Constrained willmore surfaces

Smooth curves and surfaces can be characterized as minimizers of squared curvature bending energies subject to constraints. In the univariate case with an isometry (length) constraint this leads to classic non-linear splines. For surfaces, isometry is too rigid a constraint and instead one asks for...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 40; no. 4; pp. 1 - 17
Main Authors Soliman, Yousuf, Chern, Albert, Diamanti, Olga, Knöppel, Felix, Pinkall, Ulrich, Schröder, Peter
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 31.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smooth curves and surfaces can be characterized as minimizers of squared curvature bending energies subject to constraints. In the univariate case with an isometry (length) constraint this leads to classic non-linear splines. For surfaces, isometry is too rigid a constraint and instead one asks for minimizers of the Willmore (squared mean curvature) energy subject to a conformality constraint. We present an efficient algorithm for (conformally) constrained Willmore surfaces using triangle meshes of arbitrary topology with or without boundary. Our conformal class constraint is based on the discrete notion of conformal equivalence of triangle meshes. The resulting non-linear constrained optimization problem can be solved efficiently using the competitive gradient descent method together with appropriate Sobolev metrics. The surfaces can be represented either through point positions or differential coordinates. The latter enable the realization of abstract metric surfaces without an initial immersion. A versatile toolkit for extrinsic conformal geometry processing, suitable for the construction and manipulation of smooth surfaces, results through the inclusion of additional point, area, and volume constraints.
AbstractList Smooth curves and surfaces can be characterized as minimizers of squared curvature bending energies subject to constraints. In the univariate case with an isometry (length) constraint this leads to classic non-linear splines. For surfaces, isometry is too rigid a constraint and instead one asks for minimizers of the Willmore (squared mean curvature) energy subject to a conformality constraint. We present an efficient algorithm for (conformally) constrained Willmore surfaces using triangle meshes of arbitrary topology with or without boundary. Our conformal class constraint is based on the discrete notion of conformal equivalence of triangle meshes. The resulting non-linear constrained optimization problem can be solved efficiently using the competitive gradient descent method together with appropriate Sobolev metrics. The surfaces can be represented either through point positions or differential coordinates. The latter enable the realization of abstract metric surfaces without an initial immersion. A versatile toolkit for extrinsic conformal geometry processing, suitable for the construction and manipulation of smooth surfaces, results through the inclusion of additional point, area, and volume constraints.
ArticleNumber 112
Author Soliman, Yousuf
Diamanti, Olga
Chern, Albert
Pinkall, Ulrich
Knöppel, Felix
Schröder, Peter
Author_xml – sequence: 1
  givenname: Yousuf
  surname: Soliman
  fullname: Soliman, Yousuf
  organization: Caltech
– sequence: 2
  givenname: Albert
  surname: Chern
  fullname: Chern, Albert
  organization: UCSD
– sequence: 3
  givenname: Olga
  surname: Diamanti
  fullname: Diamanti, Olga
  organization: TU Graz, Austria
– sequence: 4
  givenname: Felix
  surname: Knöppel
  fullname: Knöppel, Felix
  organization: TU Berlin
– sequence: 5
  givenname: Ulrich
  surname: Pinkall
  fullname: Pinkall, Ulrich
  organization: TU Berlin, Germany
– sequence: 6
  givenname: Peter
  surname: Schröder
  fullname: Schröder, Peter
  organization: Caltech
BookMark eNp9j01Lw0AQhhepYFo9C4LQP5B2JrMf7lGCX1Dwoucw3exCJB-yGxH_vSmNHjx4emFmnpd5lmLRD70X4hJhgyjVlqQCXejNlNYoeyIyVMrkhvTNQmRgCHIgwDOxTOkNALSUOhPX5dCnMXLT-3r92bRtN0S_Th8xsPPpXJwGbpO_mHMlXu_vXsrHfPf88FTe7nKeGsfcBCbnwt4ykbfIjp2tWVuuQ10EsoiFR0OGUUuDBewZp7msC6dCILS0EurY6-KQUvShcs3IYzP0h9faCqE6OFazYzU7Ttz2D_cem47j1z_E1ZFg1_0e_yy_AZIYXJQ
CitedBy_id crossref_primary_10_1145_3592402
crossref_primary_10_1016_j_bpr_2022_100062
crossref_primary_10_1145_3687942
crossref_primary_10_1016_j_physleta_2023_128986
crossref_primary_10_1145_3478513_3480521
crossref_primary_10_1145_3604282
crossref_primary_10_1145_3658145
crossref_primary_10_1145_3618345
crossref_primary_10_1016_j_difgeo_2024_102200
crossref_primary_10_1016_j_jmaa_2023_127388
crossref_primary_10_1016_j_cagd_2024_102286
Cites_doi 10.1145/3369387
10.1137/16M1065379
10.1145/3450626.3459763
10.1007/BF02567009
10.1145/2461912.2461986
10.1007/BF02566840
10.1215/S0012-7094-93-07207-9
10.1007/s00526-007-0142-5
10.1016/S0022-5193(70)80032-7
10.1145/3272127.3275007
10.1090/tran/7196
10.2140/gt.2015.19.2155
10.1145/3197517.3201276
10.1016/j.cma.2016.09.044
10.1111/j.1467-8659.2006.00999.x
10.1145/1360612.1360676
10.1007/s00222-008-0129-7
10.1145/3375659
10.1137/0916082
10.4310/CAG.2014.v22.n2.a6
10.1142/S0219199704001501
10.1007/BF01389060
10.1111/j.1467-8659.2012.03173.x
10.1007/978-3-030-43736-7_1
10.1137/120900186
10.1145/2010324.1964999
10.4007/annals.2014.179.2.6
10.4310/jdg/1080835659
10.4310/jdg/1304514973
10.1016/j.difgeo.2015.03.003
10.1137/17M1147615
10.1515/znc-1973-11-1209
10.1002/cpa.3160420503
10.1080/16864360.2007.10738495
10.1007/s00208-016-1424-z
10.1145/2897824.2925944
10.1145/2766915
10.1007/s11390-009-9209-4
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3450626.3459759
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-7368
EndPage 17
ExternalDocumentID 10_1145_3450626_3459759
3459759
GrantInformation_xml – fundername: University of California, San Diego
  funderid: http://dx.doi.org/10.13039/100007911
– fundername: Deutsche Forschungsgemeinschaft
  grantid: SFB 109
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Einstein Stiftung Berlin
  funderid: http://dx.doi.org/10.13039/501100006188
– fundername: National Center for Theoretical Sciences
  funderid: http://dx.doi.org/10.13039/100009125
– fundername: California Institute of Technology
  funderid: http://dx.doi.org/10.13039/100006961
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
W7O
WH7
XSW
ZCA
~02
AAYXX
AEFXT
AEJOY
AETEA
AKRVB
CITATION
ID FETCH-LOGICAL-a301t-7fa3ccfb9a33e91acac9da69adfd2f39112e1737a1647120ba1d2f4d2c5ff3193
ISSN 0730-0301
IngestDate Thu Apr 24 23:08:07 EDT 2025
Thu Jul 03 08:43:33 EDT 2025
Fri Feb 21 01:28:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords geometric flows
willmore surfaces
geometric modeling
conformal geometry
discrete differential geometry
differential coordinates
Language English
License This work is licensed under a Creative Commons Attribution International 4.0 License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a301t-7fa3ccfb9a33e91acac9da69adfd2f39112e1737a1647120ba1d2f4d2c5ff3193
OpenAccessLink https://dl.acm.org/doi/10.1145/3450626.3459759
PageCount 17
ParticipantIDs crossref_citationtrail_10_1145_3450626_3459759
crossref_primary_10_1145_3450626_3459759
acm_primary_3459759
PublicationCentury 2000
PublicationDate 2021-08-31
PublicationDateYYYYMMDD 2021-08-31
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-31
  day: 31
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle ACM transactions on graphics
PublicationTitleAbbrev ACM TOG
PublicationYear 2021
Publisher ACM
Publisher_xml – name: ACM
References Dimitri P. Bertsekas. 1996. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific.
Ming Chuang, Szymon Rusinkiewicz, and Misha Kazhdan. 2016. Gradient-Domain Processing of Meshes. J. Comp. Graph. Tech. 5, 4 (2016), 44--55.
Feng Luo, Jian Sun, and Tianqi Wu. 2020. Discrete Conformal Geometry of Polyhedral Surfaces and its Convergence. (2020). arXiv:2009.12706.
Wai Yeung Lam and Ulrich Pinkall. 2017. Isothermic Triangulated Surfaces. Math. Ann. 368, 1--2 (2017), 165--195.
Florian Schäfer and Anima Anandkumar. 2019. Competitive Gradient Descent. (2019). arXiv:1905.12103v2.
Tristan Rivière. 2008. Analysis Aspects of Willmore Surfaces. Invent. Math. 174, 1 (2008), 1--45.
Reto A. Rüedy. 1971. Embeddings of Open Riemann Surfaces. Comm. Math. Helv. 46 (1971), 214--225.
Ilja Eckstein, Jean-Philippe Pons, Yiying Tong, C.-C. Jay Kuo, and Mathieu Desbrun. 2007. Generalized Surface Flows for Mesh Processing. In Proc. Symp. Geom. Proc. Eurographics, 183--192.
Lynn Heller. 2015. Constrained Willmore and CMC Tori in the 3-Sphere. Diff. Geom. Appl. 40 (2015), 232--242.
Christoph Bohle. 2010. Constrained Willmore Tori in the 4-Sphere. J. Diff. Geom. 86, 1 (2010), 71--132.
Ulrich Pinkall and Boris Springborn. 2021. A Discrete Version of Liouville's Theorem on Conformal Maps. Geom. Dedicata (2021).
Alexander I. Bobenko and Peter Schröder. 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc. Eurographics, 101--110.
Na Lei, Xiaopeng Zheng, Jian Jiang, Yu-Yao Lin, and David Xianfeng Gu. 2017. Quadrilateral and Hexahedral Mesh Generation Based on Surface Foliation Theory. Comp. Meth. Appl. Mech. & Eng. 316 (2017), 758--781.
Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3 (2008), 77:1--11.
Lok Ming Lui, Ka Chun Lam, Shing-Tung Yau, and Xianfeng Gu. 2014. Teichmuller Mapping (T-Map) and its Applications in Landmark Matching Registration. SIAM J. Img. Sci. 7, 1 (2014), 391--426.
Anthony Gruber and Eugenio Aulisa. 2020. Computational P-Willmore Flow with Conformal Penalty. ACM Trans. Graph. 39, 5 (2020), 161:1--16.
R. J. Renka and J. W. Neuberger. 1995. Minimal Surfaces and Sobolev Gradients. SIAM J. Sci. Comp. 16, 6 (1995), 1412--1427.
Ulrich Pinkall. 1985. Hopf Tori in S3. Invent. Math. 81, 2 (1985), 379--386.
Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM J. Sci. Comp. 41, 1 (2019), A380--A401.
Amir Vaxman, Christian Müller, and Ofir Weber. 2015. Conformal Mesh Deformations with Möbius Transformations. ACM Trans. Graph. 34, 4 (2015), 55:1--11.
Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4 (2016), 89:1--11.
Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from Metric. ACM Trans. Graph. 37, 4 (2018), 63:1--17.
Christopher Yu, Henrik Schumacher, and Keenan Crane. 2020. Repulsive Curves. (2020). arXiv:2006.07859.
Adriano M. Garsia. 1961. An Imbedding of Closed Riemann Surfaces in Euclidean Space. Comm. Math. Helv. 35 (1961), 93--110.
Huabin Ge. 2018. Combinatorial Calabi Flows on Surfaces. Trans. Amer. Math. Soc. 370, 2 (2018), 1377--1391.
Wilhelm Blaschke. 1929. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie III. Springer.
Alexander I. Bobenko, Stefan Sechelmann, and Boris Springborn. 2016. Discrete Conformal Maps: Boundary Value Problems, Circle Domains, Fuchsian and Schottky Uniformization. In Advances in Discrete Differential Geometry, Alexander I. Bobenko (Ed.). Springer, 1--56.
Ernst Kuwert and Reiner Schätzle. 2013. Minimizers of the Willmore Functional under Fixed Conformal Class. J. Diff. Geom. 93, 3 (2013), 471--530.
Boris Springborn. 2017. Hyperbolic Polyhedra and Discrete Uniformization. (2017). arXiv:1707.06848.
Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4 (2011), 104:1--10.
Fernando C. Marques and Andreé Neves. 2014. Min-Max Theory and the Willmore Conjecture. Ann. Math. 179, 2 (2014), 683--782.
George K. Francis. 1987. A Topological Picturebook. Springer.
Lynn Heller. 2013. Constrained Willmore tori and elastic curves in 2-dimensional space forms. (2013). arXiv:1303.1445.
Christoph Bohle, G. Paul Peters, and Ulrich Pinkall. 2008. Constrained Willmore Surfaces. Calc. Var. 32 (2008), 263--277.
Miao Jin, Junho Kim, and Xianfeng David Gu. 2007. Discrete Surface Ricci Flow: Theory and Applications. In IMA International Conference on Mathematics of Surfaces. Springer, 209--232.
Lynn Heller and Cheikh Birahim Ndiaye. 2019. First Explicit Constrained Willmore Minimizers of Non-Rectangular Conformal Class. (2019). arXiv:1710.00533.
Wei-Wei Xu and Kun Zhou. 2009. Gradient Domain Mesh Deformation-A Survey. J. Comp. Sci. Tech. 24, 1 (2009), 6--18.
Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2 ed.). Springer.
Mikhail V. Babich and Alexander I. Bobenko. 1993. Willmore Tori with Umbilic Lines and Minimal Surfaces in Hyperbolic Space. Duke Math. J. 72, 1 (1993), 151--185.
Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 40, 2 (2021).
Robert Bridson, S. Marino, and Ronald Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proc. Symp. Comp. Anim. 28--36.
David Glickenstein. 2011. Discrete Conformal Variations and Scalar Curvature on Piecewise Flat Two-and Three-Dimensional Manifolds. J. Diff. Geom. 87, 2 (2011), 201--238.
David Mumford and Jayant Shah. 1989. Optimal Approximations by Piecewise Smooth Functions and assocaited Variational Problems. Comm. Pure Appl. Math. 42, 5 (1989), 577--685.
Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication. ACM Trans. Par. Comput. 7, 3 (2020), 19:1--37.
John W. Barrett, Harald Garcke, and Robert Nürnberg. 2016. Computational Parametric Willmore Flow with Spontaneous Curvature and Area Difference Elasticity Effects. SIAM J. Numer. Anal. 54, 3 (2016), 1732--1762.
Bram Custers and Amir Vaxman. 2020. Subdivision Directional Fields. ACM Trans. Graph. 39, 2 (2020), 11:1--23.
Pushkar Joshi and Carlo Séquin. 2007. Energy Minimizers for Curvature-Based Surface Functionals. Comp. Aid. Des. Appl. 4, 5 (2007), 607--617.
Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis Zorin. 2021. Efficient and Robust Discrete Conformal Equivalence with Boundary. (2021). arXiv:2104.04614.
Olga Sorkine. 2006. Differential Representations for Mesh Processing. Comp. Graph. Forum 25, 4 (2006), 789--807.
Mathieu Desbrun, Eva Kanso, and Yiying Tong. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, Alexander I. Bobenko, Peter Schröder, John M. Sullivan, and Günther M. Ziegler (Eds.). Oberwolfach Seminars, Vol. 38. Birkhäuser Verlag.
Alexander I. Bobenko, Ulrich Pinkall, and Boris Springborn. 2015. Discrete Conformal Maps and Ideal Hyperbolic Polyhedra. Geom. & Top. 19, 4 (2015), 2155--2215.
Ofir Weber, Ashish Myles, and Denis Zorin. 2012. Computing Extremal Quasiconformal Maps. Comp. Graph. Forum 31, 5 (2012), 1679--1689.
Feng Luo. 2004. Combinatorial Yamabe Flow on Surfaces. Comm. Contemp. Math. 6, 5 (2004), 765--780.
Henrik Schumacher. 2017. On H2-Gradient Flow for the Willmore Energy. (2017). arXiv:1703.06469v1.
P. B. Canham. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Theor. Biology 26, 1 (1970), 61--81.
W. Helfrich. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch. C 28, 11--12 (1973), 693--703.
Eitan Grinspun, Anil Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proc. Symp. Comp. Anim. 62--67.
Reiner Michael Schätzle. 2013. Conformally Constrained Willmore Immersions. Adv. Calc. Var. 6, 4 (2013), 375--390.
Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32, 4 (2013), 61:1--10.
Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020. State-of-the-Art Sparse Direct Solvers. (2020), 3--33.
Wai Yeung Lam and Ulrich Pinkall. 2016. Holomorphic Vector Fields and Quadatic Differentials on Planar Triangular Meshes. In Advances in Discrete Differential Geometry, Alexander I. Bobenko (Ed.). Springer, 241--265.
Bennet Chow and Feng Luo. 2003. Combinatorial Ricci Flows on Surfaces. J. Diff. Geom. 63, 1 (2003), 97--129.
Amir Vaxman, Christian Müller, and Ofir Weber. 2018. Canonical Möbius Subdivision. ACM Trans. Graph. 37, 6 (2018), 227:1--15.
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_20_1
e_1_2_2_2_1
Blaschke Wilhelm (e_1_2_2_5_1)
e_1_2_2_41_1
e_1_2_2_62_1
Yu Christopher (e_1_2_2_63_1) 2020
e_1_2_2_43_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_60_1
Jin Miao (e_1_2_2_35_1) 2007
Desbrun Mathieu (e_1_2_2_22_1)
e_1_2_2_59_1
e_1_2_2_11_1
Alappat Christie (e_1_2_2_1_1) 2020; 7
Grinspun Eitan (e_1_2_2_29_1) 2003
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_57_1
Kuwert Ernst (e_1_2_2_38_1) 2013; 93
Lam Wai Yeung (e_1_2_2_39_1)
Nocedal Jorge (e_1_2_2_47_1) 2006
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_21_1
e_1_2_2_3_1
Chuang Ming (e_1_2_2_18_1) 2016; 5
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_46_1
Alexander (e_1_2_2_7_1)
Bridson Robert (e_1_2_2_13_1) 2003
e_1_2_2_61_1
Eckstein Ilja (e_1_2_2_23_1) 2007
Schätzle Reiner Michael (e_1_2_2_54_1) 2013; 6
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_10_1
Bertsekas Dimitri P. (e_1_2_2_4_1)
Pinkall Ulrich (e_1_2_2_49_1) 2021
e_1_2_2_52_1
e_1_2_2_31_1
Bohle Christoph (e_1_2_2_9_1) 2010; 86
e_1_2_2_33_1
e_1_2_2_56_1
Bobenko Alexander I. (e_1_2_2_8_1)
e_1_2_2_16_1
e_1_2_2_58_1
e_1_2_2_50_1
References_xml – reference: Miao Jin, Junho Kim, and Xianfeng David Gu. 2007. Discrete Surface Ricci Flow: Theory and Applications. In IMA International Conference on Mathematics of Surfaces. Springer, 209--232.
– reference: Henrik Schumacher. 2017. On H2-Gradient Flow for the Willmore Energy. (2017). arXiv:1703.06469v1.
– reference: Ofir Weber, Ashish Myles, and Denis Zorin. 2012. Computing Extremal Quasiconformal Maps. Comp. Graph. Forum 31, 5 (2012), 1679--1689.
– reference: Mathieu Desbrun, Eva Kanso, and Yiying Tong. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, Alexander I. Bobenko, Peter Schröder, John M. Sullivan, and Günther M. Ziegler (Eds.). Oberwolfach Seminars, Vol. 38. Birkhäuser Verlag.
– reference: Marcel Campen, Ryan Capouellez, Hanxiao Shen, Leyi Zhu, Daniele Panozzo, and Denis Zorin. 2021. Efficient and Robust Discrete Conformal Equivalence with Boundary. (2021). arXiv:2104.04614.
– reference: Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2 ed.). Springer.
– reference: Ulrich Pinkall. 1985. Hopf Tori in S3. Invent. Math. 81, 2 (1985), 379--386.
– reference: Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4 (2011), 104:1--10.
– reference: John W. Barrett, Harald Garcke, and Robert Nürnberg. 2016. Computational Parametric Willmore Flow with Spontaneous Curvature and Area Difference Elasticity Effects. SIAM J. Numer. Anal. 54, 3 (2016), 1732--1762.
– reference: Tristan Rivière. 2008. Analysis Aspects of Willmore Surfaces. Invent. Math. 174, 1 (2008), 1--45.
– reference: Huabin Ge. 2018. Combinatorial Calabi Flows on Surfaces. Trans. Amer. Math. Soc. 370, 2 (2018), 1377--1391.
– reference: Eitan Grinspun, Anil Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete Shells. In Proc. Symp. Comp. Anim. 62--67.
– reference: David Glickenstein. 2011. Discrete Conformal Variations and Scalar Curvature on Piecewise Flat Two-and Three-Dimensional Manifolds. J. Diff. Geom. 87, 2 (2011), 201--238.
– reference: W. Helfrich. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch. C 28, 11--12 (1973), 693--703.
– reference: P. B. Canham. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Theor. Biology 26, 1 (1970), 61--81.
– reference: Feng Luo. 2004. Combinatorial Yamabe Flow on Surfaces. Comm. Contemp. Math. 6, 5 (2004), 765--780.
– reference: Alexander I. Bobenko and Peter Schröder. 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc. Eurographics, 101--110.
– reference: David Mumford and Jayant Shah. 1989. Optimal Approximations by Piecewise Smooth Functions and assocaited Variational Problems. Comm. Pure Appl. Math. 42, 5 (1989), 577--685.
– reference: Wai Yeung Lam and Ulrich Pinkall. 2017. Isothermic Triangulated Surfaces. Math. Ann. 368, 1--2 (2017), 165--195.
– reference: Lynn Heller. 2013. Constrained Willmore tori and elastic curves in 2-dimensional space forms. (2013). arXiv:1303.1445.
– reference: Reiner Michael Schätzle. 2013. Conformally Constrained Willmore Immersions. Adv. Calc. Var. 6, 4 (2013), 375--390.
– reference: Amir Vaxman, Christian Müller, and Ofir Weber. 2015. Conformal Mesh Deformations with Möbius Transformations. ACM Trans. Graph. 34, 4 (2015), 55:1--11.
– reference: Christoph Bohle. 2010. Constrained Willmore Tori in the 4-Sphere. J. Diff. Geom. 86, 1 (2010), 71--132.
– reference: Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from Metric. ACM Trans. Graph. 37, 4 (2018), 63:1--17.
– reference: Bram Custers and Amir Vaxman. 2020. Subdivision Directional Fields. ACM Trans. Graph. 39, 2 (2020), 11:1--23.
– reference: George K. Francis. 1987. A Topological Picturebook. Springer.
– reference: Reto A. Rüedy. 1971. Embeddings of Open Riemann Surfaces. Comm. Math. Helv. 46 (1971), 214--225.
– reference: Bennet Chow and Feng Luo. 2003. Combinatorial Ricci Flows on Surfaces. J. Diff. Geom. 63, 1 (2003), 97--129.
– reference: Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4 (2016), 89:1--11.
– reference: Pushkar Joshi and Carlo Séquin. 2007. Energy Minimizers for Curvature-Based Surface Functionals. Comp. Aid. Des. Appl. 4, 5 (2007), 607--617.
– reference: Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust Fairing via Conformal Curvature Flow. ACM Trans. Graph. 32, 4 (2013), 61:1--10.
– reference: Amir Vaxman, Christian Müller, and Ofir Weber. 2018. Canonical Möbius Subdivision. ACM Trans. Graph. 37, 6 (2018), 227:1--15.
– reference: Fernando C. Marques and Andreé Neves. 2014. Min-Max Theory and the Willmore Conjecture. Ann. Math. 179, 2 (2014), 683--782.
– reference: Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3 (2008), 77:1--11.
– reference: Lynn Heller and Cheikh Birahim Ndiaye. 2019. First Explicit Constrained Willmore Minimizers of Non-Rectangular Conformal Class. (2019). arXiv:1710.00533.
– reference: Anthony Gruber and Eugenio Aulisa. 2020. Computational P-Willmore Flow with Conformal Penalty. ACM Trans. Graph. 39, 5 (2020), 161:1--16.
– reference: Florian Schäfer and Anima Anandkumar. 2019. Competitive Gradient Descent. (2019). arXiv:1905.12103v2.
– reference: R. J. Renka and J. W. Neuberger. 1995. Minimal Surfaces and Sobolev Gradients. SIAM J. Sci. Comp. 16, 6 (1995), 1412--1427.
– reference: Ulrich Pinkall and Boris Springborn. 2021. A Discrete Version of Liouville's Theorem on Conformal Maps. Geom. Dedicata (2021).
– reference: Lynn Heller. 2015. Constrained Willmore and CMC Tori in the 3-Sphere. Diff. Geom. Appl. 40 (2015), 232--242.
– reference: Olga Sorkine. 2006. Differential Representations for Mesh Processing. Comp. Graph. Forum 25, 4 (2006), 789--807.
– reference: Feng Luo, Jian Sun, and Tianqi Wu. 2020. Discrete Conformal Geometry of Polyhedral Surfaces and its Convergence. (2020). arXiv:2009.12706.
– reference: Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 40, 2 (2021).
– reference: Alexander I. Bobenko, Stefan Sechelmann, and Boris Springborn. 2016. Discrete Conformal Maps: Boundary Value Problems, Circle Domains, Fuchsian and Schottky Uniformization. In Advances in Discrete Differential Geometry, Alexander I. Bobenko (Ed.). Springer, 1--56.
– reference: Wilhelm Blaschke. 1929. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie III. Springer.
– reference: Christopher Yu, Henrik Schumacher, and Keenan Crane. 2020. Repulsive Curves. (2020). arXiv:2006.07859.
– reference: Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication. ACM Trans. Par. Comput. 7, 3 (2020), 19:1--37.
– reference: Matthias Bollhöfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019. Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM J. Sci. Comp. 41, 1 (2019), A380--A401.
– reference: Mikhail V. Babich and Alexander I. Bobenko. 1993. Willmore Tori with Umbilic Lines and Minimal Surfaces in Hyperbolic Space. Duke Math. J. 72, 1 (1993), 151--185.
– reference: Na Lei, Xiaopeng Zheng, Jian Jiang, Yu-Yao Lin, and David Xianfeng Gu. 2017. Quadrilateral and Hexahedral Mesh Generation Based on Surface Foliation Theory. Comp. Meth. Appl. Mech. & Eng. 316 (2017), 758--781.
– reference: Boris Springborn. 2017. Hyperbolic Polyhedra and Discrete Uniformization. (2017). arXiv:1707.06848.
– reference: Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020. State-of-the-Art Sparse Direct Solvers. (2020), 3--33.
– reference: Ernst Kuwert and Reiner Schätzle. 2013. Minimizers of the Willmore Functional under Fixed Conformal Class. J. Diff. Geom. 93, 3 (2013), 471--530.
– reference: Alexander I. Bobenko, Ulrich Pinkall, and Boris Springborn. 2015. Discrete Conformal Maps and Ideal Hyperbolic Polyhedra. Geom. & Top. 19, 4 (2015), 2155--2215.
– reference: Christoph Bohle, G. Paul Peters, and Ulrich Pinkall. 2008. Constrained Willmore Surfaces. Calc. Var. 32 (2008), 263--277.
– reference: Lok Ming Lui, Ka Chun Lam, Shing-Tung Yau, and Xianfeng Gu. 2014. Teichmuller Mapping (T-Map) and its Applications in Landmark Matching Registration. SIAM J. Img. Sci. 7, 1 (2014), 391--426.
– reference: Robert Bridson, S. Marino, and Ronald Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proc. Symp. Comp. Anim. 28--36.
– reference: Ming Chuang, Szymon Rusinkiewicz, and Misha Kazhdan. 2016. Gradient-Domain Processing of Meshes. J. Comp. Graph. Tech. 5, 4 (2016), 44--55.
– reference: Dimitri P. Bertsekas. 1996. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific.
– reference: Ilja Eckstein, Jean-Philippe Pons, Yiying Tong, C.-C. Jay Kuo, and Mathieu Desbrun. 2007. Generalized Surface Flows for Mesh Processing. In Proc. Symp. Geom. Proc. Eurographics, 183--192.
– reference: Wei-Wei Xu and Kun Zhou. 2009. Gradient Domain Mesh Deformation-A Survey. J. Comp. Sci. Tech. 24, 1 (2009), 6--18.
– reference: Wai Yeung Lam and Ulrich Pinkall. 2016. Holomorphic Vector Fields and Quadatic Differentials on Planar Triangular Meshes. In Advances in Discrete Differential Geometry, Alexander I. Bobenko (Ed.). Springer, 241--265.
– reference: Adriano M. Garsia. 1961. An Imbedding of Closed Riemann Surfaces in Euclidean Space. Comm. Math. Helv. 35 (1961), 93--110.
– volume: 5
  start-page: 44
  year: 2016
  ident: e_1_2_2_18_1
  article-title: Gradient-Domain Processing of Meshes
  publication-title: J. Comp. Graph. Tech.
– ident: e_1_2_2_30_1
  doi: 10.1145/3369387
– ident: e_1_2_2_3_1
  doi: 10.1137/16M1065379
– ident: e_1_2_2_27_1
  doi: 10.1145/3450626.3459763
– ident: e_1_2_2_25_1
  doi: 10.1007/BF02567009
– volume-title: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie III
  ident: e_1_2_2_5_1
– volume: 6
  start-page: 375
  year: 2013
  ident: e_1_2_2_54_1
  article-title: Conformally Constrained Willmore
  publication-title: Immersions. Adv. Calc. Var.
– ident: e_1_2_2_20_1
  doi: 10.1145/2461912.2461986
– ident: e_1_2_2_52_1
  doi: 10.1007/BF02566840
– ident: e_1_2_2_2_1
  doi: 10.1215/S0012-7094-93-07207-9
– volume-title: Discrete Shells. In Proc. Symp. Comp. Anim. 62--67
  year: 2003
  ident: e_1_2_2_29_1
– ident: e_1_2_2_10_1
  doi: 10.1007/s00526-007-0142-5
– ident: e_1_2_2_15_1
  doi: 10.1016/S0022-5193(70)80032-7
– volume: 93
  start-page: 471
  year: 2013
  ident: e_1_2_2_38_1
  article-title: Minimizers of the Willmore Functional under Fixed Conformal Class
  publication-title: J. Diff. Geom.
– volume-title: Wright
  year: 2006
  ident: e_1_2_2_47_1
– ident: e_1_2_2_60_1
  doi: 10.1145/3272127.3275007
– ident: e_1_2_2_26_1
  doi: 10.1090/tran/7196
– ident: e_1_2_2_6_1
  doi: 10.2140/gt.2015.19.2155
– ident: e_1_2_2_16_1
  doi: 10.1145/3197517.3201276
– ident: e_1_2_2_41_1
  doi: 10.1016/j.cma.2016.09.044
– ident: e_1_2_2_14_1
– ident: e_1_2_2_56_1
  doi: 10.1111/j.1467-8659.2006.00999.x
– ident: e_1_2_2_58_1
  doi: 10.1145/1360612.1360676
– ident: e_1_2_2_51_1
  doi: 10.1007/s00222-008-0129-7
– ident: e_1_2_2_55_1
– ident: e_1_2_2_21_1
  doi: 10.1145/3375659
– volume: 7
  year: 2020
  ident: e_1_2_2_1_1
  article-title: A Recursive Algebraic Coloring Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication
  publication-title: ACM Trans. Par. Comput.
– volume-title: Oberwolfach Seminars
  ident: e_1_2_2_22_1
– ident: e_1_2_2_44_1
– ident: e_1_2_2_50_1
  doi: 10.1137/0916082
– ident: e_1_2_2_32_1
  doi: 10.4310/CAG.2014.v22.n2.a6
– ident: e_1_2_2_43_1
  doi: 10.1142/S0219199704001501
– ident: e_1_2_2_48_1
  doi: 10.1007/BF01389060
– ident: e_1_2_2_61_1
  doi: 10.1111/j.1467-8659.2012.03173.x
– volume-title: Discrete Surface Ricci Flow: Theory and Applications. In IMA International Conference on Mathematics of Surfaces. Springer, 209--232
  year: 2007
  ident: e_1_2_2_35_1
– volume-title: Advances in Discrete Differential Geometry, Alexander I
  ident: e_1_2_2_39_1
– volume-title: Constrained Optimization and Lagrange Multiplier Methods
  ident: e_1_2_2_4_1
– ident: e_1_2_2_12_1
  doi: 10.1007/978-3-030-43736-7_1
– volume-title: Proc. Symp. Comp. Anim. 28--36
  year: 2003
  ident: e_1_2_2_13_1
– ident: e_1_2_2_42_1
  doi: 10.1137/120900186
– ident: e_1_2_2_57_1
– volume: 86
  start-page: 71
  year: 2010
  ident: e_1_2_2_9_1
  article-title: Constrained Willmore Tori in the 4-Sphere
  publication-title: J. Diff. Geom.
– ident: e_1_2_2_19_1
  doi: 10.1145/2010324.1964999
– ident: e_1_2_2_45_1
  doi: 10.4007/annals.2014.179.2.6
– ident: e_1_2_2_17_1
  doi: 10.4310/jdg/1080835659
– volume-title: A Discrete Version of Liouville's Theorem on Conformal Maps. Geom. Dedicata
  year: 2021
  ident: e_1_2_2_49_1
– ident: e_1_2_2_28_1
  doi: 10.4310/jdg/1304514973
– volume-title: Proc. Symp. Geom. Proc. Eurographics, 101--110
  ident: e_1_2_2_7_1
– ident: e_1_2_2_33_1
  doi: 10.1016/j.difgeo.2015.03.003
– ident: e_1_2_2_11_1
  doi: 10.1137/17M1147615
– ident: e_1_2_2_34_1
– ident: e_1_2_2_31_1
  doi: 10.1515/znc-1973-11-1209
– ident: e_1_2_2_46_1
  doi: 10.1002/cpa.3160420503
– ident: e_1_2_2_36_1
  doi: 10.1080/16864360.2007.10738495
– ident: e_1_2_2_53_1
– ident: e_1_2_2_40_1
  doi: 10.1007/s00208-016-1424-z
– volume-title: Circle Domains, Fuchsian and Schottky Uniformization. In Advances in Discrete Differential Geometry, Alexander I
  ident: e_1_2_2_8_1
– volume-title: Proc. Symp. Geom. Proc. Eurographics, 183--192
  year: 2007
  ident: e_1_2_2_23_1
– ident: e_1_2_2_37_1
  doi: 10.1145/2897824.2925944
– ident: e_1_2_2_24_1
– ident: e_1_2_2_59_1
  doi: 10.1145/2766915
– ident: e_1_2_2_62_1
  doi: 10.1007/s11390-009-9209-4
– volume-title: arXiv:2006.07859
  year: 2020
  ident: e_1_2_2_63_1
SSID ssj0006446
Score 2.4753783
Snippet Smooth curves and surfaces can be characterized as minimizers of squared curvature bending energies subject to constraints. In the univariate case with an...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computer graphics
Computing methodologies
Discretization
Mathematical analysis
Mathematical optimization
Mathematics of computing
Mesh geometry models
Numerical analysis
Shape analysis
Shape modeling
SubjectTermsDisplay Computing methodologies -- Computer graphics -- Shape modeling -- Mesh geometry models
Computing methodologies -- Computer graphics -- Shape modeling -- Shape analysis
Mathematics of computing -- Mathematical analysis -- Mathematical optimization
Mathematics of computing -- Mathematical analysis -- Numerical analysis -- Discretization
Title Constrained willmore surfaces
URI https://dl.acm.org/doi/10.1145/3450626.3459759
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UL3owihpRMRw8mJjhtm6MHhEkREUPQOJt6brWkMxB-EiMf72vazfqB4l62UhTXta9t_fRvvd7CF3gSDACsY9lN6lteYJ4VgRmAz682GZcQl4RWSjcf2z0Rt7ds_-8apeaVZcsojp7_7Gu5D9chTHgq6yS_QNnC6IwAL-Bv3AFDsP1VzyW3TazHg9ZDnmSyKTZq_lyJmSelel2ttp92Qwi7wyeHRFkUNVGrvtgkoz1diiogPlSrE7-ucr4bUk8rCJNpjOmMF1lAzwlL4V6v0_l4ftNYzpVCQBdnozfzM0Ft9gtLXQQKABLRk3KXGgd6QdWgFU3nFyJKswlLSyeoREdw7SqKs3vStuT-BbY822IrupwJ4FGCf8Ej_3FbBXJhKq02g81gVAT2ERbLoQOoPu2Wp3-w6Cwz-ABZifY-dI04BOQuP7yDNJjYa-Gx2K4HsM9tKtjhlpLCcA-2uBpGe0YSJIHqGqIQi0XhVouCodo1L0dtnuW7nxhUXighRUIihkTEaEYc-JQRhmJaYPQWMSuwGCgXO4EOKASDc5x7Yg6MO7FLvOFAKWKj1ApnaT8GNUkuA58c0JQyjzRZJFPXUaYy2JBeExZBZVhjeFUYZvkL6-C6vmaQ6bB4uUiknDN266gy-IPOa01U09-P_UUba-k8gyVFrMlr4ITuIjONVc_AN7ZVQk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+willmore+surfaces&rft.jtitle=ACM+transactions+on+graphics&rft.au=Soliman%2C+Yousuf&rft.au=Chern%2C+Albert&rft.au=Diamanti%2C+Olga&rft.au=Kn%C3%B6ppel%2C+Felix&rft.date=2021-08-31&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1145%2F3450626.3459759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3450626_3459759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon