Crystal chemistry of arsenian pyrites; a Raman spectroscopic study

A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of 0.01-4.6 at% As. Three Raman-active modes were identified in the Raman spectrum of a nearly pure pyrite: Eg (344 cm-1), Ag (379 cm-1), and Tg(3) (432...

Full description

Saved in:
Bibliographic Details
Published inThe American mineralogist Vol. 107; no. 2; pp. 274 - 281
Main Authors Zhang He, Zhang He, Qian, Gujie, Cai Yuanfeng, Cai Yuanfeng, Gibson, Christopher, Pring, Allan
Format Journal Article
LanguageEnglish
Published Washington Mineralogical Society of America 01.02.2022
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of 0.01-4.6 at% As. Three Raman-active modes were identified in the Raman spectrum of a nearly pure pyrite: Eg (344 cm-1), Ag (379 cm-1), and Tg(3) (432 cm-1). The Raman vibrational modes exhibit one-mode behavior, and the wavenumbers of optical modes vary approximately linearly with As content, correlating with the change in bond constants with increasing substitution of As for S. The linewidth of the Ag mode increases with increasing As substitution, which may be attributed to the increase in lattice strain associated with the substitution of As for S. This study provides experimental evidence for As-induced structural evolution of pyrite from being stable to metastable before decomposing into other phases. Our results, together with those of another Raman study of arsenian pyrite whose As substitution is more complex, indicate that one cannot use Raman band shifts to determine As content, but for a given As content, can characterize the nature of As substitution, i.e., As for S or As for Fe or both.
AbstractList A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of 0.01–4.6 at% As. Three Raman-active modes were identified in the Raman spectrum of a nearly pure pyrite: Eg (344 cm−1), Ag (379 cm−1), and Tg(3) (432 cm−1). The Raman vibrational modes exhibit one-mode behavior, and the wavenumbers of optical modes vary approximately linearly with As content, correlating with the change in bond constants with increasing substitution of As for S. The linewidth of the Ag mode increases with increasing As substitution, which may be attributed to the increase in lattice strain associated with the substitution of As for S. This study provides experimental evidence for As-induced structural evolution of pyrite from being stable to metastable before decomposing into other phases. Our results, together with those of another Raman study of arsenian pyrite whose As substitution is more complex, indicate that one cannot use Raman band shifts to determine As content, but for a given As content, can characterize the nature of As substitution, i.e., As for S or As for Fe or both.
Abstract A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of 0.01–4.6 at% As. Three Raman-active modes were identified in the Raman spectrum of a nearly pure pyrite: Eg (344 cm−1), Ag (379 cm−1), and Tg(3) (432 cm−1). The Raman vibrational modes exhibit one-mode behavior, and the wavenumbers of optical modes vary approximately linearly with As content, correlating with the change in bond constants with increasing substitution of As for S. The linewidth of the Ag mode increases with increasing As substitution, which may be attributed to the increase in lattice strain associated with the substitution of As for S. This study provides experimental evidence for As-induced structural evolution of pyrite from being stable to metastable before decomposing into other phases. Our results, together with those of another Raman study of arsenian pyrite whose As substitution is more complex, indicate that one cannot use Raman band shifts to determine As content, but for a given As content, can characterize the nature of As substitution, i.e., As for S or As for Fe or both.
A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of 0.01-4.6 at% As. Three Raman-active modes were identified in the Raman spectrum of a nearly pure pyrite: Eg (344 cm-1), Ag (379 cm-1), and Tg(3) (432 cm-1). The Raman vibrational modes exhibit one-mode behavior, and the wavenumbers of optical modes vary approximately linearly with As content, correlating with the change in bond constants with increasing substitution of As for S. The linewidth of the Ag mode increases with increasing As substitution, which may be attributed to the increase in lattice strain associated with the substitution of As for S. This study provides experimental evidence for As-induced structural evolution of pyrite from being stable to metastable before decomposing into other phases. Our results, together with those of another Raman study of arsenian pyrite whose As substitution is more complex, indicate that one cannot use Raman band shifts to determine As content, but for a given As content, can characterize the nature of As substitution, i.e., As for S or As for Fe or both.
A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As) ] is presented, covering a compositional range of 0.01–4.6 at% As. Three Raman-active modes were identified in the Raman spectrum of a nearly pure pyrite: E (344 cm ), A (379 cm ), and T (3) (432 cm ). The Raman vibrational modes exhibit one-mode behavior, and the wavenumbers of optical modes vary approximately linearly with As content, correlating with the change in bond constants with increasing substitution of As for S. The linewidth of the A mode increases with increasing As substitution, which may be attributed to the increase in lattice strain associated with the substitution of As for S. This study provides experimental evidence for As-induced structural evolution of pyrite from being stable to metastable before decomposing into other phases. Our results, together with those of another Raman study of arsenian pyrite whose As substitution is more complex, indicate that one cannot use Raman band shifts to determine As content, but for a given As content, can characterize the nature of As substitution, i.e., As for S or As for Fe or both.
Author Qian, Gujie
Gibson, Christopher
Cai Yuanfeng, Cai Yuanfeng
Pring, Allan
Zhang He, Zhang He
Author_xml – sequence: 1
  fullname: Zhang He, Zhang He
– sequence: 2
  fullname: Qian, Gujie
– sequence: 3
  fullname: Cai Yuanfeng, Cai Yuanfeng
– sequence: 4
  fullname: Gibson, Christopher
– sequence: 5
  fullname: Pring, Allan
BookMark eNptkEtLxDAUhYOM4Mzozh9QcKnVm0fTllnp4AsGBFFwFzJpMnboyyRl6L83pYIuXN3L5ZxzD98CzZq20QidY7gmmGY3so4JEBynGfAjNMc5S2IKJJ2hOQDQGIB9nKCFc3sAQmiSz9Hd2g7OyypSn7ounbdD1JpIWqebUjZRN9jSa7eKZPQq63BwnVbetk61Xaki5_tiOEXHRlZOn_3MJXp_uH9bP8Wbl8fn9e0mlhSYj_NEG2A5VtwUSUoLTdLEMAaMK2MKClgbqWALmFOeZVhyXmyJlLnKOE2LFNMluphyO9t-9dp5sW9724SXgnBCGccJjKqrSaVCS2e1EZ0ta2kHgUGMlISsxUhJjJSCfDXJD7Ly2hZ6Z_shLL_Z_9kwpISkLLgvJ_dOBySlbpQ-tLYq_jQLoAXggJ_Qb89jfYc
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_104939
crossref_primary_10_3390_min12101195
crossref_primary_10_1016_j_gca_2024_04_027
Cites_doi 10.3749/canmin.46.1.249
10.1127/0935-1221/2007/0019-1737
10.1016/j.gca.2014.05.045
10.2138/am-1996-1-215
10.1063/1.1724138
10.1016/j.minpro.2003.09.002
10.1016/0022-3697(83)90124-5
10.1007/s12633-009-9033-z
10.1021/acsearthspacechem.9b00301
10.3891/acta.chem.scand.23-2186
10.1103/PhysRevB.57.6350
10.2138/am-2016-5603
10.1016/j.oregeorev.2011.03.003
10.5382/econgeo.4676
10.2138/am-1997-1-220
10.1007/BF00241999
10.1016/0038-1098(88)90777-6
10.1016/j.gexplo.2018.02.009
10.1016/j.chemgeo.2005.08.021
10.5382/econgeo.4770
10.1002/gj.3421
10.1016/0022-3697(91)90188-6
10.2138/am.2008.2610
10.1016/j.gexplo.2018.06.004
10.1016/j.jseaes.2012.10.020
10.1016/0016-7037(89)90342-6
10.1016/j.gca.2012.11.006
10.2113/gsecongeo.94.3.405
10.1103/PhysRevLett.26.642
10.1103/PhysRev.172.924
10.1103/PhysRevB.79.033301
10.1063/1.355808
10.1103/PhysRevB.33.1160
10.1103/PhysRevB.7.3685
10.2138/am-1999-7-809
10.1016/S0883-2927(99)00115-8
10.1016/j.gca.2006.09.021
10.1016/0038-1098(72)90013-0
10.2138/am.2009.3116
10.2113/gsecongeo.88.1.171
10.1016/0009-2541(93)90295-T
10.1016/j.gca.2012.09.034
10.2138/am-2004-1002
10.1002/gj.2912
10.1007/s12633-013-9176-9
10.1016/j.oregeorev.2018.02.029
10.1177/0003702817736516
10.1180/0026461046830196
10.1016/j.gca.2009.10.022
10.1063/1.432711
10.2138/am-2021-7675
10.1016/j.oregeorev.2020.103475
10.1016/j.epsl.2013.12.020
10.1016/0925-8388(92)90501-Y
10.1016/j.gca.2005.01.011
10.1007/s00269-005-0002-9
10.1180/002646100549751
10.1021/acsearthspacechem.9b00099
10.1016/j.gca.2008.03.014
ContentType Journal Article
Copyright GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America
2022 Mineralogical Society of America
Copyright_xml – notice: GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, copyright, Mineralogical Society of America
– notice: 2022 Mineralogical Society of America
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.2138/am-2021-7806
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1945-3027
EndPage 281
ExternalDocumentID 10_2138_am_2021_7806
10_2138_am_2021_78061072274
2022_010002
GroupedDBID -DZ
-~X
.DC
0R~
186
23M
2WC
3V.
4.4
5GY
6J9
7XC
88I
8FE
8FH
8G5
8WZ
9M8
A6W
AAAEU
AAFPC
AAGVJ
AAKRG
AALGR
AAONY
AAPJK
AAQCX
AASQH
AASQN
AAWFE
AAXCG
AAXMT
ABABW
ABAQN
ABEFU
ABFKT
ABJNI
ABPLS
ABPPZ
ABRQL
ABTAH
ABUWG
ABVMU
ABWLS
ACEFL
ACGFS
ACGOD
ACMKP
ACNCT
ACPMA
ACSFO
ACXLN
ACZBO
ADEQT
ADFRT
ADGQD
ADGYE
ADOZN
AEGVQ
AEICA
AEKEB
AENEX
AEQDQ
AERZL
AEUFC
AFBAA
AFCXV
AFGNR
AFKRA
AFRAH
AFYRI
AGBEV
AGCDD
AGWTP
AHVWV
AHXUK
AI.
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
ASYPN
ATCPS
AZMOX
AZQEC
BAKPI
BBCWN
BBDJO
BCIFA
BDLBQ
BENPR
BHPHI
BKSAR
BPHCQ
C1A
CCPQU
CS3
DBYYV
DWQXO
EBS
EJD
FA8
FRP
FSTRU
GNUQQ
GOHGZ
GUQSH
H13
HCIFZ
HF~
HH5
HZ~
IY9
KDIRW
LK5
LPU
M2O
M2P
M7R
MV1
MVM
O9-
OHT
OK1
PADUT
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
QD8
R05
RGW
RMN
RNS
S10
SLJYH
TAE
TN5
UK5
VH1
WH7
WHG
WTRAM
XJT
XOL
ZCA
ZCG
ZKB
ZY4
~02
AAEMA
AAPBV
ABFLS
ABPTK
ACTFP
AIGSN
AKLNG
M48
PQEST
PQUKI
AAYXX
CITATION
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-a304t-95ef0491c6fd573de275f44046cffd301efac0b01636881a66db2aa9c8637d713
ISSN 0003-004X
IngestDate Thu Oct 10 20:58:41 EDT 2024
Thu Sep 26 18:48:40 EDT 2024
Fri Nov 25 05:42:25 EST 2022
Tue Oct 29 04:44:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a304t-95ef0491c6fd573de275f44046cffd301efac0b01636881a66db2aa9c8637d713
ORCID 0000-0002-0182-3303
PQID 2623461501
PQPubID 4640
PageCount 8
ParticipantIDs proquest_journals_2623461501
crossref_primary_10_2138_am_2021_7806
walterdegruyter_journals_10_2138_am_2021_78061072274
geoscienceworld_journals_2022_010002
PublicationCentury 2000
PublicationDate 20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 20220201
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle The American mineralogist
PublicationYear 2022
Publisher Mineralogical Society of America
Walter de Gruyter GmbH
Publisher_xml – name: Mineralogical Society of America
– name: Walter de Gruyter GmbH
References Pačevski (2022020103240372700_B41) 2008; 46
Spycher (2022020103240372700_B54) 1989; 53
Gordy (2022020103240372700_B25) 1946; 14
Deditius (2022020103240372700_B16) 2014; 140
Zhang (2022020103240372700_B64) 2018; 195
Balabin (2022020103240372700_B4) 2000; 64
Xu (2022020103240372700_B62) 2019; 55
Savage (2022020103240372700_B49) 2000; 15
Smith (2022020103240372700_B52) 1971; 26
Temple (2022020103240372700_B56) 1973; 7
Sourisseau (2022020103240372700_B53) 1991; 52
Cabri (2022020103240372700_B9) 1989; 27
Simon (2022020103240372700_B50) 1999; 84
Simon (2022020103240372700_B51) 1999; 94
Reich (2022020103240372700_B46) 2006; 225
Reich (2022020103240372700_B47) 2005; 69
Fleet (2022020103240372700_B23) 1993; 31
Kesler (2022020103240372700_B27) 2011
Deditius (2022020103240372700_B12) 2016; 101
Kumar (2022020103240372700_B31) 2014; 6
Arehart (2022020103240372700_B3) 1993; 88
Twardowski (2022020103240372700_B57) 1988; 65
Reich (2022020103240372700_B48) 2013; 104
Kharbish (2022020103240372700_B28) 2007; 19
Vogt (2022020103240372700_B60) 1983; 44
Deditius (2022020103240372700_B14) 2009; 94
Kumar (2022020103240372700_B30) 2010; 2
Dodony (2022020103240372700_B18) 1996; 81
Cook (2022020103240372700_B11) 1990; 28
Deditius (2022020103240372700_B15) 2011; 42
Anastassakis (2022020103240372700_B2) 1976; 64
Merkulova (2022020103240372700_B37) 2019; 3
Stingl (2022020103240372700_B55) 1992; 184
Ushioda (2022020103240372700_B58) 1972; 10
Liang (2022020103240372700_B34) 2013; 62
Peterson (2022020103240372700_B43) 1986; 33
Xu (2022020103240372700_B61) 2018; 53
Brostigen (2022020103240372700_B6) 1969; 23
Di Benedetto (2022020103240372700_B17) 2005; 32
Kleppe (2022020103240372700_B29) 2004; 68
Kang (2022020103240372700_B26) 2009; 79
Bryant (2022020103240372700_B7) 2018; 72
Fleet (2022020103240372700_B22) 1989; 6
Lutz (2022020103240372700_B35) 1996; 23
Filimonova (2022020103240372700_B20) 2020; 121
Fleet (2022020103240372700_B21) 1997; 82
Qian (2022020103240372700_B45) 2013; 100
Zhu (2022020103240372700_B66) 2020; 115
Deditius (2022020103240372700_B13) 2008; 72
Palenik (2022020103240372700_B42) 2004; 89
Pring (2022020103240372700_B44) 2008; 93
Manceau (2022020103240372700_B36) 2020; 4
Vaughan (2022020103240372700_B59) 1978
Morishita (2022020103240372700_B39) 2018; 95
Blanchard (2022020103240372700_B5) 2007; 71
Osadchii (2022020103240372700_B40) 2010; 74
Abraitis (2022020103240372700_B1) 2004; 74
Eyert (2022020103240372700_B19) 1998; 57
Large (2022020103240372700_B32) 2014; 389
Li (2022020103240372700_B33) 2018; 195
Buerger (2022020103240372700_B8) 1934; 19
Chang (2022020103240372700_B10) 1968; 172
Mernagh (2022020103240372700_B38) 1993; 103
Zhang (2022020103240372700_B65) 2022; 107
Yang (2022020103240372700_B63) 1994; 75
Gopon (2022020103240372700_B24) 2019; 114
References_xml – volume: 46
  start-page: 249
  year: 2008
  ident: 2022020103240372700_B41
  article-title: Copper-bearing pyrite from the Coka Marin polymetallic deposit, Serbia: Mineral inclusions or true solid-solution?
  publication-title: Canadian Mineralogist
  doi: 10.3749/canmin.46.1.249
  contributor:
    fullname: Pačevski
– volume: 19
  start-page: 567
  year: 2007
  ident: 2022020103240372700_B28
  article-title: The effect of As–Sb substitution in the Raman spectra of tetrahedrite-tennantite and pyrargyrite-proustite solid solutions
  publication-title: European Journal of Mineralogy
  doi: 10.1127/0935-1221/2007/0019-1737
  contributor:
    fullname: Kharbish
– volume: 140
  start-page: 644
  year: 2014
  ident: 2022020103240372700_B16
  article-title: The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2014.05.045
  contributor:
    fullname: Deditius
– volume: 81
  start-page: 119
  year: 1996
  ident: 2022020103240372700_B18
  article-title: Structural relationship between pyrite and marcasite
  publication-title: American Mineralogist
  doi: 10.2138/am-1996-1-215
  contributor:
    fullname: Dodony
– volume: 14
  start-page: 305
  year: 1946
  ident: 2022020103240372700_B25
  article-title: A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.1724138
  contributor:
    fullname: Gordy
– volume: 74
  start-page: 41
  year: 2004
  ident: 2022020103240372700_B1
  article-title: Variations in the compositional, textural and electrical properties of natural pyrite: a review
  publication-title: International Journal of Mineral Processing
  doi: 10.1016/j.minpro.2003.09.002
  contributor:
    fullname: Abraitis
– year: 2011
  ident: 2022020103240372700_B27
  article-title: Role of arsenian pyrite in hydrothermal ore deposits: A history and update
  contributor:
    fullname: Kesler
– volume: 44
  start-page: 869
  year: 1983
  ident: 2022020103240372700_B60
  article-title: Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 and SiP2
  publication-title: Journal of Physics and Chemistry of Solids
  doi: 10.1016/0022-3697(83)90124-5
  contributor:
    fullname: Vogt
– volume: 2
  start-page: 25
  year: 2010
  ident: 2022020103240372700_B30
  article-title: Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films
  publication-title: Silicon
  doi: 10.1007/s12633-009-9033-z
  contributor:
    fullname: Kumar
– volume: 4
  start-page: 379
  year: 2020
  ident: 2022020103240372700_B36
  article-title: The mode of incorporation of As (-I) and Se (-I) in natural pyrite revisited
  publication-title: ACS Earth and Space Chemistry
  doi: 10.1021/acsearthspacechem.9b00301
  contributor:
    fullname: Manceau
– volume: 23
  start-page: 2186
  year: 1969
  ident: 2022020103240372700_B6
  article-title: Redetermined crystal structure of FeS2 (Pyrite)
  publication-title: Acta Chemica Scandinavica
  doi: 10.3891/acta.chem.scand.23-2186
  contributor:
    fullname: Brostigen
– volume: 57
  start-page: 6350
  year: 1998
  ident: 2022020103240372700_B19
  article-title: Electronic structure of FeS2: The crucial role of electron-lattice interaction
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.57.6350
  contributor:
    fullname: Eyert
– volume: 101
  start-page: 1451
  year: 2016
  ident: 2022020103240372700_B12
  article-title: Constraints on the solid solubility of Hg, Tl, and Cd in arsenian pyrite
  publication-title: American Mineralogist
  doi: 10.2138/am-2016-5603
  contributor:
    fullname: Deditius
– volume: 42
  start-page: 32
  year: 2011
  ident: 2022020103240372700_B15
  article-title: Trace metal nanoparticles in pyrite
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2011.03.003
  contributor:
    fullname: Deditius
– volume: 114
  start-page: 1123
  year: 2019
  ident: 2022020103240372700_B24
  article-title: A nanoscale Investigation of Carlin-type gold deposits: An atom-scale elemental and isotopic perspective
  publication-title: Economic Geology
  doi: 10.5382/econgeo.4676
  contributor:
    fullname: Gopon
– volume: 82
  start-page: 182
  year: 1997
  ident: 2022020103240372700_B21
  article-title: Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis
  publication-title: American Mineralogist
  doi: 10.2138/am-1997-1-220
  contributor:
    fullname: Fleet
– volume: 23
  start-page: 497
  year: 1996
  ident: 2022020103240372700_B35
  article-title: Lattice dynamics of pyrite FeS2-polarizable-ion model
  publication-title: Physics and Chemistry of Minerals
  doi: 10.1007/BF00241999
  contributor:
    fullname: Lutz
– volume: 65
  start-page: 235
  year: 1988
  ident: 2022020103240372700_B57
  article-title: Thermodynamic properties of iron-based II–VI semimagnetic semiconductors
  publication-title: Solid State Communications
  doi: 10.1016/0038-1098(88)90777-6
  contributor:
    fullname: Twardowski
– volume: 195
  start-page: 16
  year: 2018
  ident: 2022020103240372700_B33
  article-title: Geology, fluid inclusion, and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, southeast China: Implications for ore genesis and mineral exploration
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2018.02.009
  contributor:
    fullname: Li
– volume: 225
  start-page: 278
  year: 2006
  ident: 2022020103240372700_B46
  article-title: First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite
  publication-title: Chemical Geology
  doi: 10.1016/j.chemgeo.2005.08.021
  contributor:
    fullname: Reich
– volume: 115
  start-page: 1589
  year: 2020
  ident: 2022020103240372700_B66
  article-title: Arsenic-induced downshift of Raman band positions for pyrite
  publication-title: Economic Geology
  doi: 10.5382/econgeo.4770
  contributor:
    fullname: Zhu
– volume: 55
  start-page: 425
  year: 2019
  ident: 2022020103240372700_B62
  article-title: Geochemistry and geochronology of the Dongyang gold deposit in southeast China: Constraints on ore genesis
  publication-title: Geological Journal
  doi: 10.1002/gj.3421
  contributor:
    fullname: Xu
– volume: 52
  start-page: 537
  year: 1991
  ident: 2022020103240372700_B53
  article-title: The vibrational properties and valence force fields of FeS2, RuS2 pyrites and FeS2 marcasite
  publication-title: Journal of Physics and Chemistry of Solids
  doi: 10.1016/0022-3697(91)90188-6
  contributor:
    fullname: Sourisseau
– volume: 93
  start-page: 591
  year: 2008
  ident: 2022020103240372700_B44
  article-title: The crystal chemistry of Fe-bearing sphalerites: an infrared spectroscopic study
  publication-title: American Mineralogist
  doi: 10.2138/am.2008.2610
  contributor:
    fullname: Pring
– volume: 195
  start-page: 143
  year: 2018
  ident: 2022020103240372700_B64
  article-title: Mineralogical characteristics of silver minerals from the Dongyang Gold deposit, China: Implications for the evolution of epithermal metallogenesis
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2018.06.004
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 37
  year: 1934
  ident: 2022020103240372700_B8
  article-title: The pyrite–marcasite relation
  publication-title: American Mineralogist
  contributor:
    fullname: Buerger
– volume: 62
  start-page: 363
  year: 2013
  ident: 2022020103240372700_B34
  article-title: An XPS study on the valence states of arsenic in arsenian pyrite: implications for Au deposition mechanism of the Yang-shan Carlin-type gold deposit, western Qinling belt
  publication-title: Journal of Asian Earth Sciences
  doi: 10.1016/j.jseaes.2012.10.020
  contributor:
    fullname: Liang
– volume: 53
  start-page: 2185
  year: 1989
  ident: 2022020103240372700_B54
  article-title: As(III) and Sb(III) sulfide complexes: an evaluation of stoichiometry and stability from existing experimental data
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(89)90342-6
  contributor:
    fullname: Spycher
– volume: 104
  start-page: 42
  year: 2013
  ident: 2022020103240372700_B48
  article-title: Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2012.11.006
  contributor:
    fullname: Reich
– volume: 94
  start-page: 405
  year: 1999
  ident: 2022020103240372700_B51
  article-title: Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in Carlin-type deposits
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.94.3.405
  contributor:
    fullname: Simon
– volume: 26
  start-page: 642
  year: 1971
  ident: 2022020103240372700_B52
  article-title: Raman spectra of amorphous Si and related tetrahedrally bonded semiconductors
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.26.642
  contributor:
    fullname: Smith
– volume: 172
  start-page: 924
  year: 1968
  ident: 2022020103240372700_B10
  article-title: Application of a modified random-element-isodis-placement model to long-wavelength optic phonons of mixed crystals
  publication-title: Physical Review
  doi: 10.1103/PhysRev.172.924
  contributor:
    fullname: Chang
– volume: 79
  start-page: 033301
  year: 2009
  ident: 2022020103240372700_B26
  article-title: Raman scattering of indium-rich AlxIn1−xN: Unexpected two-mode behavior of A1 (LO)
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.79.033301
  contributor:
    fullname: Kang
– volume: 75
  start-page: 651
  year: 1994
  ident: 2022020103240372700_B63
  article-title: Study of the Raman peak shift and the linewidth of light-emitting porous silicon
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.355808
  contributor:
    fullname: Yang
– volume: 33
  start-page: 1160
  year: 1986
  ident: 2022020103240372700_B43
  article-title: Raman scattering from the vibrational modes in Zn1−xMnxTe
  publication-title: Physical Review B, Condensed Matter
  doi: 10.1103/PhysRevB.33.1160
  contributor:
    fullname: Peterson
– volume: 7
  start-page: 3685
  year: 1973
  ident: 2022020103240372700_B56
  article-title: Multiphonon Raman spectrum of silicon
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.7.3685
  contributor:
    fullname: Temple
– volume: 84
  start-page: 1071
  year: 1999
  ident: 2022020103240372700_B50
  article-title: Oxidation state of gold and arsenic in gold-bearing arsenian pyrite
  publication-title: American Mineralogist
  doi: 10.2138/am-1999-7-809
  contributor:
    fullname: Simon
– volume: 15
  start-page: 1219
  year: 2000
  ident: 2022020103240372700_B49
  article-title: Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California
  publication-title: Applied Geochemistry
  doi: 10.1016/S0883-2927(99)00115-8
  contributor:
    fullname: Savage
– volume: 71
  start-page: 624
  year: 2007
  ident: 2022020103240372700_B5
  article-title: Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2006.09.021
  contributor:
    fullname: Blanchard
– volume: 10
  start-page: 307
  year: 1972
  ident: 2022020103240372700_B58
  article-title: Raman scattering from phonons in iron pyrite (FeS2)
  publication-title: Solid State Communications
  doi: 10.1016/0038-1098(72)90013-0
  contributor:
    fullname: Ushioda
– volume: 94
  start-page: 391
  year: 2009
  ident: 2022020103240372700_B14
  article-title: Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite
  publication-title: American Mineralogist
  doi: 10.2138/am.2009.3116
  contributor:
    fullname: Deditius
– volume: 88
  start-page: 171
  year: 1993
  ident: 2022020103240372700_B3
  article-title: Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits: Implications for depositional processes
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.88.1.171
  contributor:
    fullname: Arehart
– volume: 27
  start-page: 353
  year: 1989
  ident: 2022020103240372700_B9
  article-title: The nature of “invisible” gold in arsenopyrite
  publication-title: Canadian Mineralogist
  contributor:
    fullname: Cabri
– volume: 103
  start-page: 113
  year: 1993
  ident: 2022020103240372700_B38
  article-title: A laser Raman microprobe study of some geologically important sulphide minerals
  publication-title: Chemical Geology
  doi: 10.1016/0009-2541(93)90295-T
  contributor:
    fullname: Mernagh
– volume: 100
  start-page: 1
  year: 2013
  ident: 2022020103240372700_B45
  article-title: Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2012.09.034
  contributor:
    fullname: Qian
– volume: 89
  start-page: 1359
  year: 2004
  ident: 2022020103240372700_B42
  article-title: Invisible. gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit
  publication-title: American Mineralogist
  doi: 10.2138/am-2004-1002
  contributor:
    fullname: Palenik
– volume: 53
  start-page: 547
  year: 2018
  ident: 2022020103240372700_B61
  article-title: Petrology, geochemistry and zircon U–Pb geochronology of the Jurassic porphyry dykes in the Dehua gold field, Southeast China: genesis and geodynamics
  publication-title: Geological Journal
  doi: 10.1002/gj.2912
  contributor:
    fullname: Xu
– volume: 6
  start-page: 117
  year: 2014
  ident: 2022020103240372700_B31
  article-title: Qualitative evolution of asymmetric Raman line-shape for nanostructures
  publication-title: Silicon
  doi: 10.1007/s12633-013-9176-9
  contributor:
    fullname: Kumar
– volume: 95
  start-page: 79
  year: 2018
  ident: 2022020103240372700_B39
  article-title: Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2018.02.029
  contributor:
    fullname: Morishita
– volume: 72
  start-page: 37
  year: 2018
  ident: 2022020103240372700_B7
  article-title: Variability in the Raman spectrum of unpolished growth and fracture surfaces of pyrite due to laser heating and crystal orientation
  publication-title: Applied Spectroscopy
  doi: 10.1177/0003702817736516
  contributor:
    fullname: Bryant
– volume: 68
  start-page: 433
  year: 2004
  ident: 2022020103240372700_B29
  article-title: High-pressure Raman spectroscopic studies of FeS2 pyrite
  publication-title: Mineralogical Magazine
  doi: 10.1180/0026461046830196
  contributor:
    fullname: Kleppe
– start-page: 493
  year: 1978
  ident: 2022020103240372700_B59
  article-title: Mineral Chemistry of Metal Sulphides
  contributor:
    fullname: Vaughan
– volume: 6
  start-page: 356
  year: 1989
  ident: 2022020103240372700_B22
  article-title: Oscillatory-zoned As-bearing pyrite from strata-bound and stratiform gold deposits: An indicator of ore fluid evolution
  publication-title: Economic Geology Monograph
  contributor:
    fullname: Fleet
– volume: 74
  start-page: 568
  year: 2010
  ident: 2022020103240372700_B40
  article-title: Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1−xS)
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2009.10.022
  contributor:
    fullname: Osadchii
– volume: 64
  start-page: 3604
  year: 1976
  ident: 2022020103240372700_B2
  article-title: Light scattering and ir measurements in XS2 pryite-type compounds
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.432711
  contributor:
    fullname: Anastassakis
– volume: 107
  year: 2022
  ident: 2022020103240372700_B65
  article-title: Effects of arsenic on the distribution and mode of occurrence of gold during fluid–pyrite interaction: a case study of pyrite from the Qiucun gold deposit, China
  publication-title: American Mineralogist
  doi: 10.2138/am-2021-7675
  contributor:
    fullname: Zhang
– volume: 121
  start-page: 103475
  year: 2020
  ident: 2022020103240372700_B20
  article-title: The state of Au and As in pyrite studied by X-ray absorption spectroscopy of natural minerals and synthetic phases
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2020.103475
  contributor:
    fullname: Filimonova
– volume: 389
  start-page: 209
  year: 2014
  ident: 2022020103240372700_B32
  article-title: Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2013.12.020
  contributor:
    fullname: Large
– volume: 184
  start-page: 275
  year: 1992
  ident: 2022020103240372700_B55
  article-title: Pyrite-type RuS2−2xSe2x and Ru1−xOsxS2 solid solutions: X-ray structure determination and Raman spectra
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/0925-8388(92)90501-Y
  contributor:
    fullname: Stingl
– volume: 28
  start-page: 1
  year: 1990
  ident: 2022020103240372700_B11
  article-title: Concentrations of invisible gold in the common sulfides
  publication-title: Canadian Mineralogist
  contributor:
    fullname: Cook
– volume: 69
  start-page: 2781
  year: 2005
  ident: 2022020103240372700_B47
  article-title: Solubility of gold in arsenian pyrite
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2005.01.011
  contributor:
    fullname: Reich
– volume: 32
  start-page: 339
  year: 2005
  ident: 2022020103240372700_B17
  article-title: Short-range order of Fe2+ in sphalerite by 57Fe Mössbauer spectroscopy and magnetic susceptibility
  publication-title: Physics and Chemistry of Minerals
  doi: 10.1007/s00269-005-0002-9
  contributor:
    fullname: Di Benedetto
– volume: 64
  start-page: 923
  year: 2000
  ident: 2022020103240372700_B4
  article-title: Thermodynamics of (Zn,Fe)S sphalerite. A CVM approach with large basis clusters
  publication-title: Mineralogical Magazine
  doi: 10.1180/002646100549751
  contributor:
    fullname: Balabin
– volume: 31
  start-page: 1
  year: 1993
  ident: 2022020103240372700_B23
  article-title: Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS
  publication-title: Canadian Mineralogist
  contributor:
    fullname: Fleet
– volume: 3
  start-page: 1905
  year: 2019
  ident: 2022020103240372700_B37
  article-title: Revealing the chemical form of “invisible” gold in natural arsenian pyrite and arsenopyrite with high energy-resolution X-ray absorption spectroscopy
  publication-title: ACS Earth and Space Chemistry
  doi: 10.1021/acsearthspacechem.9b00099
  contributor:
    fullname: Merkulova
– volume: 72
  start-page: 2919
  year: 2008
  ident: 2022020103240372700_B13
  article-title: A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2008.03.014
  contributor:
    fullname: Deditius
SSID ssj0022359
Score 2.4344165
Snippet A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of 0.01-4.6...
A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As) ] is presented, covering a compositional range of 0.01–4.6...
Abstract A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of...
A Raman spectroscopic study on the nature of As-S substitution in natural arsenian pyrite [Fe(S,As)2] is presented, covering a compositional range of 0.01–4.6...
SourceID proquest
crossref
walterdegruyter
geoscienceworld
SourceType Aggregation Database
Publisher
StartPage 274
SubjectTerms Arsenian pyrite
arsenic
arsenides
arsenopyrite
Constants
crystal chemistry
crystal structure
defects
Iron
Lattice strain
Lattice vibration
metals
Mineralogy
Modes
nonsilicates
Pyrite
Raman spectra
Raman spectroscopy
solid solution
spectra
Spectroscopic analysis
structural defect
Substitutes
substitution
sulfides
sulfur
vibrational spectra
Title Crystal chemistry of arsenian pyrites; a Raman spectroscopic study
URI https://pubs.geoscienceworld.org/ammin/article/107/2/274/610923/Crystal-chemistry-of-arsenian-pyrites-A-Raman
http://www.degruyter.com/doi/10.2138/am-2021-7806
https://www.proquest.com/docview/2623461501
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagFRKXqLxEoEU-lFNl2PV6X9zSqCRCAgnUonBauX5UqZSHko1Q-PWMH-vsRjkULqvIsbMbz7fjGY9nPoTO00LmmqmSaK05YYmOSMm0JiyWlHNZMBGZbOSv37LxDfsySSe7CL7NLqlvP4g_B_NK_keq0AZyNVmy_yDZ8KPQAJ9BvnAFCcP1QTIerrZrk8woGtY2G9Vfrc0BuvnFcguOvzvyNrj4wc1mvc2rNPUrF8upaJWWvd9hJoRwZlNbkDpkCHW2l8cBD9-nbgt1tLmfhsahI7n-teFzrfzayNts5a2aBu19B3BZo3CGo9GlCQFhTNxK4tRnyVJiIqEd_epobT2QaFtbOoIev_BSx92yr9NpbCu48xmInsYkL6IDpbP3lrRw0BBcHDO-4rPKjK7M6MfomIJWAnV4PBhdXv0M_jlN0jIQLMIfc3kSZvzH9t07FkzvTvmio8qWuO04Kr3f9siDVHerzbZuQuzWcrk-QT3vcuCBw88z9EjNn6MnI0vpvH2BLj2KcEARXmjcoAh7FH3CA2wxhDsYwhZDL9HN56vr4Zh4Zg3Ck4jVpEyVBtcwFpmWaZ5IRfNUm0qRmdBags5XmguzRZ4lWVHEPDOsY5yXosiSXOZx8godzRdz9RphMP9pJoRkSgpGYwGdhE4VGPJgipZF2kfvm9mqlq6ASnVIKn10vjeVlX_T1qYTrSITiaJ9dNrMb-t7sOGZYTaI-4jtzfmu16G7AjYpoPDNAx_yLXq6exVO0VG92qgzMErr23ceTH8BNRCMoA
link.rule.ids 315,783,787,27936,27937
linkProvider Walter de Gruyter
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+chemistry+of+arsenian+pyrites%3A+A+Raman+spectroscopic+study&rft.jtitle=The+American+mineralogist&rft.au=Zhang%2C+He&rft.au=Qian%2C+Gujie&rft.au=Cai%2C+Yuanfeng&rft.au=Gibson%2C+Christopher&rft.date=2022-02-01&rft.issn=0003-004X&rft.eissn=1945-3027&rft.volume=107&rft.issue=2&rft.spage=274&rft.epage=281&rft_id=info:doi/10.2138%2Fam-2021-7806&rft.externalDBID=n%2Fa&rft.externalDocID=10_2138_am_2021_7806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-004X&client=summon