Toward an Explainable Large Language Model for the Automatic Identification of the Drug-Induced Liver Injury Literature

Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intric...

Full description

Saved in:
Bibliographic Details
Published inChemical research in toxicology Vol. 37; no. 9; pp. 1524 - 1534
Main Authors Ma, Chunwei, Wolfinger, Russell D.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.09.2024
Online AccessGet full text

Cover

Loading…
Abstract Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs’ initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process.
AbstractList Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs’ initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process.
Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs' initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process.Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs' initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process.
Author Ma, Chunwei
Wolfinger, Russell D.
AuthorAffiliation JMP Statistical Discovery, LLC
AuthorAffiliation_xml – name: JMP Statistical Discovery, LLC
Author_xml – sequence: 1
  givenname: Chunwei
  orcidid: 0000-0001-9410-1264
  surname: Ma
  fullname: Ma, Chunwei
  email: chunwei.ma@jmp.com
  organization: JMP Statistical Discovery, LLC
– sequence: 2
  givenname: Russell D.
  surname: Wolfinger
  fullname: Wolfinger, Russell D.
  organization: JMP Statistical Discovery, LLC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39190012$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlPwzAQhS0EomX5C5WPXFK8ZPOxKlulIi4gcYscZ1xSJXaxY5Z_j0sLHLnYfprvjTzzTtChsQYQmlAypYTRS6n8VL1A78AP9mOaKkIoTw_QmGaMJBmh5BCNSSl4wlj5PEIn3q8jEr3FMRpxQUVUbIzeH-27dA2WBl9_bDrZGll3gJfSrbanWQUZH_e2gQ5r6_DwAngWBtvLoVV40YAZWt2qqKzBVn_Xr1xYJQvTBAUNXrZv4PDCrIP7jGIAJ4fg4Awdadl5ON_fp-jp5vpxfpcsH24X89kykZzQIaG8YMChEXVdgGA50ayOPyeqLrJaCWB5yUVakjJVOi8lZyrXskhVnI_XpND8FF3s-m6cfQ1xWVXfegVdJw3Y4CtORJGKjPEsopM9Guoemmrj2l66z-pnWRHId4By1nsH-hehpNqmUsVUqr9Uqn0q0ch2xm19bYMzceT_TF8175XT
Cites_doi 10.3389/fgene.2022.867946
10.1108/eb026526
10.1111/j.1365-2036.2010.04320.x
10.1609/aaai.v37i11.26505
10.3350/cmh.2012.18.3.249
10.1023/A:1010933404324
10.1093/bib/bbac409
10.1093/bioinformatics/btx815
10.18653/v1/D19-1371
10.1021/acs.chemrestox.0c00374
10.1109/IEC47844.2019.8950616
10.1007/BF00994018
10.1126/science.ade2574
10.1145/3458754
10.4103/0019-5413.139827
10.18653/v1/2020.acl-main.207
10.3389/fgene.2023.1161047
10.18653/v1/W19-1909
10.3389/fgene.2022.894209
10.1207/s15516709cog1402_1
10.18653/v1/2020.acl-main.383
10.1016/j.mayocp.2013.09.016
10.18653/v1/2024.hcinlp-1.2
10.1016/j.drudis.2023.103770
10.1162/neco.1997.9.8.1735
10.48550/arXiv.2304.14454
10.3389/fgene.2023.1238140
10.1080/10937404.2023.2261848
10.7759/cureus.40895
10.3115/v1/D14-1162
10.1016/j.drudis.2024.103938
10.18653/v1/2022.emnlp-main.130
10.1038/s41586-023-06924-6
10.26434/chemrxiv-2022-v5p6m-v3
10.18653/v1/2021.emnlp-main.243
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.chemrestox.4c00134
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-5010
EndPage 1534
ExternalDocumentID 39190012
10_1021_acs_chemrestox_4c00134
b239077383
Genre Journal Article
GroupedDBID ---
-~X
29B
4.4
55A
5GY
5RE
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
LG6
P2P
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YZZ
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
ID FETCH-LOGICAL-a301t-1372e3ed9bb7e9260f2b9000cb75bc9e2683948084cf68a32c6fa74c9193b07f3
IEDL.DBID ACS
ISSN 0893-228X
1520-5010
IngestDate Fri Jul 11 04:53:37 EDT 2025
Mon Jul 21 06:03:12 EDT 2025
Tue Jul 01 03:37:37 EDT 2025
Tue Sep 17 03:59:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a301t-1372e3ed9bb7e9260f2b9000cb75bc9e2683948084cf68a32c6fa74c9193b07f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9410-1264
PMID 39190012
PQID 3097495235
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3097495235
pubmed_primary_39190012
crossref_primary_10_1021_acs_chemrestox_4c00134
acs_journals_10_1021_acs_chemrestox_4c00134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-16
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical research in toxicology
PublicationTitleAlternate Chem. Res. Toxicol
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref37/cit37
Lialin V. (ref34/cit34) 2023
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
Radford A. (ref48/cit48) 2019; 1
ref21/cit21
ref42/cit42
ref46/cit46
Lewis P. (ref57/cit57) 2020; 33
ref49/cit49
ref13/cit13
ref24/cit24
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Chen B. (ref38/cit38) 2021; 34
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
Liu H. (ref58/cit58) 2022; 35
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.3389/fgene.2022.867946
– ident: ref8/cit8
  doi: 10.1108/eb026526
– ident: ref1/cit1
  doi: 10.1111/j.1365-2036.2010.04320.x
– ident: ref35/cit35
  doi: 10.1609/aaai.v37i11.26505
– ident: ref4/cit4
  doi: 10.3350/cmh.2012.18.3.249
– ident: ref11/cit11
  doi: 10.1023/A:1010933404324
– ident: ref25/cit25
– ident: ref36/cit36
– ident: ref47/cit47
– ident: ref22/cit22
  doi: 10.1093/bib/bbac409
– start-page: arXiv2303.15647
  year: 2023
  ident: ref34/cit34
  publication-title: arXiv
– ident: ref19/cit19
– ident: ref55/cit55
  doi: 10.1093/bioinformatics/btx815
– ident: ref20/cit20
  doi: 10.18653/v1/D19-1371
– ident: ref56/cit56
  doi: 10.1021/acs.chemrestox.0c00374
– ident: ref40/cit40
– ident: ref23/cit23
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  ident: ref48/cit48
  publication-title: OpenAI blog
– ident: ref5/cit5
  doi: 10.1109/IEC47844.2019.8950616
– ident: ref10/cit10
  doi: 10.1007/BF00994018
– ident: ref28/cit28
  doi: 10.1126/science.ade2574
– ident: ref51/cit51
– ident: ref46/cit46
  doi: 10.1145/3458754
– ident: ref27/cit27
– volume: 35
  start-page: 1950
  year: 2022
  ident: ref58/cit58
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref16/cit16
– ident: ref32/cit32
  doi: 10.4103/0019-5413.139827
– ident: ref44/cit44
  doi: 10.18653/v1/2020.acl-main.207
– ident: ref9/cit9
  doi: 10.3389/fgene.2023.1161047
– ident: ref42/cit42
– ident: ref45/cit45
  doi: 10.18653/v1/W19-1909
– ident: ref13/cit13
  doi: 10.3389/fgene.2022.894209
– ident: ref17/cit17
  doi: 10.1207/s15516709cog1402_1
– volume: 33
  start-page: 9459
  year: 2020
  ident: ref57/cit57
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref43/cit43
– ident: ref26/cit26
– ident: ref37/cit37
– ident: ref49/cit49
  doi: 10.18653/v1/2020.acl-main.383
– ident: ref21/cit21
– ident: ref2/cit2
  doi: 10.1016/j.mayocp.2013.09.016
– ident: ref50/cit50
  doi: 10.18653/v1/2024.hcinlp-1.2
– ident: ref53/cit53
  doi: 10.1016/j.drudis.2023.103770
– ident: ref24/cit24
– ident: ref18/cit18
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref6/cit6
– volume: 34
  start-page: 17413
  year: 2021
  ident: ref38/cit38
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref33/cit33
  doi: 10.48550/arXiv.2304.14454
– ident: ref12/cit12
  doi: 10.3389/fgene.2023.1238140
– ident: ref3/cit3
  doi: 10.1080/10937404.2023.2261848
– ident: ref30/cit30
  doi: 10.7759/cureus.40895
– ident: ref7/cit7
  doi: 10.3115/v1/D14-1162
– ident: ref15/cit15
– ident: ref54/cit54
  doi: 10.1016/j.drudis.2024.103938
– ident: ref31/cit31
  doi: 10.18653/v1/2022.emnlp-main.130
– ident: ref41/cit41
– ident: ref29/cit29
  doi: 10.1038/s41586-023-06924-6
– ident: ref52/cit52
  doi: 10.26434/chemrxiv-2022-v5p6m-v3
– ident: ref39/cit39
  doi: 10.18653/v1/2021.emnlp-main.243
SSID ssj0011027
Score 2.4591696
Snippet Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1524
Title Toward an Explainable Large Language Model for the Automatic Identification of the Drug-Induced Liver Injury Literature
URI http://dx.doi.org/10.1021/acs.chemrestox.4c00134
https://www.ncbi.nlm.nih.gov/pubmed/39190012
https://www.proquest.com/docview/3097495235
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VckFCPMqjy0uDhHqh2W5s5-FjVagKWlARW2lvke0dF0FJUHcjKL-ecZzdFUIr4JJDIlvxeGx_45n5BuCFt0TOljqRIrOJsrOM98HSJNbnlBpfON3RF797n5-cqbfTbLoFow0efJEeGMfC_0RfQ6mK5sdQuYBa1DW4LnJeyQEMHX1c-Q24ReT21DIRopwuc4I39hMOJTf__VDagDS7E-f4NnxY5u3EQJMvw3Zhh-7nnzSO_zyYO3Crh594GPXlLmxRvQN7p5G_-mofJ-t0rPk-7uHpmtn6agduxks-jLlL9-D7pAu6RVNjiOXrE7FwHKLL-RlvQjGUW7tABsfIYBMP20XT0cRizBH2_aUhNr77_uqyPU9CQRFHMxyHqBF8U3_mmcfxigH6Ppwdv54cnSR9JYfE8AYS6t0XgiTNtLUFaTahvLChWqmzRWadJp5KqRUriXI-L40ULvemUKwoWtpR4eUD2K6bmnYBrdelcWzVk7KKSFpGvCnZLHM5zVxeDuAlC7nqV-K86pzsIq3Cy7Xkq17yAzhYTnz1LdJ7_LXF86V-VLwSg3vF1NS080qO2DbTbNhnA3gYFWfVp-SRBGT56L_-7jHcEIyhQnhKmj-B7cVlS08ZAy3ss07tfwG3jAZy
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOYCECpTX8hwk1AvNtrGdh4-rQrWFtKrEVtpbFHttpBYS1CQq5dcztrO7AqlCcMnBkS3bGcffvL4BeGuVMVrlMuIsUZFQi4T-g3kVKZuauLKZlp6--Og4nZ6Kj_NkPpguXC4MTaKlkVrvxF-zC8S7ro2W8c1VrGh-jIV24EXchFuESJgT7cn-55X7gHoEik_JI8by-TI1-Npx3N2k29_vpmsAp794Du7BfDVlH29yPu47NdY__2Bz_I813YfNAYziJEjPA7hh6i3YPgls1lc7OFsnZ7U7uI0na57rqy24G0x-GDKZHsLlzIfgYlWji-wb0rKwcLHm9Ax2UXTF174iQWUk6ImTvms8aSyGjGE7mBCxsf79-4v-S-TKi2izwMLFkOBhfUZygMWKD_oRnB58mO1Po6GuQ1TR76SLYp4xw81CKpUZSQqVZcrVLtUqS5SWhqWE2gSJjNA2zSvOdGqrTJDYSK72Mssfw0bd1OYpoLIyrzTp-EYoYQxXhH9jo5JEp2ah03wE72iTy-FctqV3ubO4dI3rnS-HnR_B7vL7l98D2cdfe7xZiklJ59I5W6raNH1b8j3S1CSp-ckIngT5WY3JaSUOZz77p9m9htvT2VFRFofHn57DHUboygWuxOkL2OguevOS0FGnXvmT8Ask2g7T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qBRFK1art-TmC9MXutbvJfgSfjtaj1bMceIV7EJZNNhFa3S3dXbT-9U6SvTsUiujLPmRJSMJM8pvMzG8AXhuptZKZCFgUy4DLMqZzMCsCaRIdFiZVwtEXfzxNjs_4-3k8X4O3i1wYmkRDIzXOiW-1-rI0PcNAuG_baSnfbNWK-seQKwtg-C24bX13VrxHh5-WLgTq4Wk-BQuiKJsv0oNvHMfeT6r5_X66AXS6y2d8Dz4vp-1iTi6GXSuH6ucfjI7_ua77sNmDUhx5KXoAa7ragt2pZ7W-3sPZKkmr2cNdnK74rq-3YMM__aHPaHoI32cuFBeLCm2EX5-ehRMbc05f_z6KtgjbVyTIjARBcdS1tSOPRZ85bPqnRKyN-3901X0JbJkRpUuc2FgSPKnOSR5wsuSFfgRn43ezw-Ogr-8QFHSstEHI0kgzXQopUy3IsDKRtDVMlUxjqYSOEkJvnESHK5NkBYtUYoqUk_gIJg9Swx7DelVXegdQGpEVimx9zSXXmknCwaGWcawSXaokG8Ab2uS8188md673KMxt42rn837nB7C_kIH80pN-_LXHq4Wo5KSf1ulSVLrumpwdkMUmyNyPB7DtZWg5JqOVWLz55J9m9xLuTI_G-eTk9MNTuBsRyLLxK2HyDNbbq04_J5DUyhdOGX4BwZcRVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+an+Explainable+Large+Language+Model+for+the+Automatic+Identification+of+the+Drug-Induced+Liver+Injury+Literature&rft.jtitle=Chemical+research+in+toxicology&rft.au=Ma%2C+Chunwei&rft.au=Wolfinger%2C+Russell+D.&rft.date=2024-09-16&rft.issn=0893-228X&rft.eissn=1520-5010&rft.volume=37&rft.issue=9&rft.spage=1524&rft.epage=1534&rft_id=info:doi/10.1021%2Facs.chemrestox.4c00134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_chemrestox_4c00134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-228X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-228X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-228X&client=summon