3D-Printed Silk Fibroin Mesh with Guidance of Directional Cell Growth for Treating Pelvic Organ Prolapse
Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to sever...
Saved in:
Published in | ACS biomaterials science & engineering Vol. 11; no. 4; pp. 2367 - 2377 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young’s modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications. |
---|---|
AbstractList | Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young’s modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications. Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young's modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young's modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications. |
Author | Li, Xiangjuan Zheng, Zili Guo, Chengchen Cheng, Zhangyuan Wang, Min Ren, An |
AuthorAffiliation | Research Center for Industries of the Future Westlake Laboratory of Life Sciences and Biomedicine Westlake University School of Engineering |
AuthorAffiliation_xml | – name: Westlake University – name: Westlake Laboratory of Life Sciences and Biomedicine – name: School of Engineering – name: Research Center for Industries of the Future |
Author_xml | – sequence: 1 givenname: Zili surname: Zheng fullname: Zheng, Zili organization: School of Engineering – sequence: 2 givenname: Min surname: Wang fullname: Wang, Min organization: School of Engineering – sequence: 3 givenname: An surname: Ren fullname: Ren, An – sequence: 4 givenname: Zhangyuan surname: Cheng fullname: Cheng, Zhangyuan organization: School of Engineering – sequence: 5 givenname: Xiangjuan surname: Li fullname: Li, Xiangjuan email: 386501678@qq.com – sequence: 6 givenname: Chengchen orcidid: 0000-0001-9253-3469 surname: Guo fullname: Guo, Chengchen email: guochengchen@westlake.edu.cn organization: Westlake Laboratory of Life Sciences and Biomedicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40036493$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFPwkAQhTcGI4j8Bd2jl-K2U7rbowFFEwwk4rnZbqewWHZxt9X47y0BjfHiaSaZ703ezDsnHWMNEnIVsmHIovBGKp9ru5U1Oi0rPxwpxiARJ6QXAYcgFVx0fvVdMvB-wxgLQYziOD4j3XgviFPokTVMgoXTpsaCPuvqld7r3Flt6BP6Nf3Q9ZpOG11Io5Dakk60Q1Vra2RFx1hVdOrsR8uU1tGlQ1lrs6ILrN61onO3koYunK3kzuMFOS1bszg41j55ub9bjh-C2Xz6OL6dBRIY1AEIXnCWiDjiSsZhIpRA5EIoSFJEUYwSBMnKqD0nVUUieBJFPOcKocwjUCn0yfVh787ZtwZ9nW21V61VadA2PoOQxyxNAESLXh7RJt9ike2c3kr3mX1_pwX4AVDOeu-w_EFClu2jyP5EkR2jaJVwULZAtrGNM_vpf6ovz9aRjA |
Cites_doi | 10.1007/s00192-016-3092-7 10.18063/ijb.v7i4.401 10.1177/00494755221125625 10.1021/bm4018319 10.3390/polym12030618 10.1007/s00192-010-1208-z 10.1038/ncomms7933 10.1016/j.biomaterials.2023.122234 10.3390/molecules26133887 10.1038/s41467-021-23960-w 10.1007/s00192-007-0533-3 10.1016/j.addma.2021.102120 10.1002/adfm.202110676 10.1002/admt.202201421 10.1016/j.ejogrb.2018.12.037 10.1016/j.biomaterials.2017.04.019 10.1021/bm301193t 10.1007/s10029-023-02747-6 10.1586/17434440.2.1.103 10.1016/j.mayocp.2021.09.005 10.1016/j.tibtech.2018.10.007 10.1111/nyas.12886 10.1002/jbm.b.34432 10.1016/j.cej.2018.11.145 10.1007/s00192-020-04612-x 10.1016/j.bjps.2018.01.002 10.1126/science.aav9051 10.1016/j.tibtech.2018.04.004 10.1016/j.bjps.2015.02.012 10.1021/bm700935w 10.1016/j.msec.2019.02.064 10.1016/j.bioactmat.2021.06.017 10.1002/advs.202405004 10.1038/s41585-020-0334-8 10.1002/mabi.201900191 10.3390/molecules27041339 10.1002/adhm.201900408 10.1038/nprot.2011.379 10.1002/wsbm.1620 10.1021/acsnano.3c03428 10.1016/j.carbpol.2019.115041 10.1016/j.jmbbm.2018.02.030 10.3390/polym14040763 10.1021/acs.biomac.1c00700 10.1016/j.actbio.2022.09.010 10.1016/j.euf.2016.06.016 10.1016/j.progpolymsci.2021.101375 10.1016/j.ijbiomac.2023.125910 10.3390/molecules27072148 10.1007/s00192-011-1384-5 10.1016/j.actbio.2017.12.026 10.1016/j.urology.2011.11.010 10.3390/biom12010094 10.1039/D2BM00179A 10.1002/advs.202308590 10.1038/s41570-023-00486-x 10.1016/j.biomaterials.2014.06.019 10.1021/acs.jafc.4c06306 10.3390/pharmaceutics12010063 10.1016/j.actbio.2017.08.033 10.1001/jama.2021.11171 10.1007/s00192-006-0214-7 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsbiomaterials.5c00368 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-9878 |
EndPage | 2377 |
ExternalDocumentID | 40036493 10_1021_acsbiomaterials_5c00368 e14473993 |
Genre | Journal Article |
GroupedDBID | 53G ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS GGK UI2 VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a303t-387d7068427ca4168c8ee788c369ee8d56e3a0f20009cd6876227b7ce3fb23c93 |
IEDL.DBID | ACS |
ISSN | 2373-9878 |
IngestDate | Thu Jul 10 17:18:53 EDT 2025 Tue Apr 15 01:22:59 EDT 2025 Tue Jul 01 05:03:19 EDT 2025 Tue Apr 15 03:10:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | silk tissue integration biocompatibility pelvic organ prolapse 3D printing mesh |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a303t-387d7068427ca4168c8ee788c369ee8d56e3a0f20009cd6876227b7ce3fb23c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9253-3469 |
PMID | 40036493 |
PQID | 3174096338 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3174096338 pubmed_primary_40036493 crossref_primary_10_1021_acsbiomaterials_5c00368 acs_journals_10_1021_acsbiomaterials_5c00368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-14 |
PublicationDateYYYYMMDD | 2025-04-14 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS biomaterials science & engineering |
PublicationTitleAlternate | ACS Biomater. Sci. Eng |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1007/s00192-016-3092-7 – ident: ref44/cit44 doi: 10.18063/ijb.v7i4.401 – ident: ref7/cit7 doi: 10.1177/00494755221125625 – ident: ref50/cit50 doi: 10.1021/bm4018319 – ident: ref15/cit15 doi: 10.3390/polym12030618 – ident: ref60/cit60 doi: 10.1007/s00192-010-1208-z – ident: ref43/cit43 doi: 10.1038/ncomms7933 – ident: ref24/cit24 doi: 10.1016/j.biomaterials.2023.122234 – ident: ref45/cit45 doi: 10.3390/molecules26133887 – ident: ref55/cit55 doi: 10.1038/s41467-021-23960-w – ident: ref57/cit57 doi: 10.1007/s00192-007-0533-3 – ident: ref52/cit52 doi: 10.1016/j.addma.2021.102120 – ident: ref33/cit33 doi: 10.1002/adfm.202110676 – ident: ref30/cit30 doi: 10.1002/admt.202201421 – ident: ref9/cit9 doi: 10.1016/j.ejogrb.2018.12.037 – ident: ref42/cit42 doi: 10.1016/j.biomaterials.2017.04.019 – ident: ref46/cit46 doi: 10.1021/bm301193t – ident: ref12/cit12 doi: 10.1007/s10029-023-02747-6 – ident: ref53/cit53 doi: 10.1586/17434440.2.1.103 – ident: ref2/cit2 doi: 10.1016/j.mayocp.2021.09.005 – ident: ref14/cit14 doi: 10.1016/j.tibtech.2018.10.007 – ident: ref25/cit25 doi: 10.1111/nyas.12886 – ident: ref3/cit3 doi: 10.1002/jbm.b.34432 – ident: ref32/cit32 doi: 10.1016/j.cej.2018.11.145 – ident: ref8/cit8 doi: 10.1007/s00192-020-04612-x – ident: ref26/cit26 doi: 10.1016/j.bjps.2018.01.002 – ident: ref39/cit39 doi: 10.1126/science.aav9051 – ident: ref18/cit18 doi: 10.1016/j.tibtech.2018.04.004 – ident: ref27/cit27 doi: 10.1016/j.bjps.2015.02.012 – ident: ref54/cit54 doi: 10.1021/bm700935w – ident: ref5/cit5 doi: 10.1016/j.msec.2019.02.064 – ident: ref41/cit41 doi: 10.1016/j.bioactmat.2021.06.017 – ident: ref35/cit35 doi: 10.1002/advs.202405004 – ident: ref1/cit1 doi: 10.1038/s41585-020-0334-8 – ident: ref37/cit37 doi: 10.1002/mabi.201900191 – ident: ref49/cit49 doi: 10.3390/molecules27041339 – ident: ref16/cit16 doi: 10.1002/adhm.201900408 – ident: ref36/cit36 doi: 10.1038/nprot.2011.379 – ident: ref61/cit61 doi: 10.1002/wsbm.1620 – ident: ref56/cit56 doi: 10.1021/acsnano.3c03428 – ident: ref31/cit31 doi: 10.1016/j.carbpol.2019.115041 – ident: ref6/cit6 doi: 10.1016/j.jmbbm.2018.02.030 – ident: ref29/cit29 doi: 10.3390/polym14040763 – ident: ref47/cit47 doi: 10.1021/acs.biomac.1c00700 – ident: ref19/cit19 doi: 10.1016/j.actbio.2022.09.010 – ident: ref10/cit10 doi: 10.1016/j.euf.2016.06.016 – ident: ref38/cit38 doi: 10.1016/j.progpolymsci.2021.101375 – ident: ref22/cit22 doi: 10.1016/j.ijbiomac.2023.125910 – ident: ref51/cit51 doi: 10.3390/molecules27072148 – ident: ref11/cit11 doi: 10.1007/s00192-011-1384-5 – ident: ref21/cit21 doi: 10.1016/j.actbio.2017.12.026 – ident: ref58/cit58 doi: 10.1016/j.urology.2011.11.010 – ident: ref62/cit62 doi: 10.3390/biom12010094 – ident: ref17/cit17 doi: 10.1039/D2BM00179A – ident: ref34/cit34 doi: 10.1002/advs.202308590 – ident: ref20/cit20 doi: 10.1038/s41570-023-00486-x – ident: ref23/cit23 doi: 10.1016/j.biomaterials.2014.06.019 – ident: ref48/cit48 doi: 10.1021/acs.jafc.4c06306 – ident: ref28/cit28 doi: 10.3390/pharmaceutics12010063 – ident: ref40/cit40 doi: 10.1016/j.actbio.2017.08.033 – ident: ref13/cit13 doi: 10.1001/jama.2021.11171 – ident: ref59/cit59 doi: 10.1007/s00192-006-0214-7 |
SSID | ssj0001385444 |
Score | 2.3268404 |
Snippet | Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2367 |
SubjectTerms | Animals Biocompatible Materials - chemistry Cell Proliferation - drug effects Female Fibroins - chemistry Humans Pelvic Organ Prolapse - surgery Pelvic Organ Prolapse - therapy Printing, Three-Dimensional Surgical Mesh Tensile Strength Tissue Engineering and Regenerative Medicine |
Title | 3D-Printed Silk Fibroin Mesh with Guidance of Directional Cell Growth for Treating Pelvic Organ Prolapse |
URI | http://dx.doi.org/10.1021/acsbiomaterials.5c00368 https://www.ncbi.nlm.nih.gov/pubmed/40036493 https://www.proquest.com/docview/3174096338 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5B9wIPDMavbgMZiUdSWttJnMeqo6BJTNWgUt8i23Fo1SqtmvSFv567JN3YUMX2bluJfb77Pp_vM8Cliqw0MqHqdiM8yVPlaW6R82iTcpUok5TC8_c_gruh_D7yR1vQ2ZDB551rbXOqRNdFtSIt35KGitqGDzxQIfGtbu_h97GKUL4sn3DlIhQeMmq1vtW1eSyKTDb_MzJtgJtl2Ol_hJ_r4p3qtsm0tSpMyz6_1XL89z_ah70ahLJuZTUHsOWyT7D7SprwEMbimzdYkphEwh4msynrI6-eTzJ27_Ixo9NbdruaJGQzbJ6y2nMSrGc9N5uxW6T32AYhMXsscWn2xAZuhn6JleWfbLBEUr3I3REM-zePvTuvfpXB0xjuChLjTcI2pe9CqxHOKaucQyJtRRA5pxI_cEK3UyoBimwSkLfloQmtE6nhwkbiGBrZPHOnwNCKBbeyg619iURHGaOU85UwbZlqGTXhCucqrndVHpcJc96J_5rAuJ7AJrTXCxgvKq2O97tcrBc6xn1FyRKdufkqjxFXIfUNkME34aSygF-DSuorI_H5_77vC-xwej2YlCLlV2gUy5U7Q0hTmPPSiF8AuPHzog |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5QAceD_K00hwI8uu7STOgUO1Zbul3WqlbqXegu04dNUoqZKsKvhF_BX-FTPebAuVKsShB66RbTme8cx89sxngLcqsdLIjKrbjQgkz1WguUXMo03OVaZM5onnJ_vR-FB-PgqP1uDHqhYGJ9HgSI2_xL9gFxh8wG9UkK7bpWB6oSUqFdWlU-66b2cI1pqPO1so2Xecjz7NhuOge08g0GioW6KRzeI-XTzFVmMgoqxyDiGgFVHinMrCyAndz6l4JbFZRHaCxya2TuSGC0u0S2jsb2AIxAnmbQ4PLk5zhAqlfzmWi1gECOTVKpns6rmTQ7TNnw7xiijXe7vRXfh5vk4-yeWkt2hNz36_RCH5PyzkPbjThdxsc7lH7sOaKx_A7d-IGB_CsdgKpjVRZ2TsYF6csNHc1NW8ZBPXHDM6q2bbi3lGO4RVOev8BIEYNnRFwbbr6gzbIABgMx-Fl1_Z1BVohZkvdmXTuir0aeMeweG1_OpjWC-r0j0FhntWcCsH2DqUCOuUMUq5UAnTl7mWyQa8R9mknQ1pUp8ewAfpJYGlncA2oL_Sm_R0yUzy9y5vVvqVohWhqyFdumrRpBhFItCPhMA2T5aKdz6opL4yEc_-bX6v4eZ4NtlL93b2d5_DLU7vJhNHpnwB6229cC8xmGvNK7-PGHy5bn37BZ99VIs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwELYQlar20AJ90QJ1pfbWbHdtJ3EOHNAuy6uglQCJW-pXyoooWSVZofY39a_wn5jxZqFFQlUPHHqNbMvxeB6fx_OZkI8yMUILi9XtmgeCZTJQzADmUTpj0kptPfH84VG0eyr2z8KzBfJrXgsDk6hhpNon8VGrJzZrGQZ6X-A7FqWrZiacTmiQTkW2VyoP3I9LAGz15t4ApPuJseH2SX83aN8UCBQY6wapZG3cxeRTbBQEI9JI5wAGGh4lzkkbRo6rboYFLImxEdoKFuvYOJ5pxg1SL4HBf4TJQoR6W_3j2xMdLkPhX49lPOYBgHk5v1B2_9zRKZr6T6d4T6TrPd7wObm6WSt_0eWiM210x_y8QyP5vyzmEnnWht50a6Yry2TBFSvk6W-EjC_IOR8EowopNCw9HucXdDjWVTku6KGrzymeWdOd6diiptAyo62_QDBD-y7P6U5VXkIbAAL0xEfjxXc6cjlYY-qLXumoKnM1qd1Lcvogv_qKLBZl4d4QCrrLmRE9aB0KgHdSayldKLnuikyJZJV8BtmkrS2pU39NgPXSOwJLW4Gtku5876STGUPJ37t8mO-xFKwJpohU4cppnUI0CYA_4hzavJ5tvptBBfYVCX_7b_N7Tx6PBsP0697RwTvyhOHzyUiVKdbIYlNN3TrEdI3e8KpEybeH3m7X2kRXDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-Printed+Silk+Fibroin+Mesh+with+Guidance+of+Directional+Cell+Growth+for+Treating+Pelvic+Organ+Prolapse&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Zheng%2C+Zili&rft.au=Wang%2C+Min&rft.au=Ren%2C+An&rft.au=Cheng%2C+Zhangyuan&rft.date=2025-04-14&rft.eissn=2373-9878&rft.volume=11&rft.issue=4&rft.spage=2367&rft_id=info:doi/10.1021%2Facsbiomaterials.5c00368&rft_id=info%3Apmid%2F40036493&rft.externalDocID=40036493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon |