3D-Printed Silk Fibroin Mesh with Guidance of Directional Cell Growth for Treating Pelvic Organ Prolapse

Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to sever...

Full description

Saved in:
Bibliographic Details
Published inACS biomaterials science & engineering Vol. 11; no. 4; pp. 2367 - 2377
Main Authors Zheng, Zili, Wang, Min, Ren, An, Cheng, Zhangyuan, Li, Xiangjuan, Guo, Chengchen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young’s modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.
AbstractList Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young’s modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.
Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young's modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young's modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.
Author Li, Xiangjuan
Zheng, Zili
Guo, Chengchen
Cheng, Zhangyuan
Wang, Min
Ren, An
AuthorAffiliation Research Center for Industries of the Future
Westlake Laboratory of Life Sciences and Biomedicine
Westlake University
School of Engineering
AuthorAffiliation_xml – name: Westlake University
– name: Westlake Laboratory of Life Sciences and Biomedicine
– name: School of Engineering
– name: Research Center for Industries of the Future
Author_xml – sequence: 1
  givenname: Zili
  surname: Zheng
  fullname: Zheng, Zili
  organization: School of Engineering
– sequence: 2
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: School of Engineering
– sequence: 3
  givenname: An
  surname: Ren
  fullname: Ren, An
– sequence: 4
  givenname: Zhangyuan
  surname: Cheng
  fullname: Cheng, Zhangyuan
  organization: School of Engineering
– sequence: 5
  givenname: Xiangjuan
  surname: Li
  fullname: Li, Xiangjuan
  email: 386501678@qq.com
– sequence: 6
  givenname: Chengchen
  orcidid: 0000-0001-9253-3469
  surname: Guo
  fullname: Guo, Chengchen
  email: guochengchen@westlake.edu.cn
  organization: Westlake Laboratory of Life Sciences and Biomedicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40036493$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFPwkAQhTcGI4j8Bd2jl-K2U7rbowFFEwwk4rnZbqewWHZxt9X47y0BjfHiaSaZ703ezDsnHWMNEnIVsmHIovBGKp9ru5U1Oi0rPxwpxiARJ6QXAYcgFVx0fvVdMvB-wxgLQYziOD4j3XgviFPokTVMgoXTpsaCPuvqld7r3Flt6BP6Nf3Q9ZpOG11Io5Dakk60Q1Vra2RFx1hVdOrsR8uU1tGlQ1lrs6ILrN61onO3koYunK3kzuMFOS1bszg41j55ub9bjh-C2Xz6OL6dBRIY1AEIXnCWiDjiSsZhIpRA5EIoSFJEUYwSBMnKqD0nVUUieBJFPOcKocwjUCn0yfVh787ZtwZ9nW21V61VadA2PoOQxyxNAESLXh7RJt9ike2c3kr3mX1_pwX4AVDOeu-w_EFClu2jyP5EkR2jaJVwULZAtrGNM_vpf6ovz9aRjA
Cites_doi 10.1007/s00192-016-3092-7
10.18063/ijb.v7i4.401
10.1177/00494755221125625
10.1021/bm4018319
10.3390/polym12030618
10.1007/s00192-010-1208-z
10.1038/ncomms7933
10.1016/j.biomaterials.2023.122234
10.3390/molecules26133887
10.1038/s41467-021-23960-w
10.1007/s00192-007-0533-3
10.1016/j.addma.2021.102120
10.1002/adfm.202110676
10.1002/admt.202201421
10.1016/j.ejogrb.2018.12.037
10.1016/j.biomaterials.2017.04.019
10.1021/bm301193t
10.1007/s10029-023-02747-6
10.1586/17434440.2.1.103
10.1016/j.mayocp.2021.09.005
10.1016/j.tibtech.2018.10.007
10.1111/nyas.12886
10.1002/jbm.b.34432
10.1016/j.cej.2018.11.145
10.1007/s00192-020-04612-x
10.1016/j.bjps.2018.01.002
10.1126/science.aav9051
10.1016/j.tibtech.2018.04.004
10.1016/j.bjps.2015.02.012
10.1021/bm700935w
10.1016/j.msec.2019.02.064
10.1016/j.bioactmat.2021.06.017
10.1002/advs.202405004
10.1038/s41585-020-0334-8
10.1002/mabi.201900191
10.3390/molecules27041339
10.1002/adhm.201900408
10.1038/nprot.2011.379
10.1002/wsbm.1620
10.1021/acsnano.3c03428
10.1016/j.carbpol.2019.115041
10.1016/j.jmbbm.2018.02.030
10.3390/polym14040763
10.1021/acs.biomac.1c00700
10.1016/j.actbio.2022.09.010
10.1016/j.euf.2016.06.016
10.1016/j.progpolymsci.2021.101375
10.1016/j.ijbiomac.2023.125910
10.3390/molecules27072148
10.1007/s00192-011-1384-5
10.1016/j.actbio.2017.12.026
10.1016/j.urology.2011.11.010
10.3390/biom12010094
10.1039/D2BM00179A
10.1002/advs.202308590
10.1038/s41570-023-00486-x
10.1016/j.biomaterials.2014.06.019
10.1021/acs.jafc.4c06306
10.3390/pharmaceutics12010063
10.1016/j.actbio.2017.08.033
10.1001/jama.2021.11171
10.1007/s00192-006-0214-7
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsbiomaterials.5c00368
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-9878
EndPage 2377
ExternalDocumentID 40036493
10_1021_acsbiomaterials_5c00368
e14473993
Genre Journal Article
GroupedDBID 53G
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
GGK
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a303t-387d7068427ca4168c8ee788c369ee8d56e3a0f20009cd6876227b7ce3fb23c93
IEDL.DBID ACS
ISSN 2373-9878
IngestDate Thu Jul 10 17:18:53 EDT 2025
Tue Apr 15 01:22:59 EDT 2025
Tue Jul 01 05:03:19 EDT 2025
Tue Apr 15 03:10:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords silk
tissue integration
biocompatibility
pelvic organ prolapse
3D printing
mesh
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a303t-387d7068427ca4168c8ee788c369ee8d56e3a0f20009cd6876227b7ce3fb23c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9253-3469
PMID 40036493
PQID 3174096338
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3174096338
pubmed_primary_40036493
crossref_primary_10_1021_acsbiomaterials_5c00368
acs_journals_10_1021_acsbiomaterials_5c00368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-14
PublicationDateYYYYMMDD 2025-04-14
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS biomaterials science & engineering
PublicationTitleAlternate ACS Biomater. Sci. Eng
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1007/s00192-016-3092-7
– ident: ref44/cit44
  doi: 10.18063/ijb.v7i4.401
– ident: ref7/cit7
  doi: 10.1177/00494755221125625
– ident: ref50/cit50
  doi: 10.1021/bm4018319
– ident: ref15/cit15
  doi: 10.3390/polym12030618
– ident: ref60/cit60
  doi: 10.1007/s00192-010-1208-z
– ident: ref43/cit43
  doi: 10.1038/ncomms7933
– ident: ref24/cit24
  doi: 10.1016/j.biomaterials.2023.122234
– ident: ref45/cit45
  doi: 10.3390/molecules26133887
– ident: ref55/cit55
  doi: 10.1038/s41467-021-23960-w
– ident: ref57/cit57
  doi: 10.1007/s00192-007-0533-3
– ident: ref52/cit52
  doi: 10.1016/j.addma.2021.102120
– ident: ref33/cit33
  doi: 10.1002/adfm.202110676
– ident: ref30/cit30
  doi: 10.1002/admt.202201421
– ident: ref9/cit9
  doi: 10.1016/j.ejogrb.2018.12.037
– ident: ref42/cit42
  doi: 10.1016/j.biomaterials.2017.04.019
– ident: ref46/cit46
  doi: 10.1021/bm301193t
– ident: ref12/cit12
  doi: 10.1007/s10029-023-02747-6
– ident: ref53/cit53
  doi: 10.1586/17434440.2.1.103
– ident: ref2/cit2
  doi: 10.1016/j.mayocp.2021.09.005
– ident: ref14/cit14
  doi: 10.1016/j.tibtech.2018.10.007
– ident: ref25/cit25
  doi: 10.1111/nyas.12886
– ident: ref3/cit3
  doi: 10.1002/jbm.b.34432
– ident: ref32/cit32
  doi: 10.1016/j.cej.2018.11.145
– ident: ref8/cit8
  doi: 10.1007/s00192-020-04612-x
– ident: ref26/cit26
  doi: 10.1016/j.bjps.2018.01.002
– ident: ref39/cit39
  doi: 10.1126/science.aav9051
– ident: ref18/cit18
  doi: 10.1016/j.tibtech.2018.04.004
– ident: ref27/cit27
  doi: 10.1016/j.bjps.2015.02.012
– ident: ref54/cit54
  doi: 10.1021/bm700935w
– ident: ref5/cit5
  doi: 10.1016/j.msec.2019.02.064
– ident: ref41/cit41
  doi: 10.1016/j.bioactmat.2021.06.017
– ident: ref35/cit35
  doi: 10.1002/advs.202405004
– ident: ref1/cit1
  doi: 10.1038/s41585-020-0334-8
– ident: ref37/cit37
  doi: 10.1002/mabi.201900191
– ident: ref49/cit49
  doi: 10.3390/molecules27041339
– ident: ref16/cit16
  doi: 10.1002/adhm.201900408
– ident: ref36/cit36
  doi: 10.1038/nprot.2011.379
– ident: ref61/cit61
  doi: 10.1002/wsbm.1620
– ident: ref56/cit56
  doi: 10.1021/acsnano.3c03428
– ident: ref31/cit31
  doi: 10.1016/j.carbpol.2019.115041
– ident: ref6/cit6
  doi: 10.1016/j.jmbbm.2018.02.030
– ident: ref29/cit29
  doi: 10.3390/polym14040763
– ident: ref47/cit47
  doi: 10.1021/acs.biomac.1c00700
– ident: ref19/cit19
  doi: 10.1016/j.actbio.2022.09.010
– ident: ref10/cit10
  doi: 10.1016/j.euf.2016.06.016
– ident: ref38/cit38
  doi: 10.1016/j.progpolymsci.2021.101375
– ident: ref22/cit22
  doi: 10.1016/j.ijbiomac.2023.125910
– ident: ref51/cit51
  doi: 10.3390/molecules27072148
– ident: ref11/cit11
  doi: 10.1007/s00192-011-1384-5
– ident: ref21/cit21
  doi: 10.1016/j.actbio.2017.12.026
– ident: ref58/cit58
  doi: 10.1016/j.urology.2011.11.010
– ident: ref62/cit62
  doi: 10.3390/biom12010094
– ident: ref17/cit17
  doi: 10.1039/D2BM00179A
– ident: ref34/cit34
  doi: 10.1002/advs.202308590
– ident: ref20/cit20
  doi: 10.1038/s41570-023-00486-x
– ident: ref23/cit23
  doi: 10.1016/j.biomaterials.2014.06.019
– ident: ref48/cit48
  doi: 10.1021/acs.jafc.4c06306
– ident: ref28/cit28
  doi: 10.3390/pharmaceutics12010063
– ident: ref40/cit40
  doi: 10.1016/j.actbio.2017.08.033
– ident: ref13/cit13
  doi: 10.1001/jama.2021.11171
– ident: ref59/cit59
  doi: 10.1007/s00192-006-0214-7
SSID ssj0001385444
Score 2.3268404
Snippet Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2367
SubjectTerms Animals
Biocompatible Materials - chemistry
Cell Proliferation - drug effects
Female
Fibroins - chemistry
Humans
Pelvic Organ Prolapse - surgery
Pelvic Organ Prolapse - therapy
Printing, Three-Dimensional
Surgical Mesh
Tensile Strength
Tissue Engineering and Regenerative Medicine
Title 3D-Printed Silk Fibroin Mesh with Guidance of Directional Cell Growth for Treating Pelvic Organ Prolapse
URI http://dx.doi.org/10.1021/acsbiomaterials.5c00368
https://www.ncbi.nlm.nih.gov/pubmed/40036493
https://www.proquest.com/docview/3174096338
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5B9wIPDMavbgMZiUdSWttJnMeqo6BJTNWgUt8i23Fo1SqtmvSFv567JN3YUMX2bluJfb77Pp_vM8Cliqw0MqHqdiM8yVPlaW6R82iTcpUok5TC8_c_gruh_D7yR1vQ2ZDB551rbXOqRNdFtSIt35KGitqGDzxQIfGtbu_h97GKUL4sn3DlIhQeMmq1vtW1eSyKTDb_MzJtgJtl2Ol_hJ_r4p3qtsm0tSpMyz6_1XL89z_ah70ahLJuZTUHsOWyT7D7SprwEMbimzdYkphEwh4msynrI6-eTzJ27_Ixo9NbdruaJGQzbJ6y2nMSrGc9N5uxW6T32AYhMXsscWn2xAZuhn6JleWfbLBEUr3I3REM-zePvTuvfpXB0xjuChLjTcI2pe9CqxHOKaucQyJtRRA5pxI_cEK3UyoBimwSkLfloQmtE6nhwkbiGBrZPHOnwNCKBbeyg619iURHGaOU85UwbZlqGTXhCucqrndVHpcJc96J_5rAuJ7AJrTXCxgvKq2O97tcrBc6xn1FyRKdufkqjxFXIfUNkME34aSygF-DSuorI_H5_77vC-xwej2YlCLlV2gUy5U7Q0hTmPPSiF8AuPHzog
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5QAceD_K00hwI8uu7STOgUO1Zbul3WqlbqXegu04dNUoqZKsKvhF_BX-FTPebAuVKsShB66RbTme8cx89sxngLcqsdLIjKrbjQgkz1WguUXMo03OVaZM5onnJ_vR-FB-PgqP1uDHqhYGJ9HgSI2_xL9gFxh8wG9UkK7bpWB6oSUqFdWlU-66b2cI1pqPO1so2Xecjz7NhuOge08g0GioW6KRzeI-XTzFVmMgoqxyDiGgFVHinMrCyAndz6l4JbFZRHaCxya2TuSGC0u0S2jsb2AIxAnmbQ4PLk5zhAqlfzmWi1gECOTVKpns6rmTQ7TNnw7xiijXe7vRXfh5vk4-yeWkt2hNz36_RCH5PyzkPbjThdxsc7lH7sOaKx_A7d-IGB_CsdgKpjVRZ2TsYF6csNHc1NW8ZBPXHDM6q2bbi3lGO4RVOev8BIEYNnRFwbbr6gzbIABgMx-Fl1_Z1BVohZkvdmXTuir0aeMeweG1_OpjWC-r0j0FhntWcCsH2DqUCOuUMUq5UAnTl7mWyQa8R9mknQ1pUp8ewAfpJYGlncA2oL_Sm_R0yUzy9y5vVvqVohWhqyFdumrRpBhFItCPhMA2T5aKdz6opL4yEc_-bX6v4eZ4NtlL93b2d5_DLU7vJhNHpnwB6229cC8xmGvNK7-PGHy5bn37BZ99VIs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwELYQlar20AJ90QJ1pfbWbHdtJ3EOHNAuy6uglQCJW-pXyoooWSVZofY39a_wn5jxZqFFQlUPHHqNbMvxeB6fx_OZkI8yMUILi9XtmgeCZTJQzADmUTpj0kptPfH84VG0eyr2z8KzBfJrXgsDk6hhpNon8VGrJzZrGQZ6X-A7FqWrZiacTmiQTkW2VyoP3I9LAGz15t4ApPuJseH2SX83aN8UCBQY6wapZG3cxeRTbBQEI9JI5wAGGh4lzkkbRo6rboYFLImxEdoKFuvYOJ5pxg1SL4HBf4TJQoR6W_3j2xMdLkPhX49lPOYBgHk5v1B2_9zRKZr6T6d4T6TrPd7wObm6WSt_0eWiM210x_y8QyP5vyzmEnnWht50a6Yry2TBFSvk6W-EjC_IOR8EowopNCw9HucXdDjWVTku6KGrzymeWdOd6diiptAyo62_QDBD-y7P6U5VXkIbAAL0xEfjxXc6cjlYY-qLXumoKnM1qd1Lcvogv_qKLBZl4d4QCrrLmRE9aB0KgHdSayldKLnuikyJZJV8BtmkrS2pU39NgPXSOwJLW4Gtku5876STGUPJ37t8mO-xFKwJpohU4cppnUI0CYA_4hzavJ5tvptBBfYVCX_7b_N7Tx6PBsP0697RwTvyhOHzyUiVKdbIYlNN3TrEdI3e8KpEybeH3m7X2kRXDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Silk+Fibroin+Mesh+with+Guidance+of+Directional+Cell+Growth+for+Treating+Pelvic+Organ+Prolapse&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Zheng%2C+Zili&rft.au=Wang%2C+Min&rft.au=Ren%2C+An&rft.au=Cheng%2C+Zhangyuan&rft.date=2025-04-14&rft.eissn=2373-9878&rft.volume=11&rft.issue=4&rft.spage=2367&rft_id=info:doi/10.1021%2Facsbiomaterials.5c00368&rft_id=info%3Apmid%2F40036493&rft.externalDocID=40036493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon