Toward an Explainable Large Language Model for the Automatic Identification of the Drug-Induced Liver Injury Literature
Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intric...
Saved in:
Published in | Chemical research in toxicology Vol. 37; no. 9; pp. 1524 - 1534 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.09.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs’ initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process. |
---|---|
AbstractList | Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs’ initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process. Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs' initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process.Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the scientific literature related to DILI is crucial for monitoring, investigating, and conducting meta-analyses of drug safety issues. Given the intricate and often obscure nature of drug interactions, simple keyword searching can be insufficient for the exhaustive retrieval of the DILI-relevant literature. Manual curation of DILI-related publications demands pharmaceutical expertise and is susceptible to errors, severely limiting throughput. Despite numerous efforts utilizing cutting-edge natural language processing and deep learning techniques to automatically identify the DILI-related literature, their performance remains suboptimal for real-world applications in clinical research and regulatory contexts. In the past year, large language models (LLMs) such as ChatGPT and its open-source counterpart LLaMA have achieved groundbreaking progress in natural language understanding and question answering, paving the way for the automated, high-throughput identification of the DILI-related literature and subsequent analysis. Leveraging a large-scale public dataset comprising 14 203 training publications from the CAMDA 2022 literature AI challenge, we have developed what we believe to be the first LLM specialized in DILI analysis based on LLaMA-2. In comparison with other smaller language models such as BERT, GPT, and their variants, LLaMA-2 exhibits an enhanced out-of-fold accuracy of 97.19% and area under the ROC curve of 0.9947 using 3-fold cross-validation on the training set. Despite LLMs' initial design for dialogue systems, our study illustrates their successful adaptation into accurate classifiers for automated identification of the DILI-related literature from vast collections of documents. This work is a step toward unleashing the potential of LLMs in the context of regulatory science and facilitating the regulatory review process. |
Author | Ma, Chunwei Wolfinger, Russell D. |
AuthorAffiliation | JMP Statistical Discovery, LLC |
AuthorAffiliation_xml | – name: JMP Statistical Discovery, LLC |
Author_xml | – sequence: 1 givenname: Chunwei orcidid: 0000-0001-9410-1264 surname: Ma fullname: Ma, Chunwei email: chunwei.ma@jmp.com organization: JMP Statistical Discovery, LLC – sequence: 2 givenname: Russell D. surname: Wolfinger fullname: Wolfinger, Russell D. organization: JMP Statistical Discovery, LLC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39190012$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlPwzAQhS0EomX5C5WPXFK8ZPOxKlulIi4gcYscZ1xSJXaxY5Z_j0sLHLnYfprvjTzzTtChsQYQmlAypYTRS6n8VL1A78AP9mOaKkIoTw_QmGaMJBmh5BCNSSl4wlj5PEIn3q8jEr3FMRpxQUVUbIzeH-27dA2WBl9_bDrZGll3gJfSrbanWQUZH_e2gQ5r6_DwAngWBtvLoVV40YAZWt2qqKzBVn_Xr1xYJQvTBAUNXrZv4PDCrIP7jGIAJ4fg4Awdadl5ON_fp-jp5vpxfpcsH24X89kykZzQIaG8YMChEXVdgGA50ayOPyeqLrJaCWB5yUVakjJVOi8lZyrXskhVnI_XpND8FF3s-m6cfQ1xWVXfegVdJw3Y4CtORJGKjPEsopM9Guoemmrj2l66z-pnWRHId4By1nsH-hehpNqmUsVUqr9Uqn0q0ch2xm19bYMzceT_TF8175XT |
