Torrefaction of Sorghum Straw Pellets in a Stationary Reactor with a Feeding Screw

The effects of temperature and rotating speed of a feeding screw on the key performance parameters (mass yield, energy yield, and energy densification index) of torrefaction in a stationary reactor with a feeding screw were studied. A comparative experiment of sorghum straw pellet torrefaction was p...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 34; no. 5; pp. 5997 - 6007
Main Authors Liu, Xuanzuo, Yao, Zonglu, Zhao, Lixin, Song, Jinchun, Jia, Jixiu
Format Journal Article
LanguageEnglish
Published American Chemical Society 21.05.2020
Online AccessGet full text

Cover

Loading…
Abstract The effects of temperature and rotating speed of a feeding screw on the key performance parameters (mass yield, energy yield, and energy densification index) of torrefaction in a stationary reactor with a feeding screw were studied. A comparative experiment of sorghum straw pellet torrefaction was performed on a fixed tube furnace. The results obtained from torrefaction in two reactors indicated that the increase in temperature resulted in a decrease in mass yield and energy yield. As the temperature increased, the volatile content in the solid products decreased and the fixed carbon content increased, indicating that the increase in temperature leads to a deeper degree of biomass thermal degradation. The thermal degradation characteristics of sorghum straw were supplemented by thermogravimetric experimental results measured at 2.5, 5, 10, 20, 40, and 60 °C/min. Compared with the fixed tube furnace, the pellets torrefied in the stationary reactor with a feeding screw were heated more uniformly due to the mechanical rotation of the feeding screw. The effect of the feeding screw on the heat transfer mechanism in the stationary reactor was analyzed based on the results of the torrefaction tests in the two reactors. The temperature distribution in the stationary reactor with a feeding screw was measured by five thermocouple measuring rods, which were evenly installed at 0.05 m to the inner pipe wall along the screw axis. It can be seen from the measured temperature profiles that the heating rate of the pellets heated in the stationary reactor with the feeding screw was variable. For the stationary reactor with the feeding screw loaded with biomass pellets, the optimal rotating speed of the feeding screw for torrefaction in the stationary reactor can be estimated by temperature and the theoretical average heating rate (HRestimation). Comparing the results obtained from the torrefaction tests and thermogravimetric experiments, it can be concluded that the optimal theoretical average heating rate is 4–4.5 °C/min.
AbstractList The effects of temperature and rotating speed of a feeding screw on the key performance parameters (mass yield, energy yield, and energy densification index) of torrefaction in a stationary reactor with a feeding screw were studied. A comparative experiment of sorghum straw pellet torrefaction was performed on a fixed tube furnace. The results obtained from torrefaction in two reactors indicated that the increase in temperature resulted in a decrease in mass yield and energy yield. As the temperature increased, the volatile content in the solid products decreased and the fixed carbon content increased, indicating that the increase in temperature leads to a deeper degree of biomass thermal degradation. The thermal degradation characteristics of sorghum straw were supplemented by thermogravimetric experimental results measured at 2.5, 5, 10, 20, 40, and 60 °C/min. Compared with the fixed tube furnace, the pellets torrefied in the stationary reactor with a feeding screw were heated more uniformly due to the mechanical rotation of the feeding screw. The effect of the feeding screw on the heat transfer mechanism in the stationary reactor was analyzed based on the results of the torrefaction tests in the two reactors. The temperature distribution in the stationary reactor with a feeding screw was measured by five thermocouple measuring rods, which were evenly installed at 0.05 m to the inner pipe wall along the screw axis. It can be seen from the measured temperature profiles that the heating rate of the pellets heated in the stationary reactor with the feeding screw was variable. For the stationary reactor with the feeding screw loaded with biomass pellets, the optimal rotating speed of the feeding screw for torrefaction in the stationary reactor can be estimated by temperature and the theoretical average heating rate (HRestimation). Comparing the results obtained from the torrefaction tests and thermogravimetric experiments, it can be concluded that the optimal theoretical average heating rate is 4–4.5 °C/min.
Author Jia, Jixiu
Yao, Zonglu
Zhao, Lixin
Song, Jinchun
Liu, Xuanzuo
AuthorAffiliation Institute of Environment and Sustainable Development in Agriculture
Key Laboratory of Energy Resource Utilization from Agriculture Residue of Ministry of Agriculture and Rural Affairs
School of Mechanical Engineering and Automation
AuthorAffiliation_xml – name: School of Mechanical Engineering and Automation
– name: Key Laboratory of Energy Resource Utilization from Agriculture Residue of Ministry of Agriculture and Rural Affairs
– name: Institute of Environment and Sustainable Development in Agriculture
Author_xml – sequence: 1
  givenname: Xuanzuo
  surname: Liu
  fullname: Liu, Xuanzuo
  organization: School of Mechanical Engineering and Automation
– sequence: 2
  givenname: Zonglu
  orcidid: 0000-0002-6203-6362
  surname: Yao
  fullname: Yao, Zonglu
  email: yaozonglu@163.com
  organization: Institute of Environment and Sustainable Development in Agriculture
– sequence: 3
  givenname: Lixin
  surname: Zhao
  fullname: Zhao, Lixin
  organization: Key Laboratory of Energy Resource Utilization from Agriculture Residue of Ministry of Agriculture and Rural Affairs
– sequence: 4
  givenname: Jinchun
  surname: Song
  fullname: Song, Jinchun
  organization: School of Mechanical Engineering and Automation
– sequence: 5
  givenname: Jixiu
  surname: Jia
  fullname: Jia, Jixiu
  organization: Institute of Environment and Sustainable Development in Agriculture
BookMark eNqFkMFqAjEQhkOxULV9huYF1s4ku5vNsUhtBaFF7XmJm0RX1qQkK-LbN6KH3noamPm_YeYbkYHzzhDyjDBBYPiimjgxzoTt2R5NFyfQABQc78gQCwZZAUwOyBCqSmRQsvyBjGLcA0DJq2JIlmsfgrGq6VvvqLd05cN2dzzQVR_UiX6ZrjN9pK2jKrXUJaXCmS5NInygp7bfpcnMGN26LV01wZweyb1VXTRPtzom37O39fQjW3y-z6evi0xxwD7jOS-LvNKcASqmsNQWJaLmWtl8Y5kVGnAjCqlQ5CKXwMXGCi6NVBKN1HxMxHVvE3yM6Yn6J7SHdF2NUF_U1ElN_UdNfVOTSH4lL4G9PwaX7vyX-gW8f2_m
CitedBy_id crossref_primary_10_2139_ssrn_4748400
crossref_primary_10_1016_j_biortech_2023_129335
crossref_primary_10_1007_s12155_021_10319_8
crossref_primary_10_1016_j_asej_2023_102459
crossref_primary_10_3390_pr10101912
crossref_primary_10_1016_j_joei_2023_101199
crossref_primary_10_3390_catal11070805
Cites_doi 10.1016/j.jaap.2012.03.009
10.1016/j.scitotenv.2018.03.180
10.1016/B978-0-12-803780-5.00008-3
10.1016/S0378-3820(02)00049-8
10.1002/cjce.21630
10.1016/j.fuproc.2012.03.013
10.1007/978-90-481-3295-9_2
10.1016/j.energy.2008.03.007
10.1016/j.fuel.2006.12.013
10.1016/j.fuel.2008.04.042
10.1155/2012/165202
10.1021/ef0580117
10.1016/j.fuel.2014.07.036
10.1016/j.carbpol.2010.04.018
10.4155/bfs.12.75
10.1016/j.fuproc.2005.08.006
10.1021/acs.energyfuels.8b04501
10.1021/acs.energyfuels.7b00259
10.1016/j.tca.2009.06.024
10.1016/0017-9310(87)90312-7
10.1021/acs.energyfuels.9b01086
10.1021/acs.energyfuels.6b00328
10.1016/j.fuel.2015.03.025
10.1021/acs.energyfuels.5b01352
10.1007/BF02664572
10.1021/acs.energyfuels.5b01263
10.1016/j.rser.2011.09.017
10.1021/acs.energyfuels.7b03067
10.1016/0009-2509(84)80140-2
10.1016/j.biortech.2010.01.129
10.1021/ef401788m
10.1021/acs.energyfuels.8b04406
10.1016/j.biotechadv.2012.01.018
10.1016/j.ecolind.2014.06.043
10.1021/acs.energyfuels.8b01136
10.1021/acs.energyfuels.8b01519
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.energyfuels.0c00531
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 6007
ExternalDocumentID 10_1021_acs_energyfuels_0c00531
d159632598
GroupedDBID 02
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
5VS
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
ID FETCH-LOGICAL-a301t-3436548d3201a2a16df1911d3daf4bf2f7d01b759a174749037bf739e9a91e9d3
IEDL.DBID ACS
ISSN 0887-0624
IngestDate Fri Aug 23 01:37:42 EDT 2024
Thu Aug 27 22:10:04 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a301t-3436548d3201a2a16df1911d3daf4bf2f7d01b759a174749037bf739e9a91e9d3
ORCID 0000-0002-6203-6362
PageCount 11
ParticipantIDs crossref_primary_10_1021_acs_energyfuels_0c00531
acs_journals_10_1021_acs_energyfuels_0c00531
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20200521
2020-05-21
PublicationDateYYYYMMDD 2020-05-21
PublicationDate_xml – month: 05
  year: 2020
  text: 20200521
  day: 21
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Van Soest P. J. (ref23/cit23) 1963; 46
ref22/cit22
ref13/cit13
ref33/cit33
Zhao L. X. (ref27/cit27) 2016; 47
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1016/j.jaap.2012.03.009
– ident: ref38/cit38
  doi: 10.1016/j.scitotenv.2018.03.180
– ident: ref39/cit39
  doi: 10.1016/B978-0-12-803780-5.00008-3
– ident: ref25/cit25
  doi: 10.1016/S0378-3820(02)00049-8
– ident: ref37/cit37
  doi: 10.1002/cjce.21630
– ident: ref7/cit7
  doi: 10.1016/j.fuproc.2012.03.013
– ident: ref1/cit1
  doi: 10.1007/978-90-481-3295-9_2
– ident: ref22/cit22
  doi: 10.1016/j.energy.2008.03.007
– volume: 47
  start-page: 220
  year: 2016
  ident: ref27/cit27
  publication-title: Trans. Chin. Soc. Agric. Mach.
  contributor:
    fullname: Zhao L. X.
– ident: ref29/cit29
  doi: 10.1016/j.fuel.2006.12.013
– ident: ref35/cit35
  doi: 10.1016/j.fuel.2008.04.042
– ident: ref2/cit2
  doi: 10.1155/2012/165202
– ident: ref28/cit28
  doi: 10.1021/ef0580117
– ident: ref13/cit13
  doi: 10.1016/j.fuel.2014.07.036
– ident: ref31/cit31
  doi: 10.1016/j.carbpol.2010.04.018
– ident: ref34/cit34
  doi: 10.1002/cjce.21630
– ident: ref6/cit6
  doi: 10.4155/bfs.12.75
– volume: 46
  start-page: 829
  year: 1963
  ident: ref23/cit23
  publication-title: J. – Assoc. Off. Anal. Chem.
  contributor:
    fullname: Van Soest P. J.
– ident: ref24/cit24
  doi: 10.1016/j.fuproc.2005.08.006
– ident: ref18/cit18
  doi: 10.1021/acs.energyfuels.8b04501
– ident: ref11/cit11
  doi: 10.1021/acs.energyfuels.7b00259
– ident: ref4/cit4
  doi: 10.1016/j.tca.2009.06.024
– ident: ref40/cit40
  doi: 10.1016/0017-9310(87)90312-7
– ident: ref8/cit8
  doi: 10.1021/acs.energyfuels.9b01086
– ident: ref20/cit20
  doi: 10.1021/acs.energyfuels.6b00328
– ident: ref26/cit26
  doi: 10.1016/j.fuel.2015.03.025
– ident: ref17/cit17
  doi: 10.1021/acs.energyfuels.5b01352
– ident: ref36/cit36
  doi: 10.1007/BF02664572
– ident: ref14/cit14
  doi: 10.1021/acs.energyfuels.5b01263
– ident: ref32/cit32
  doi: 10.1016/j.rser.2011.09.017
– ident: ref19/cit19
  doi: 10.1021/acs.energyfuels.7b03067
– ident: ref33/cit33
  doi: 10.1016/0009-2509(84)80140-2
– ident: ref5/cit5
  doi: 10.1016/j.biortech.2010.01.129
– ident: ref16/cit16
  doi: 10.1021/ef401788m
– ident: ref10/cit10
  doi: 10.1021/acs.energyfuels.8b04406
– ident: ref12/cit12
  doi: 10.1016/j.biotechadv.2012.01.018
– ident: ref3/cit3
  doi: 10.1016/j.ecolind.2014.06.043
– ident: ref9/cit9
  doi: 10.1021/acs.energyfuels.8b01136
– ident: ref21/cit21
  doi: 10.1021/acs.energyfuels.8b01519
– ident: ref30/cit30
SSID ssj0006385
Score 2.4035285
Snippet The effects of temperature and rotating speed of a feeding screw on the key performance parameters (mass yield, energy yield, and energy densification index)...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 5997
Title Torrefaction of Sorghum Straw Pellets in a Stationary Reactor with a Feeding Screw
URI http://dx.doi.org/10.1021/acs.energyfuels.0c00531
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qPagHH1WxvsjBo1s3ye7GHEuxFEGRPqC3JdlsUMRW2i1Ff72TfUhBinrdsJswmez3zUxmBuCKaiW0QeaWMOetQkbuKaWlx2VqaCh44nOX7_zwGPVGwf04HNeArongM3qjknkrzfPg7ALhouUnueJswCZDdHT2Vrsz-P75ojqFVXFPP2JBdaVr_YccLCXzFVhawZfuHvSrLJ3iWslra5HpVvL5s2jj35e-D7sl2yTtQj0OoJZOGrDVqZq8NWBnpR7hIfSHrldHmetAppYMcJ7nxRtxNWyX5Mk5-bM5eZkQRQZFDF_NPkg_zZv2EOfTxZFuAYhkgIR0eQSj7t2w0_PKpguewrOeeTzgrpW84cgMFFM0MhZNOmq4UTbQlllhfKpFKBXaMiKQPhfaCtxaqSRNpeHHUJ9MJ-kJkMggGZC3wjAeBsxyrVMjo8Ci0lChpGnCNUooLg_NPM7j4YzG7uGK2OJSbE3wqy2K34tSHL-9cvq_Gc5gmzlz2g89Rs-hns0W6QVyjkxf5lr2BfpR1LU
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HAYHHgPEmxw40tEkbUOOaGIaMBDaQ4JTlTSNQIiBaCcEvx6na8eEhBBcUzVJHaffFzu2AQ6pVkIbZG4Jc9YqZOSeUlp6XKaGhoInPnfxzlfXUXsQXNyGtzNwUsXC4CQy7CkrnPhf2QXosWtLi3A4O0LUaPhJoT-zMB8KxDxHipq9yT8YtSqscnz6EQuqm10_d-TQKcmm0GkKZlrLcDeZYHG75LExynUj-fiWu_E_X7ACSyX3JKdjZVmFmXRYh1qzKvlWh8Wp7IRr0O27yh1l5AN5tqSHY92PnojLaPtGbpzJP8_Iw5Ao0ht79NXrO-mmRQkf4iy8-KQ1hkfSQ3r6tg6D1lm_2fbKEgyewp2fezzgrrC84cgTFFM0MhYPeNRwo2ygLbPC-FSLUCo82YhA-lxoK3ChpZI0lYZvwNzweZhuAokMUgN5IgzjYcAs1zo1MgosqhAVSpotOEIJxeUWyuLCO85o7BqnxBaXYtsCv1qp-GWcmOO3V7b_NsIB1Nr9q07cOb--3IEF5g7afugxugtz-eso3UM2kuv9QvE-ARmz3SA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8AD8e_Ba_zYOPdjZJ2xjwRabDzzGcg71ISZoGRZxj7RD96710rQxBRF8TmqSXu9zvcrk7gAOqldAGkVvC3G0VInJPKS09LlNDQ8ETn7t459tmdNEJrrphdwJOqlgYXESGI2WFE99Jdd_YMsMAPXLtaRESZ4eoOWp-UvDQJEyHggZOLE_r7a9zGDkrrPJ8-hELqtddPw_kNFSSjWmoMVXTWISHr0UWL0yea8Nc15KPb_kb__sXS7BQYlByOmKaZZhIeyswW69Kv63A_FiWwlW4u3cVPMoICPJqSRvnexy-EJfZ9o203NV_npGnHlGkPfLsq8E7uUuLUj7E3fRiT2OkJkkbYerbGnQa5_f1C68sxeApPAFyjwfcFZg3HPGCYopGxqKhRw03ygbaMiuMT7UIpUILRwTS50JbgRsulaSpNHwdpnqvvXQDSGQQIshjYRgPA2a51qmRUWCRlahQ0mzCIVIoLkUpiwsvOaOxaxwjW1ySbRP8arfi_ihBx2-fbP1thn2YaZ014pvL5vU2zDFnb_uhx-gOTOWDYbqLoCTXewXvfQIxY9-a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Torrefaction+of+Sorghum+Straw+Pellets+in+a+Stationary+Reactor+with+a+Feeding+Screw&rft.jtitle=Energy+%26+fuels&rft.au=Liu%2C+Xuanzuo&rft.au=Yao%2C+Zonglu&rft.au=Zhao%2C+Lixin&rft.au=Song%2C+Jinchun&rft.date=2020-05-21&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=34&rft.issue=5&rft.spage=5997&rft.epage=6007&rft_id=info:doi/10.1021%2Facs.energyfuels.0c00531&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_energyfuels_0c00531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon