10_1016_j_carbon_2024_119615
crossref_primary_10_1038_s41598_024_83808_3
crossref_primary_10_1149_1945_7111_ada370
crossref_primary_10_1016_j_nxmate_2024_100371
crossref_primary_10_1021_acsanm_4c03078
crossref_primary_10_1016_j_est_2025_115362
crossref_primary_10_1016_j_surfin_2024_104468
crossref_primary_10_1016_j_elecom_2024_107726
crossref_primary_10_1021_acsenergylett_4c00856
crossref_primary_10_1039_D4EE05595K
crossref_primary_10_1016_j_electacta_2024_145536
crossref_primary_10_1021_acsami_4c09120
crossref_primary_10_1021_acs_energyfuels_4c03525
crossref_primary_10_1039_D4CS00366G
crossref_primary_10_1016_j_est_2024_113794
crossref_primary_10_1016_j_est_2024_112784
crossref_primary_10_34133_energymatadv_0095
crossref_primary_10_1016_j_xcrp_2024_102032
crossref_primary_10_1002_chem_202400063
crossref_primary_10_1002_cssc_202400971
crossref_primary_10_1016_j_jallcom_2024_176400
Cites_doi 10.1021/acsami.1c18481
10.1002/adfm.201806383
10.1039/D1NA00012H
10.1039/D3CC00834G
10.1002/aenm.201300394
10.1016/j.nanoen.2020.105092
10.1007/978-3-319-57003-7
10.1002/eom2.12172
10.1039/C9CC09558F
10.1021/ja501520b
10.1016/j.electacta.2021.137924
10.1007/s10904-019-01201-4
10.1021/acsnano.1c05898
10.1039/C9TA00519F
10.1007/978-981-15-8844-0
10.1016/j.mattod.2020.09.027
10.1016/j.matchemphys.2020.122666
10.1016/j.jallcom.2014.10.028
10.1039/c0ee00428f
10.1016/j.electacta.2018.10.186
10.1016/j.jpowsour.2021.229709
10.1021/acs.chemmater.5b03524
10.1021/acsnano.7b09175
10.1021/acsanm.3c02440
10.1149/1.3574027
10.1016/j.mssp.2015.07.024
10.1016/B978-0-12-819660-1.00002-5
10.1007/s12613-022-2422-7
10.1021/acsaem.3c00797
10.1039/D0QI00302F
10.1007/978-3-319-05744-6
10.1021/am4056672
10.1021/acs.energyfuels.2c00693
10.1007/s12274-020-3142-9
10.1021/acsami.2c21866
10.1016/j.apsusc.2022.155873
10.1149/2.1401910jes
10.1021/acs.nanolett.8b05127
10.1016/j.matlet.2021.129712
10.1039/c0cc01578d
10.1021/acsami.1c15763
10.1126/science.1209150
10.1016/j.jpowsour.2018.07.116
10.1007/s12613-021-2335-x
10.3390/nano11113137
10.1201/b15492-6
10.1021/acsapm.3c00531
10.1021/cr500207g
10.1016/j.pnsc.2023.02.001
10.1016/j.micromeso.2020.110666
10.1016/j.surfcoat.2021.127262
10.1002/aenm.201300882
10.1002/adma.200903328
10.1021/jp404155y
10.1016/j.procir.2019.01.004
10.1016/j.jmat.2019.03.005
10.1016/j.jallcom.2022.167737
10.1021/jacs.7b07584
10.3390/ma15031130
10.1021/acs.inorgchem.3c00783
10.1021/acs.energyfuels.2c03702
10.1021/acs.energyfuels.0c02948
10.1039/D1SE01494C
10.3390/molecules28052079
10.1021/acsami.0c02445
10.1016/j.coco.2022.101157
10.1021/jp5121965
10.1021/acsaem.0c02091
10.1149/1945-7111/ab6318
10.1016/j.electacta.2022.140515
10.1021/acs.energyfuels.2c04024
10.1016/j.cej.2023.141451
10.1038/s41467-019-09510-5
10.1039/D2DT01415G
10.1021/nl202630n
10.3390/nano11123454
10.1021/acsami.2c21884
10.1021/acsnano.3c02892
10.1021/acs.chemrev.9b00466
10.1016/j.ensm.2019.12.025
10.1016/j.ceramint.2019.09.174
10.1021/cm00012a019
10.1016/j.cej.2020.126963
10.1016/j.jechem.2018.07.008
10.1063/1.5132578
10.1039/C7RA10905A
10.1021/acsnano.5b07674
10.1016/j.jpowsour.2018.12.068
10.1039/C7NR08886H
10.1680/jsuin.20.00055
10.1016/j.ceramint.2022.03.015
10.3390/ma14185397
10.1039/D1DT01165K
10.1021/acsaem.1c00523
10.1021/acs.energyfuels.0c04272
10.1039/b816681c
10.1007/s40843-019-9464-0
10.1021/acs.energyfuels.0c02618
10.1016/j.electacta.2019.134975
10.1016/j.electacta.2019.02.080
10.1038/s41557-022-01071-3
10.3390/ma15124264
10.1007/s41918-020-00070-7
10.1021/acs.energyfuels.1c02485
10.1016/j.electacta.2020.137278
10.1002/aenm.201700071
10.1016/j.jechem.2019.11.005
10.1016/j.est.2021.102989
10.1016/j.electacta.2020.136037
10.1021/acsami.9b00939
10.1021/acs.energyfuels.0c03671
10.1016/j.nanoen.2022.107779
10.1002/cssc.202201252
10.1002/cey2.24
10.1002/slct.202201269
10.1016/j.seppur.2021.119461
10.1016/j.ijhydene.2021.02.024
10.1007/s10008-022-05141-x
10.1016/j.electacta.2019.135331
10.1021/acsami.7b10639
10.1016/j.ensm.2022.08.003
10.1021/acs.nanolett.9b02835
10.1007/978-3-031-23401-9
10.1016/j.cej.2019.123821
10.1002/aenm.202200850
10.1021/nl403197m
10.1186/s11671-019-3024-9
10.3390/nano12101649
10.1016/j.cej.2019.123198
10.1039/C3RA44752A
10.1016/j.cej.2018.09.027
10.1038/s41560-021-00918-2
10.1016/j.apsusc.2019.01.220
10.1021/acssuschemeng.9b00616
10.1016/j.colsurfa.2022.129193
10.1002/aenm.201700715
10.1002/adma.201301795
10.1021/nn901409q
10.1021/acs.energyfuels.1c02138
10.1149/1.1792242
10.1021/ja3091438
10.1021/acs.jpcc.5b02073
10.1039/C9TA12923E
10.1021/acs.energyfuels.1c03452
10.1002/advs.201500286
10.1016/j.jallcom.2020.155135
10.1021/acs.jpcc.7b07793
10.1021/acsaem.8b01422
10.1016/j.est.2019.101141
10.1016/j.jallcom.2020.153664
10.1016/j.jpowsour.2017.07.048
10.1038/s41598-022-20026-9
10.1016/j.cplett.2019.06.010
10.1016/j.jallcom.2023.170713
10.1021/acsami.0c12747
10.1016/j.cej.2021.133568
10.1016/j.jpowsour.2019.227692
10.1007/s11581-022-04622-3
10.1016/j.nanoen.2020.105506
10.1002/ange.201608146
10.1016/j.electacta.2022.140337
10.1016/j.jallcom.2020.155774
10.1088/1361-6528/acc5f2
10.1016/j.matchemphys.2019.122160
10.1021/acsanm.1c01061
10.1002/adfm.202301109
10.1016/j.apsusc.2023.157293
10.1038/nnano.2007.411
10.1021/acs.iecr.9b05838
10.1021/acsaem.1c00938
10.1016/j.ensm.2018.10.011
10.20964/2022.06.29
10.1039/D0QM00120A
10.1039/C7QI00184C
10.1016/j.apsusc.2021.151294
10.1016/j.jallcom.2021.160945
10.1002/smll.202001714
10.1021/acsami.0c10418
10.1021/acs.accounts.7b00450
10.1021/acsnano.8b08821
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsmaterialslett.3c00253
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2639-4979
EndPage 2970
ExternalDocumentID 10_1021_acsmaterialslett_3c00253
c434633521
GroupedDBID ABQRX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
M~E
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a304t-9db72a23cd6075b34618d6f3e99f8f2684fce35720d7e113a54ddcef56fc5df93
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Tue Jul 01 04:21:57 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Nov 07 03:10:42 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a304t-9db72a23cd6075b34618d6f3e99f8f2684fce35720d7e113a54ddcef56fc5df93
ORCID 0000-0002-1144-3355
PageCount 23
ParticipantIDs crossref_citationtrail_10_1021_acsmaterialslett_3c00253
crossref_primary_10_1021_acsmaterialslett_3c00253
acs_journals_10_1021_acsmaterialslett_3c00253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-06
PublicationDateYYYYMMDD 2023-11-06
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-06
  day: 06
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref81/cit81
ref16/cit16
ref52/cit52
ref114/cit114
ref137/cit137b
ref23/cit23
ref137/cit137a
ref116/cit116
ref110/cit110
ref111/cit111
Balakrishnan N. T. (ref133/cit133a) 2021
ref112/cit112
ref77/cit77
ref113/cit113
ref1/cit1a
ref71/cit71
ref1/cit1b
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref35/cit35
ref89/cit89
ref19/cit19
ref3/cit3b
ref22/cit22a
ref42/cit42
ref96/cit96
ref3/cit3a
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref22/cit22b
ref122/cit122
ref7/cit7b
ref105/cit105
ref7/cit7a
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref18/cit18
ref136/cit136
ref97/cit97
ref101/cit101
ref102/cit102
ref29/cit29
ref8/cit8a
ref10/cit10a
ref10/cit10b
ref76/cit76
ref86/cit86
ref8/cit8b
ref10/cit10c
ref32/cit32
ref39/cit39
ref5/cit5
Canham L. (ref115/cit115) 2014
ref51/cit51b
ref43/cit43
ref51/cit51a
ref80/cit80
ref132/cit132
ref91/cit91
ref55/cit55
ref4/cit4a
ref4/cit4b
ref144/cit144
ref4/cit4c
ref28/cit28a
ref100/cit100a
ref12/cit12
ref79/cit79a
ref100/cit100b
ref79/cit79b
ref28/cit28b
ref66/cit66
ref121/cit121
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref133/cit133b
ref33/cit33a
ref63/cit63
ref56/cit56
ref27/cit27a
ref92/cit92
ref27/cit27b
ref2/cit2b
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2a
ref33/cit33c
ref33/cit33b
ref33/cit33e
ref37/cit37
ref33/cit33d
ref33/cit33g
ref33/cit33f
ref60/cit60
ref88/cit88
ref33/cit33h
ref17/cit17
ref125/cit125a
ref82/cit82
ref147/cit147
ref125/cit125c
ref125/cit125b
ref143/cit143
ref53/cit53
ref145/cit145
ref21/cit21
Lin Z. (ref58/cit58) 2017
ref11/cit11c
ref11/cit11b
ref46/cit46
ref11/cit11d
ref11/cit11a
ref49/cit49
ref75/cit75
ref93/cit93a
ref24/cit24
ref141/cit141
ref50/cit50
ref78/cit78
ref93/cit93b
ref45/cit45b
ref36/cit36
ref45/cit45a
ref83/cit83
ref138/cit138
ref139/cit139
ref65/cit65a
ref25/cit25
ref65/cit65b
ref103/cit103
ref72/cit72
ref57/cit57
Ezema F. I. (ref95/cit95c) 2023
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref34/cit34b
ref142/cit142
ref73/cit73
ref34/cit34a
ref14/cit14a
ref69/cit69
ref14/cit14b
ref15/cit15
ref62/cit62
ref41/cit41
ref95/cit95a
ref108/cit108
ref104/cit104
ref30/cit30
ref6/cit6a
ref47/cit47
ref84/cit84
ref127/cit127
ref6/cit6b
ref123/cit123
ref95/cit95b
References_xml – ident: ref89/cit89
  doi: 10.1021/acsami.1c18481
– ident: ref46/cit46
  doi: 10.1002/adfm.201806383
– ident: ref106/cit106
  doi: 10.1039/D1NA00012H
– ident: ref51/cit51b
  doi: 10.1039/D3CC00834G
– ident: ref66/cit66
  doi: 10.1002/aenm.201300394
– ident: ref90/cit90
  doi: 10.1016/j.nanoen.2020.105092
– volume-title: Polymer-engineered nanostructures for advanced energy applications
  year: 2017
  ident: ref58/cit58
  doi: 10.1007/978-3-319-57003-7
– ident: ref101/cit101
  doi: 10.1002/eom2.12172
– ident: ref97/cit97
  doi: 10.1039/C9CC09558F
– ident: ref3/cit3a
  doi: 10.1021/ja501520b
– ident: ref80/cit80
  doi: 10.1016/j.electacta.2021.137924
– ident: ref117/cit117
  doi: 10.1007/s10904-019-01201-4
– ident: ref7/cit7b
  doi: 10.1021/acsnano.1c05898
– ident: ref41/cit41
  doi: 10.1039/C9TA00519F
– volume-title: Electrospinning for Advanced Energy Storage Applications
  year: 2021
  ident: ref133/cit133a
  doi: 10.1007/978-981-15-8844-0
– ident: ref10/cit10c
  doi: 10.1016/j.mattod.2020.09.027
– ident: ref103/cit103
  doi: 10.1016/j.matchemphys.2020.122666
– ident: ref110/cit110
  doi: 10.1016/j.jallcom.2014.10.028
– ident: ref8/cit8b
  doi: 10.1039/c0ee00428f
– ident: ref62/cit62
  doi: 10.1016/j.electacta.2018.10.186
– ident: ref79/cit79b
  doi: 10.1016/j.jpowsour.2021.229709
– ident: ref145/cit145
  doi: 10.1021/acs.chemmater.5b03524
– ident: ref64/cit64
  doi: 10.1021/acsnano.7b09175
– ident: ref122/cit122
  doi: 10.1021/acsanm.3c02440
– ident: ref48/cit48
  doi: 10.1149/1.3574027
– ident: ref52/cit52
  doi: 10.1016/j.mssp.2015.07.024
– ident: ref147/cit147
  doi: 10.1016/B978-0-12-819660-1.00002-5
– ident: ref67/cit67
  doi: 10.1007/s12613-022-2422-7
– ident: ref45/cit45b
  doi: 10.1021/acsaem.3c00797
– ident: ref88/cit88
  doi: 10.1039/D0QI00302F
– volume-title: Handbook of Porous Silicon
  year: 2014
  ident: ref115/cit115
  doi: 10.1007/978-3-319-05744-6
– ident: ref32/cit32
  doi: 10.1021/am4056672
– ident: ref1/cit1a
  doi: 10.1021/acs.energyfuels.2c00693
– ident: ref86/cit86
  doi: 10.1007/s12274-020-3142-9
– ident: ref134/cit134
  doi: 10.1021/acsami.2c21866
– ident: ref78/cit78
  doi: 10.1016/j.apsusc.2022.155873
– ident: ref104/cit104
  doi: 10.1149/2.1401910jes
– ident: ref33/cit33h
  doi: 10.1021/acs.nanolett.8b05127
– ident: ref126/cit126
  doi: 10.1016/j.matlet.2021.129712
– ident: ref138/cit138
  doi: 10.1039/c0cc01578d
– ident: ref140/cit140
  doi: 10.1021/acsami.1c15763
– ident: ref141/cit141
  doi: 10.1126/science.1209150
– ident: ref4/cit4a
  doi: 10.1016/j.jpowsour.2018.07.116
– ident: ref18/cit18
  doi: 10.1007/s12613-021-2335-x
– ident: ref33/cit33c
  doi: 10.3390/nano11113137
– ident: ref82/cit82
  doi: 10.1201/b15492-6
– ident: ref22/cit22b
  doi: 10.1021/acsapm.3c00531
– ident: ref94/cit94
  doi: 10.1021/cr500207g
– ident: ref42/cit42
  doi: 10.1016/j.pnsc.2023.02.001
– ident: ref30/cit30
  doi: 10.1016/j.micromeso.2020.110666
– ident: ref61/cit61
  doi: 10.1016/j.surfcoat.2021.127262
– ident: ref7/cit7a
  doi: 10.1002/aenm.201300882
– ident: ref4/cit4c
  doi: 10.1002/adma.200903328
– ident: ref43/cit43
  doi: 10.1021/jp404155y
– ident: ref60/cit60
  doi: 10.1016/j.procir.2019.01.004
– ident: ref33/cit33b
  doi: 10.1016/j.jmat.2019.03.005
– ident: ref102/cit102
  doi: 10.1016/j.jallcom.2022.167737
– ident: ref14/cit14a
  doi: 10.1021/jacs.7b07584
– ident: ref93/cit93b
  doi: 10.3390/ma15031130
– ident: ref95/cit95a
  doi: 10.1021/acs.inorgchem.3c00783
– ident: ref34/cit34b
  doi: 10.1021/acs.energyfuels.2c03702
– ident: ref14/cit14b
  doi: 10.1021/acs.energyfuels.0c02948
– ident: ref25/cit25
  doi: 10.1039/D1SE01494C
– ident: ref36/cit36
  doi: 10.3390/molecules28052079
– ident: ref44/cit44
  doi: 10.1021/acsami.0c02445
– ident: ref50/cit50
  doi: 10.1039/D3CC00834G
– ident: ref109/cit109
  doi: 10.1016/j.coco.2022.101157
– ident: ref11/cit11a
  doi: 10.1021/jp5121965
– ident: ref35/cit35
  doi: 10.1021/acsaem.0c02091
– ident: ref118/cit118
  doi: 10.1149/1945-7111/ab6318
– ident: ref21/cit21
  doi: 10.1016/j.electacta.2022.140515
– ident: ref65/cit65a
  doi: 10.1021/acs.energyfuels.2c04024
– ident: ref144/cit144
  doi: 10.1016/j.cej.2023.141451
– ident: ref56/cit56
  doi: 10.1038/s41467-019-09510-5
– ident: ref132/cit132
  doi: 10.1039/D2DT01415G
– ident: ref37/cit37
  doi: 10.1021/nl202630n
– ident: ref70/cit70
  doi: 10.3390/nano11123454
– ident: ref6/cit6b
  doi: 10.1021/acsami.2c21884
– ident: ref19/cit19
  doi: 10.1021/acsnano.3c02892
– ident: ref51/cit51a
  doi: 10.1021/acs.chemrev.9b00466
– ident: ref114/cit114
  doi: 10.1016/j.ensm.2019.12.025
– ident: ref100/cit100a
  doi: 10.1016/j.ceramint.2019.09.174
– ident: ref53/cit53
  doi: 10.1021/cm00012a019
– ident: ref95/cit95b
  doi: 10.1016/j.cej.2020.126963
– ident: ref81/cit81
  doi: 10.1016/j.jechem.2018.07.008
– ident: ref47/cit47
  doi: 10.1063/1.5132578
– ident: ref98/cit98
  doi: 10.1039/C7RA10905A
– ident: ref100/cit100b
  doi: 10.1021/acsnano.5b07674
– ident: ref10/cit10b
  doi: 10.1016/j.jpowsour.2018.12.068
– ident: ref24/cit24
  doi: 10.1039/C7NR08886H
– ident: ref136/cit136
  doi: 10.1680/jsuin.20.00055
– ident: ref26/cit26
  doi: 10.1016/j.ceramint.2022.03.015
– ident: ref105/cit105
  doi: 10.3390/ma14185397
– ident: ref131/cit131
  doi: 10.1039/D1DT01165K
– ident: ref142/cit142
  doi: 10.1021/acsaem.1c00523
– ident: ref12/cit12
  doi: 10.1021/acs.energyfuels.0c04272
– ident: ref124/cit124
  doi: 10.1039/b816681c
– ident: ref11/cit11c
  doi: 10.1007/s40843-019-9464-0
– ident: ref49/cit49
  doi: 10.1021/acs.energyfuels.0c02618
– ident: ref91/cit91
  doi: 10.1016/j.electacta.2019.134975
– ident: ref125/cit125c
  doi: 10.1016/j.electacta.2019.02.080
– ident: ref139/cit139
  doi: 10.1038/s41557-022-01071-3
– ident: ref73/cit73
  doi: 10.3390/ma15124264
– ident: ref123/cit123
  doi: 10.1007/s41918-020-00070-7
– ident: ref146/cit146
  doi: 10.1021/acs.energyfuels.1c02485
– ident: ref71/cit71
  doi: 10.1016/j.electacta.2020.137278
– ident: ref34/cit34a
  doi: 10.1002/aenm.201700071
– ident: ref38/cit38
  doi: 10.1016/j.jechem.2019.11.005
– ident: ref137/cit137b
  doi: 10.1016/j.est.2021.102989
– ident: ref111/cit111
  doi: 10.1016/j.electacta.2020.136037
– ident: ref120/cit120
  doi: 10.1021/acsami.9b00939
– ident: ref133/cit133b
  doi: 10.1021/acs.energyfuels.0c03671
– ident: ref99/cit99
  doi: 10.1016/j.nanoen.2022.107779
– ident: ref3/cit3b
  doi: 10.1002/cssc.202201252
– ident: ref11/cit11b
  doi: 10.1007/s12613-021-2335-x
– ident: ref11/cit11d
  doi: 10.1002/cey2.24
– ident: ref83/cit83
  doi: 10.1002/slct.202201269
– ident: ref93/cit93a
  doi: 10.1016/j.seppur.2021.119461
– ident: ref107/cit107
  doi: 10.1016/j.ijhydene.2021.02.024
– ident: ref112/cit112
  doi: 10.1007/s10008-022-05141-x
– ident: ref74/cit74
  doi: 10.1016/j.electacta.2019.135331
– ident: ref29/cit29
  doi: 10.1021/acsami.7b10639
– ident: ref77/cit77
  doi: 10.1016/j.ensm.2022.08.003
– ident: ref72/cit72
  doi: 10.1021/acs.nanolett.9b02835
– volume-title: Chemically Deposited Metal Chalcogenide-Based Carbon Composites for Versatile Applications
  year: 2023
  ident: ref95/cit95c
  doi: 10.1007/978-3-031-23401-9
– ident: ref16/cit16
  doi: 10.1016/j.cej.2019.123821
– ident: ref125/cit125a
  doi: 10.1002/aenm.202200850
– ident: ref45/cit45a
  doi: 10.1021/nl403197m
– ident: ref55/cit55
  doi: 10.1186/s11671-019-3024-9
– ident: ref69/cit69
  doi: 10.3390/nano12101649
– ident: ref119/cit119
  doi: 10.1016/j.cej.2019.123198
– ident: ref79/cit79a
  doi: 10.1039/C3RA44752A
– ident: ref121/cit121
  doi: 10.1016/j.cej.2018.09.027
– ident: ref137/cit137a
  doi: 10.1038/s41560-021-00918-2
– ident: ref130/cit130
  doi: 10.1016/j.apsusc.2019.01.220
– ident: ref20/cit20
  doi: 10.1021/acssuschemeng.9b00616
– ident: ref108/cit108
  doi: 10.1016/j.colsurfa.2022.129193
– ident: ref10/cit10a
  doi: 10.1002/aenm.201700715
– ident: ref31/cit31
  doi: 10.1002/adma.201301795
– ident: ref6/cit6a
  doi: 10.1021/nn901409q
– ident: ref63/cit63
  doi: 10.1021/acs.energyfuels.1c02138
– ident: ref13/cit13
  doi: 10.1149/1.1792242
– ident: ref4/cit4b
  doi: 10.1021/ja3091438
– ident: ref8/cit8a
  doi: 10.1021/acs.jpcc.5b02073
– ident: ref33/cit33e
  doi: 10.1039/C9TA12923E
– ident: ref143/cit143
  doi: 10.1021/acs.energyfuels.1c03452
– ident: ref1/cit1b
  doi: 10.1002/advs.201500286
– ident: ref40/cit40
  doi: 10.1016/j.jallcom.2020.155135
– ident: ref5/cit5
  doi: 10.1021/acs.jpcc.7b07793
– ident: ref75/cit75
  doi: 10.1021/acsaem.8b01422
– ident: ref127/cit127
  doi: 10.1016/j.est.2019.101141
– ident: ref2/cit2b
  doi: 10.1016/j.jallcom.2020.153664
– ident: ref57/cit57
  doi: 10.1016/j.jpowsour.2017.07.048
– ident: ref27/cit27a
  doi: 10.1038/s41598-022-20026-9
– ident: ref33/cit33f
  doi: 10.1016/j.cplett.2019.06.010
– ident: ref85/cit85
  doi: 10.1007/s12274-020-3142-9
– ident: ref28/cit28a
  doi: 10.1016/j.jallcom.2023.170713
– ident: ref33/cit33g
  doi: 10.1021/acsami.0c12747
– ident: ref96/cit96
  doi: 10.1016/j.cej.2021.133568
– ident: ref92/cit92
  doi: 10.1016/j.jpowsour.2019.227692
– ident: ref9/cit9
  doi: 10.1007/s11581-022-04622-3
– ident: ref113/cit113
  doi: 10.1016/j.nanoen.2020.105506
– ident: ref23/cit23
  doi: 10.1002/ange.201608146
– ident: ref116/cit116
  doi: 10.1016/j.electacta.2022.140337
– ident: ref15/cit15
  doi: 10.1016/j.jallcom.2020.155774
– ident: ref59/cit59
  doi: 10.1088/1361-6528/acc5f2
– ident: ref129/cit129
  doi: 10.1016/j.matchemphys.2019.122160
– ident: ref33/cit33d
  doi: 10.1021/acsanm.1c01061
– ident: ref17/cit17
  doi: 10.1002/adfm.202301109
– ident: ref28/cit28b
  doi: 10.1016/j.apsusc.2023.157293
– ident: ref39/cit39
  doi: 10.1038/nnano.2007.411
– ident: ref125/cit125b
  doi: 10.1021/acs.iecr.9b05838
– ident: ref33/cit33a
  doi: 10.1021/acsaem.1c00938
– ident: ref76/cit76
  doi: 10.1016/j.ensm.2018.10.011
– ident: ref54/cit54
  doi: 10.20964/2022.06.29
– ident: ref65/cit65b
  doi: 10.1021/acs.energyfuels.2c04024
– ident: ref84/cit84
  doi: 10.1039/D0QM00120A
– ident: ref87/cit87
  doi: 10.1039/C7QI00184C
– ident: ref128/cit128
  doi: 10.1016/j.apsusc.2021.151294
– ident: ref68/cit68
  doi: 10.1016/j.jallcom.2021.160945
– ident: ref22/cit22a
  doi: 10.1002/smll.202001714
– ident: ref27/cit27b
  doi: 10.1021/acsami.0c10418
– ident: ref135/cit135
  doi: 10.1021/acs.accounts.7b00450
– ident: ref2/cit2a
  doi: 10.1021/acsnano.8b08821
SSID ssj0002161944
Score 2.49386
SecondaryResourceType review_article
Snippet Si-based anode materials offer significant advantages, such as high specific capacity, low voltage platform, environmental friendliness, and abundant...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 2948
Title Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress
URI http://dx.doi.org/10.1021/acsmaterialslett.3c00253
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEN7UetGDb2N9ZQ9et8IuLOCNNG2qsWpSm_RGYB9po4Ip9OLB3-4sYNNofPRCCGHIMrvsN8PMfIPQhQXXlWUp4gJWg4MiOEnAESG-VErDCuKy5Jkd3PH-yLkZu-MGoj9E8Kl9GYscbLdqOuBVijYTBqjZGlqn3PeMwxV2hov_KtQ2frkJJlPOygZqQZ3A89vDDDaJfAmblkCmt10V_uUlN6HJLXlqz4ukLd6-MzeuMP4dtFXbnDisFskuaqh0D20uMRHuo_sh-MgAaBKHaSYVvp0Wk-n8hVxnKa4oOMGjvsIhNvvHTE2qtHdcRRZwpuHMpHniB5PuBZvnARr1uo-dPql7LZCYWU5BApl4NKZMSA5GRMIcbvuSa6aCQPvaUMJooZjrUUt6yrZZ7DpSCqVdroUrdcAOUTPNUnWEcMCNEehom3uWw1Tsw33Kik2FLtNauS1EQCdR_a3kURkGp3b0VVFRragW8j5nJRI1cbnpn_H8D0l7IflakXf8KXO84uhO0IbpQF-WJ_JT1Cxmc3UGdkqRnJcLE46D9-4H4zzpvg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHIADb8R45sA1o23atOVWTUwDtoG0TZq4VG0e2gS0aO0u_HqctoxpB163Kqojx3Fju3Y-I3RpwLg0DEkcsNUQoHBGYghEiCekVKBBTBQ4s90eaw_tu5EzWmj1BUxkMFNWJPG_0AXMKxgDF67cFVhR3qBc22u6itbAJ7F03BU0-_PfK5apw3OdU7YYLfqo-VUdz3eTaRPFswUTtWBrWtvoac5lUWLy3JjlcYO_LwE4_msZO2ir8kBxUKrMLlqRyR7aXMAl3EcPfYiYwbwJHCSpkLgzyceT2Su5TRNcAnJCfH2NA6xPk6kcl0XwuMwz4FTBky76xI-6-AuO0gM0bN0Mmm1SdV4gETXsnPgidq3IolwwcCliajPTE0xR6fvKUxogRnFJHdcyhCtNk0aOLQSXymGKO0L59BDVkjSRRwj7TLuEtjKZa9hURh68J41I39elSkmnjgjIJKy-nCwskuKWGS4LKqwEVUfu5-aEvIIx1900Xn5Bac4p30oojx9pjv_I3QVabw-6nbBz27s_QRu6N31xcZGdolo-nckz8GDy-LzQ1Q993vDu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSAgOvBHjmQPXjLZp05ZbNZg2GGPSmLRb1eahTUA7rd2FX4_TlmnagdetiprIcR62Y_szQtcGtEvDkMQBWQ0GCmckBkOEeEJKBTuIiQJn9qnH2kP7YeSMqtgcnQsDRGQwUlY48fWpngpVIQyYN9AOaly5MjCrvEG5ltl0HW1o7522vYLmYPHEYpnaRNd-ZYvRopaaX8XyfDeYFlM8WxJTS_KmtVsWVS0oLcJMXhvzPG7wjxUQx39PZQ_tVJooDsqts4_WZHKAtpfwCQ_R8wAsZxBzAgdJKiTuTvLxZP5OOmmCS2BOsLNvcYD1rTKT4zIYHpf-Bpwq-NLBn7ivg8DgSj1Cw9b9S7NNqgoMJKKGnRNfxK4VWZQLBqpFTG1meoIpKn1feUoDxSguqeNahnCladLIsYXgUjlMcUconx6jWpIm8gRhn2nV0FYmcw2bysiD_6QR6bxdqpR06ogAT8LqBGVh4Ry3zHCVUWHFqDpyvxYo5BWcua6q8faLnuai57SE9Pixz-kfqbtCm_27Vtjt9B7P0JYuUV_kL7JzVMtnc3kBikweXxbb9RMun_Nx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Si-based+Anode+Lithium-Ion+Batteries%3A+A+Comprehensive+Review+of+Recent+Progress&rft.jtitle=ACS+materials+letters&rft.au=Li%2C+Yifei&rft.au=Li%2C+Qingmeng&rft.au=Chai%2C+Jiali&rft.au=Wang%2C+Yiting&rft.date=2023-11-06&rft.pub=American+Chemical+Society&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=5&rft.issue=11&rft.spage=2948&rft.epage=2970&rft_id=info:doi/10.1021%2Facsmaterialslett.3c00253&rft.externalDocID=c434633521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon