Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges

Lithium sulfur (Li–S) battery is considered as one of the most promising energy storage devices, because of its low cost, high energy density, and environmental friendliness. However, the practical applications of Li–S batteries have been hindered by a low utilization efficiency of sulfur arising fr...

Full description

Saved in:
Bibliographic Details
Published inACS materials letters Vol. 2; no. 11; pp. 1450 - 1463
Main Authors Wang, Feifei, Li, Jing, Zhao, Juan, Yang, Yixiao, Su, Chenliang, Zhong, Yu Lin, Yang, Quan-Hong, Lu, Jiong
Format Journal Article
LanguageEnglish
Published American Chemical Society 02.11.2020
Online AccessGet full text

Cover

Loading…
Abstract Lithium sulfur (Li–S) battery is considered as one of the most promising energy storage devices, because of its low cost, high energy density, and environmental friendliness. However, the practical applications of Li–S batteries have been hindered by a low utilization efficiency of sulfur arising from complicated chemical conversion of polysulfides and the corrosion of Li metal electrode during charge/discharge processes. Single atom catalysts (SACs) consisting of atomically-dispersed metal sites have been recently exploited as high-performance electrocatalytic materials in various energy storage devices, including Li–S batteries, because of their unique catalytic properties and maximized atom efficiency. In this mini-review, we first describe the major roadblocks and opportunities for the development of commercial Li–S batteries. Following that, we will highlight the specific roles of SAC materials, which are used as cathodes, separators, interlayers, electrolytes, and anodes in Li–S batteries. The detailed catalytic conversion mechanism of polysulfides and nucleation process of Li ions over single-atom active sites are also discussed. Finally, we highlight major challenges to be addressed in this field and provide our perspectives in the rational design and synthesis of superior SACs to accelerate their application in Li–S batteries.
AbstractList Lithium sulfur (Li–S) battery is considered as one of the most promising energy storage devices, because of its low cost, high energy density, and environmental friendliness. However, the practical applications of Li–S batteries have been hindered by a low utilization efficiency of sulfur arising from complicated chemical conversion of polysulfides and the corrosion of Li metal electrode during charge/discharge processes. Single atom catalysts (SACs) consisting of atomically-dispersed metal sites have been recently exploited as high-performance electrocatalytic materials in various energy storage devices, including Li–S batteries, because of their unique catalytic properties and maximized atom efficiency. In this mini-review, we first describe the major roadblocks and opportunities for the development of commercial Li–S batteries. Following that, we will highlight the specific roles of SAC materials, which are used as cathodes, separators, interlayers, electrolytes, and anodes in Li–S batteries. The detailed catalytic conversion mechanism of polysulfides and nucleation process of Li ions over single-atom active sites are also discussed. Finally, we highlight major challenges to be addressed in this field and provide our perspectives in the rational design and synthesis of superior SACs to accelerate their application in Li–S batteries.
Author Su, Chenliang
Yang, Quan-Hong
Lu, Jiong
Zhao, Juan
Wang, Feifei
Li, Jing
Zhong, Yu Lin
Yang, Yixiao
AuthorAffiliation Department of Chemistry
Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology
SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics
Centre for Clean Environment and Energy, School of Environment and Science
Centre for Advanced 2D Materials and Graphene Research Centre
Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Centre for Advanced 2D Materials and Graphene Research Centre
– name: SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics
– name: Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology
– name: Centre for Clean Environment and Energy, School of Environment and Science
– name: Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University
Author_xml – sequence: 1
  givenname: Feifei
  orcidid: 0000-0002-2547-4072
  surname: Wang
  fullname: Wang, Feifei
  organization: Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology
– sequence: 2
  givenname: Jing
  orcidid: 0000-0002-5627-4153
  surname: Li
  fullname: Li, Jing
  organization: Centre for Advanced 2D Materials and Graphene Research Centre
– sequence: 3
  givenname: Juan
  surname: Zhao
  fullname: Zhao, Juan
  organization: Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology
– sequence: 4
  givenname: Yixiao
  surname: Yang
  fullname: Yang, Yixiao
  organization: Department of Chemistry
– sequence: 5
  givenname: Chenliang
  orcidid: 0000-0002-8453-1938
  surname: Su
  fullname: Su, Chenliang
  organization: SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics
– sequence: 6
  givenname: Yu Lin
  orcidid: 0000-0001-6741-3609
  surname: Zhong
  fullname: Zhong, Yu Lin
  organization: Centre for Clean Environment and Energy, School of Environment and Science
– sequence: 7
  givenname: Quan-Hong
  orcidid: 0000-0003-2882-3968
  surname: Yang
  fullname: Yang, Quan-Hong
  email: qhyangcn@tju.edu.cn
  organization: Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology
– sequence: 8
  givenname: Jiong
  orcidid: 0000-0002-3690-8235
  surname: Lu
  fullname: Lu, Jiong
  email: chmluj@nus.edu.sg
  organization: Centre for Advanced 2D Materials and Graphene Research Centre
BookMark eNqNkM1qQjEQhUOxUGt9hzyA1ya5_10UrNgfECzYri-5MdFIbiLJ3IVv34guipt2NQNzvjMz5x4NrLMSIUzJlBJGH7kIHQfpNTfBSIApEYSkdXGDhqxI6ySry3rwq79D4xD2hES2oHWWDVG71nZrZDID1-GFkQK8Exy4OQYIWDmPlxp2uu_wujeq9_iFw2mhDE_407utlyFM8OpwcB56qyEOJpjbDZ7vuDHSbmV4QLcq3ifHlzpC36-Lr_l7sly9fcxny4SnJIOE1cUmbfNUCEUrVbZCVBuSlbIqGeGsbUWeU1YwmpakLESVVUqJ-ERFWJuztijTEarOvsK7ELxUzcHrjvtjQ0lziqu5jqu5xBXR5ytUaOCgnQXPtfmPQXY2iIpm73pvo-Jv7AfRQo8_
CitedBy_id crossref_primary_10_1039_D3CP02857G
crossref_primary_10_1002_adfm_202110748
crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1038_s41467_021_27866_5
crossref_primary_10_1002_celc_202100788
crossref_primary_10_1002_aesr_202200145
crossref_primary_10_1021_acsnano_1c05344
crossref_primary_10_1021_acs_jpclett_4c00474
crossref_primary_10_1002_adma_202202256
crossref_primary_10_1002_smsc_202200059
crossref_primary_10_1002_aesr_202300148
crossref_primary_10_1016_j_esci_2023_100180
crossref_primary_10_1016_j_nanoen_2021_106414
crossref_primary_10_1021_acs_jpcc_3c06017
crossref_primary_10_1002_adfm_202207579
crossref_primary_10_1016_j_esci_2023_100222
crossref_primary_10_2139_ssrn_3967539
crossref_primary_10_1007_s12274_023_6227_4
crossref_primary_10_1016_j_jallcom_2024_174136
crossref_primary_10_1002_ange_202415036
crossref_primary_10_1002_batt_202200494
crossref_primary_10_1002_adfm_202205393
crossref_primary_10_1002_eom2_12262
crossref_primary_10_1039_D1TA09422J
crossref_primary_10_1002_aenm_202300871
crossref_primary_10_1016_j_mattod_2025_02_007
crossref_primary_10_1021_acsanm_3c05467
crossref_primary_10_1007_s12274_024_6789_9
crossref_primary_10_1016_j_mtener_2022_101151
crossref_primary_10_1002_adma_202208999
crossref_primary_10_1016_j_jechem_2023_10_060
crossref_primary_10_1021_acsami_2c21620
crossref_primary_10_1039_D3ME00191A
crossref_primary_10_1016_j_jcis_2022_02_123
crossref_primary_10_1021_acs_jpcc_2c04794
crossref_primary_10_1002_adma_202311019
crossref_primary_10_1016_j_cej_2022_138909
crossref_primary_10_1002_aenm_202303893
crossref_primary_10_1016_j_cej_2021_133439
crossref_primary_10_1021_acsami_2c12114
crossref_primary_10_1021_acsnano_3c05483
crossref_primary_10_1002_advs_202304874
crossref_primary_10_1039_D2NJ01662A
crossref_primary_10_1002_adfm_202405358
crossref_primary_10_1002_anie_202418749
crossref_primary_10_1039_D1EE01349A
crossref_primary_10_1016_j_jechem_2021_08_041
crossref_primary_10_1002_adfm_202103558
crossref_primary_10_1016_j_esci_2021_08_001
crossref_primary_10_1002_adfm_202306115
crossref_primary_10_1007_s11581_021_04327_z
crossref_primary_10_3390_catal15020106
crossref_primary_10_1016_j_jmst_2024_04_068
crossref_primary_10_1002_smll_202302100
crossref_primary_10_1021_acsmaterialslett_1c00414
crossref_primary_10_1002_advs_202301355
crossref_primary_10_1002_aenm_202300611
crossref_primary_10_1016_j_nanoen_2024_110445
crossref_primary_10_1016_j_diamond_2023_110773
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1021_acsmaterialslett_0c00419
crossref_primary_10_1039_D3RA00891F
crossref_primary_10_1016_j_jpowsour_2022_231950
crossref_primary_10_1002_tcr_202100280
crossref_primary_10_1002_eem2_12224
crossref_primary_10_1002_smll_202205470
crossref_primary_10_1016_j_cej_2024_155329
crossref_primary_10_1021_accountsmr_2c00097
crossref_primary_10_1002_adma_202105812
crossref_primary_10_1002_aenm_202202094
crossref_primary_10_1016_j_cej_2024_150719
crossref_primary_10_1002_adfm_202207021
crossref_primary_10_1016_j_jechem_2021_12_043
crossref_primary_10_1016_j_cej_2025_159355
crossref_primary_10_1002_adfm_202107136
crossref_primary_10_1016_j_ensm_2022_11_037
crossref_primary_10_1016_j_jallcom_2022_166263
crossref_primary_10_1016_j_jechem_2021_04_041
crossref_primary_10_12677_JOCR_2023_114030
crossref_primary_10_1016_j_ensm_2022_12_002
crossref_primary_10_1002_aenm_202201530
crossref_primary_10_1002_aenm_202202860
crossref_primary_10_1002_anie_202212680
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1021_acsnano_1c03516
crossref_primary_10_1002_adfm_202315563
crossref_primary_10_1016_j_cej_2023_144374
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1002_advs_202104375
crossref_primary_10_1002_adma_202008654
crossref_primary_10_1002_ange_202418749
crossref_primary_10_1007_s12598_023_02378_x
crossref_primary_10_1002_adfm_202306049
crossref_primary_10_1002_aenm_202204014
crossref_primary_10_1002_cey2_286
crossref_primary_10_1039_D2TA02217F
crossref_primary_10_1016_j_jpowsour_2022_231335
crossref_primary_10_1016_j_partic_2023_04_010
crossref_primary_10_1016_j_jallcom_2024_176465
crossref_primary_10_1016_j_jallcom_2025_179118
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1016_j_ensm_2021_08_012
crossref_primary_10_1002_aenm_202102739
crossref_primary_10_1002_anie_202415036
crossref_primary_10_1002_adfm_202210899
crossref_primary_10_1016_j_elecom_2022_107215
crossref_primary_10_1016_j_ensm_2023_103159
crossref_primary_10_1016_j_jechem_2022_01_016
crossref_primary_10_1002_ange_202407042
crossref_primary_10_1021_acs_nanolett_4c05606
crossref_primary_10_1002_marc_202300451
crossref_primary_10_1021_acsami_3c14753
crossref_primary_10_1007_s42864_025_00316_1
crossref_primary_10_1016_j_est_2024_112374
crossref_primary_10_1021_acsnano_1c01999
crossref_primary_10_1016_j_cej_2023_146126
crossref_primary_10_1016_j_cclet_2022_01_014
crossref_primary_10_1016_j_jechem_2024_06_060
crossref_primary_10_1002_anie_202407042
crossref_primary_10_1002_ange_202212680
crossref_primary_10_1007_s40242_022_2224_5
crossref_primary_10_1016_j_jpowsour_2021_230764
crossref_primary_10_1021_acs_nanolett_3c01034
crossref_primary_10_1016_j_jallcom_2023_171690
crossref_primary_10_1002_eem2_12703
Cites_doi 10.1002/aenm.202001561
10.1038/s41560-019-0368-4
10.1016/j.ensm.2019.04.042
10.1021/ar300179v
10.1021/acs.nanolett.9b04719
10.1016/j.jechem.2020.02.039
10.1016/j.joule.2018.06.019
10.1002/adma.201800863
10.1002/aenm.201602567
10.1016/j.ensm.2019.07.042
10.1038/s41929-018-0195-1
10.1016/j.joule.2018.12.018
10.1021/jacs.8b12973
10.1038/nenergy.2017.90
10.1038/nchem.1095
10.1002/adma.201903813
10.1002/anie.201902413
10.1016/j.ensm.2019.05.005
10.1002/advs.201700270
10.1021/acs.chemrev.8b00501
10.1038/s41929-018-0063-z
10.1021/acsami.8b12093
10.1021/acscatal.0c00936
10.1002/aenm.201804019
10.1016/j.nanoen.2019.104307
10.1016/j.ensm.2018.09.012
10.1038/nnano.2014.6
10.1021/acscatal.9b04217
10.1002/adfm.201707234
10.1016/j.ensm.2018.12.016
10.1002/adma.201700449
10.1038/s41560-017-0078-8
10.1002/adma.201903955
10.1039/C7EE01430A
10.1016/j.nanoen.2018.05.065
10.1039/C8TA03647K
10.1016/j.ensm.2020.08.033
10.1021/acs.chemmater.7b03870
10.1021/acsnano.9b08008
10.1038/s41560-019-0351-0
10.1038/ncomms14628
10.1007/s40820-019-0260-6
10.1002/adma.201801745
10.1007/s12274-020-2827-4
10.1021/acsami.8b21237
10.1002/ange.201906079
10.1002/smtd.201800551
10.1002/adma.201906548
10.1021/jacs.9b05268
10.1039/C9CS00869A
10.1021/jacs.9b09352
10.1016/j.nanoen.2019.04.092
10.1002/ange.202003917
10.1016/j.cplett.2019.136942
10.1016/j.jcis.2018.06.036
10.1038/ncomms7512
10.1016/j.scib.2019.08.016
10.1088/2053-1591/ab33ad
10.1002/adfm.201808756
10.1016/j.diamond.2018.10.008
10.1016/j.nanoen.2020.105085
10.1002/adma.201901125
10.1016/j.cej.2017.09.186
10.1002/smtd.201900701
10.1021/acsami.9b10551
10.1038/s41467-019-12459-0
10.1038/nenergy.2016.132
10.1021/acs.nanolett.0c02167
10.1002/adma.201606823
10.1039/C9TA11680J
10.1002/adma.201401243
10.1002/smtd.201900344
10.1016/j.ensm.2020.03.008
10.1002/adma.201906722
10.1016/j.ensm.2019.03.025
10.1038/nenergy.2016.94
10.1016/j.ensm.2018.09.006
10.1039/C9CC06168A
10.1021/acsnano.9b02231
10.1038/ncomms5759
10.1021/acsami.8b03830
10.1002/aenm.201902254
10.1021/acsnano.9b08141
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsmaterialslett.0c00396
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2639-4979
EndPage 1463
ExternalDocumentID 10_1021_acsmaterialslett_0c00396
a923611165
GroupedDBID ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
AAYXX
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
GGK
M~E
ID FETCH-LOGICAL-a304t-296d3b53ccf18f7bcc8d047e8720a2bbc551262137076c848ffc619802b52b673
IEDL.DBID ACS
ISSN 2639-4979
IngestDate Tue Jul 01 04:21:51 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Wed Nov 04 03:11:33 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a304t-296d3b53ccf18f7bcc8d047e8720a2bbc551262137076c848ffc619802b52b673
ORCID 0000-0001-6741-3609
0000-0002-2547-4072
0000-0002-5627-4153
0000-0002-8453-1938
0000-0003-2882-3968
0000-0002-3690-8235
PageCount 14
ParticipantIDs crossref_primary_10_1021_acsmaterialslett_0c00396
crossref_citationtrail_10_1021_acsmaterialslett_0c00396
acs_journals_10_1021_acsmaterialslett_0c00396
ProviderPackageCode VF5
ACS
VG9
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201102
2020-11-02
PublicationDateYYYYMMDD 2020-11-02
PublicationDate_xml – month: 11
  year: 2020
  text: 20201102
  day: 02
PublicationDecade 2020
PublicationTitle ACS materials letters
PublicationTitleAlternate ACS Materials Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref44/cit44
  doi: 10.1002/aenm.202001561
– ident: ref2/cit2
  doi: 10.1038/s41560-019-0368-4
– ident: ref61/cit61
  doi: 10.1016/j.ensm.2019.04.042
– ident: ref24/cit24
  doi: 10.1021/ar300179v
– ident: ref53/cit53
  doi: 10.1021/acs.nanolett.9b04719
– ident: ref74/cit74
  doi: 10.1016/j.jechem.2020.02.039
– ident: ref16/cit16
  doi: 10.1016/j.joule.2018.06.019
– ident: ref30/cit30
  doi: 10.1002/adma.201800863
– ident: ref60/cit60
  doi: 10.1002/aenm.201602567
– ident: ref79/cit79
  doi: 10.1016/j.ensm.2019.07.042
– ident: ref40/cit40
  doi: 10.1038/s41929-018-0195-1
– ident: ref71/cit71
  doi: 10.1016/j.joule.2018.12.018
– ident: ref57/cit57
  doi: 10.1021/jacs.8b12973
– ident: ref4/cit4
  doi: 10.1038/nenergy.2017.90
– ident: ref17/cit17
  doi: 10.1038/nchem.1095
– ident: ref63/cit63
  doi: 10.1002/adma.201903813
– ident: ref6/cit6
  doi: 10.1002/anie.201902413
– ident: ref34/cit34
  doi: 10.1016/j.ensm.2019.05.005
– ident: ref7/cit7
  doi: 10.1002/advs.201700270
– ident: ref14/cit14
  doi: 10.1021/acs.chemrev.8b00501
– ident: ref13/cit13
  doi: 10.1038/s41929-018-0063-z
– ident: ref75/cit75
  doi: 10.1021/acsami.8b12093
– ident: ref39/cit39
  doi: 10.1021/acscatal.0c00936
– ident: ref22/cit22
  doi: 10.1002/aenm.201804019
– ident: ref31/cit31
  doi: 10.1016/j.nanoen.2019.104307
– ident: ref78/cit78
  doi: 10.1016/j.ensm.2018.09.012
– ident: ref1/cit1
  doi: 10.1038/nnano.2014.6
– ident: ref18/cit18
  doi: 10.1021/acscatal.9b04217
– ident: ref65/cit65
  doi: 10.1002/adfm.201707234
– ident: ref58/cit58
  doi: 10.1016/j.ensm.2018.12.016
– ident: ref25/cit25
  doi: 10.1002/adma.201700449
– ident: ref42/cit42
  doi: 10.1038/s41560-017-0078-8
– ident: ref59/cit59
  doi: 10.1002/adma.201903955
– ident: ref29/cit29
  doi: 10.1039/C7EE01430A
– ident: ref66/cit66
  doi: 10.1016/j.nanoen.2018.05.065
– ident: ref27/cit27
  doi: 10.1039/C8TA03647K
– ident: ref68/cit68
  doi: 10.1016/j.ensm.2020.08.033
– ident: ref70/cit70
  doi: 10.1021/acs.chemmater.7b03870
– ident: ref11/cit11
  doi: 10.1021/acsnano.9b08008
– ident: ref5/cit5
  doi: 10.1038/s41560-019-0351-0
– ident: ref33/cit33
  doi: 10.1038/ncomms14628
– ident: ref80/cit80
  doi: 10.1007/s40820-019-0260-6
– ident: ref77/cit77
  doi: 10.1002/adma.201801745
– ident: ref47/cit47
  doi: 10.1007/s12274-020-2827-4
– ident: ref64/cit64
  doi: 10.1021/acsami.8b21237
– ident: ref38/cit38
  doi: 10.1002/ange.201906079
– ident: ref12/cit12
  doi: 10.1002/smtd.201800551
– ident: ref19/cit19
  doi: 10.1002/adma.201906548
– ident: ref41/cit41
  doi: 10.1021/jacs.9b05268
– ident: ref15/cit15
  doi: 10.1039/C9CS00869A
– ident: ref37/cit37
  doi: 10.1021/jacs.9b09352
– ident: ref43/cit43
  doi: 10.1016/j.nanoen.2019.04.092
– ident: ref45/cit45
  doi: 10.1002/ange.202003917
– ident: ref56/cit56
  doi: 10.1016/j.cplett.2019.136942
– ident: ref51/cit51
  doi: 10.1016/j.jcis.2018.06.036
– ident: ref9/cit9
  doi: 10.1038/ncomms7512
– ident: ref32/cit32
  doi: 10.1016/j.scib.2019.08.016
– ident: ref52/cit52
  doi: 10.1088/2053-1591/ab33ad
– ident: ref76/cit76
  doi: 10.1002/adfm.201808756
– ident: ref50/cit50
  doi: 10.1016/j.diamond.2018.10.008
– ident: ref46/cit46
  doi: 10.1016/j.nanoen.2020.105085
– ident: ref26/cit26
  doi: 10.1002/adma.201901125
– ident: ref49/cit49
  doi: 10.1016/j.cej.2017.09.186
– ident: ref62/cit62
  doi: 10.1002/smtd.201900701
– ident: ref81/cit81
  doi: 10.1021/acsami.9b10551
– ident: ref36/cit36
  doi: 10.1038/s41467-019-12459-0
– ident: ref69/cit69
  doi: 10.1038/nenergy.2016.132
– ident: ref82/cit82
  doi: 10.1021/acs.nanolett.0c02167
– ident: ref83/cit83
  doi: 10.1002/adma.201606823
– ident: ref55/cit55
  doi: 10.1039/C9TA11680J
– ident: ref35/cit35
  doi: 10.1002/adma.201401243
– ident: ref67/cit67
  doi: 10.1002/smtd.201900344
– ident: ref10/cit10
  doi: 10.1016/j.ensm.2020.03.008
– ident: ref20/cit20
  doi: 10.1002/adma.201906722
– ident: ref23/cit23
  doi: 10.1016/j.ensm.2019.03.025
– ident: ref3/cit3
  doi: 10.1038/nenergy.2016.94
– ident: ref54/cit54
  doi: 10.1016/j.ensm.2018.09.006
– ident: ref72/cit72
  doi: 10.1039/C9CC06168A
– ident: ref28/cit28
  doi: 10.1021/acsnano.9b02231
– ident: ref8/cit8
  doi: 10.1038/ncomms5759
– ident: ref48/cit48
  doi: 10.1021/acsami.8b03830
– ident: ref73/cit73
  doi: 10.1002/aenm.201902254
– ident: ref21/cit21
  doi: 10.1021/acsnano.9b08141
SSID ssj0002161944
Score 2.5116353
SecondaryResourceType review_article
Snippet Lithium sulfur (Li–S) battery is considered as one of the most promising energy storage devices, because of its low cost, high energy density, and...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1450
Title Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges
URI http://dx.doi.org/10.1021/acsmaterialslett.0c00396
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKWWDgjSgveWAkJXYcx2GrqlYVooBUkLpFtpMIRJtWTTLAwG_nnKRVBeLRJZlsOWdf7ruHv0PoAjCxoAoUiQg_AgeF-BaA-tjywdbHWirCioBb_473ntjN0B3WEP0hg0_JldQpYLdyO-BTsqatzYVSvobWKQddNnCoPVjEVSgxfrlJJlPuFA3U_KqA57fJjG3S6ZJtWjIy3e3y4l9acBOa2pLXZp6ppn7_zty4wvp30FaFOXGrPCS7qBYle2hziYlwH6kBvEaR1comY9wpW-MUkZ23NEsxAFt8-5I9v-RjPMhHcT7DJS8nuNnX-MGUeMEP8xLfTw2az5OCpfUSyyTE7XmzlvQAPXU7j-2eVbVfsKRjs8yiPg8d5Tpax0TEntJahDbzIuFRW1KlNIAtyilxPNvjWjARxxpkL2yqXKq45xyiejJJoiOEdchdIkPJQgEOnCt8gB2aKRIxxbTHZANZIKagUp80KDLjlARfZRdUsmsgb75Rga64zE1LjdE_RpLFyGnJ5_HnmOMVV3eCNqjxyk3wmZ6iejbLozOALpk6L84qPPsfnU8ZOvBQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oHtSDbyM-9-CRYne7bbfeCIGgApoAifHSdLdtJEIhtD3or3e2LUg4-Do1aTKb2dndzjez028QugZMzKmAg0S4E0CAQhwNQH2oOeDrQ-kJwrKEW6drtQbs_tl8Xmr1BUrEMFKcXeJ_sQuQG3gHEC5fFZhRUtWl-q_UWkcbgEmo2ty1em-RXqFEhefqTplaRtZHzSnqeL4bTLkoGS-5qCVf09xFLwstsxKTt2qaiKr8WCFw_Nc09tBOgUBxLd8y-2gtiA7Q9hIv4SESPXiMAq2WTMa4kTfKyfI873ESY4C5uD1MXofpGPfSUZjOcM7SCUH3LX5SBV_w-azgx6nC9mmUcbZWsBf5uD5v3RIfoUGz0a-3tKIZg-YZOks06li-IUxDypDw0BZScl9ndsBtqntUCAnQi1qUGLZuW5IzHoYSloDrVJhUWLZxjErRJApOEJa-ZRLP95jPIZwzuQMgRDJBAiaYtJlXRhqYyS0OU-xm9-SUuKu2cwvblZE9Xy9XFszmqsHG6BeSZCE5zdk9fpQ5_aN2V2iz1e-03fZd9-EMbVEVr6u0ND1HpWSWBhcAahJxmW3fTzgK94A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4UE6MP3o147YOPDNeu2zrfCEK8IJIgCW_L2m3RiIOw7UF_vafdIIQHb09LlrRpe9qe71z6HYQuARNzKuAgEe5FYKAQzwBQHxse6PpYBoIw7XB77Dq3A3Y_tIdlbo56CwODSKGnVAfx1amehHHJMECu4D_AuEIyMKusbkr1ttRZRWsqeqc2eKPZn7tYKFEmuoorU8fStdS8Mpfnu86UmpLpgppa0Dft7aKoqh6pTjN5q-eZqMvPJRLHf09lB22VSBQ3iq2zi1aiZA9tLvAT7iPRh88oMhrZ-B23ioI52t_zkWYpBriLO6_Zy2v-jvv5KM6nuGDrBOP7GvdU4hdcozX8NFEYP080d2sNB0mIm7MSLukBGrRbz81boyzKYASWyTKDek5oCduSMiY8doWUPDSZG3GXmgEVQgIEow4llmu6juSMx7EEMXCTCpsKx7UOUSUZJ9ERwjJ0bBKEAQs5mHU29wCMSCZIxASTLguqyIBl8stDlfo6Xk6Jv7x2frl2VeTOZObLkuFcFdoY_aIlmbecFCwfP7Y5_uPoLtB676btd-66DydogyqzXXmn6SmqZNM8OgNsk4lzvYO_ABI7-gM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Atom+Electrocatalysts+for+Lithium+Sulfur+Batteries%3A+Progress%2C+Opportunities%2C+and+Challenges&rft.jtitle=ACS+materials+letters&rft.au=Wang%2C+Feifei&rft.au=Li%2C+Jing&rft.au=Zhao%2C+Juan&rft.au=Yang%2C+Yixiao&rft.date=2020-11-02&rft.pub=American+Chemical+Society&rft.issn=2639-4979&rft.eissn=2639-4979&rft.volume=2&rft.issue=11&rft.spage=1450&rft.epage=1463&rft_id=info:doi/10.1021%2Facsmaterialslett.0c00396&rft.externalDocID=a923611165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-4979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-4979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-4979&client=summon