Cites_doi | 10.3389/fgene.2022.867946 10.1108/eb026526 10.1111/j.1365-2036.2010.04320.x 10.1609/aaai.v37i11.26505 10.3350/cmh.2012.18.3.249 10.1023/A:1010933404324 10.1093/bib/bbac409 10.1093/bioinformatics/btx815 10.18653/v1/D19-1371 10.1021/acs.chemrestox.0c00374 10.1109/IEC47844.2019.8950616 10.1007/BF00994018 10.1126/science.ade2574 10.1145/3458754 10.4103/0019-5413.139827 10.18653/v1/2020.acl-main.207 10.3389/fgene.2023.1161047 10.18653/v1/W19-1909 10.3389/fgene.2022.894209 10.1207/s15516709cog1402_1 10.18653/v1/2020.acl-main.383 10.1016/j.mayocp.2013.09.016 10.18653/v1/2024.hcinlp-1.2 10.1016/j.drudis.2023.103770 10.1162/neco.1997.9.8.1735 10.48550/arXiv.2304.14454 10.3389/fgene.2023.1238140 10.1080/10937404.2023.2261848 10.7759/cureus.40895 10.3115/v1/D14-1162 10.1016/j.drudis.2024.103938 10.18653/v1/2022.emnlp-main.130 10.1038/s41586-023-06924-6 10.26434/chemrxiv-2022-v5p6m-v3 10.18653/v1/2021.emnlp-main.243 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.chemrestox.4c00134 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1520-5010 |
EndPage | 1534 |
ExternalDocumentID | 39190012 10_1021_acs_chemrestox_4c00134 b239077383 |
Genre | Journal Article |
GroupedDBID | --- -~X 29B 4.4 55A 5GY 5RE 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFS ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 IHE JG~ LG6 P2P ROL TN5 UI2 UPT VF5 VG9 W1F YZZ AAYXX ABBLG ABLBI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a301t-1372e3ed9bb7e9260f2b9000cb75bc9e2683948084cf68a32c6fa74c9193b07f3 |
IEDL.DBID | ACS |
ISSN | 0893-228X 1520-5010 |
IngestDate | Fri Jul 11 04:53:37 EDT 2025 Mon Jul 21 06:03:12 EDT 2025 Tue Jul 01 03:37:37 EDT 2025 Tue Sep 17 03:59:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a301t-1372e3ed9bb7e9260f2b9000cb75bc9e2683948084cf68a32c6fa74c9193b07f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9410-1264 |
PMID | 39190012 |
PQID | 3097495235 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3097495235 pubmed_primary_39190012 crossref_primary_10_1021_acs_chemrestox_4c00134 acs_journals_10_1021_acs_chemrestox_4c00134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-16 |
PublicationDateYYYYMMDD | 2024-09-16 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Chemical research in toxicology |
PublicationTitleAlternate | Chem. Res. Toxicol |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref37/cit37 Lialin V. (ref34/cit34) 2023 ref20/cit20 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 Radford A. (ref48/cit48) 2019; 1 ref21/cit21 ref42/cit42 ref46/cit46 Lewis P. (ref57/cit57) 2020; 33 ref49/cit49 ref13/cit13 ref24/cit24 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 Chen B. (ref38/cit38) 2021; 34 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 Liu H. (ref58/cit58) 2022; 35 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.3389/fgene.2022.867946 – ident: ref8/cit8 doi: 10.1108/eb026526 – ident: ref1/cit1 doi: 10.1111/j.1365-2036.2010.04320.x – ident: ref35/cit35 doi: 10.1609/aaai.v37i11.26505 – ident: ref4/cit4 doi: 10.3350/cmh.2012.18.3.249 – ident: ref11/cit11 doi: 10.1023/A:1010933404324 – ident: ref25/cit25 – ident: ref36/cit36 – ident: ref47/cit47 – ident: ref22/cit22 doi: 10.1093/bib/bbac409 – start-page: arXiv2303.15647 year: 2023 ident: ref34/cit34 publication-title: arXiv – ident: ref19/cit19 – ident: ref55/cit55 doi: 10.1093/bioinformatics/btx815 – ident: ref20/cit20 doi: 10.18653/v1/D19-1371 – ident: ref56/cit56 doi: 10.1021/acs.chemrestox.0c00374 – ident: ref40/cit40 – ident: ref23/cit23 – volume: 1 start-page: 9 issue: 8 year: 2019 ident: ref48/cit48 publication-title: OpenAI blog – ident: ref5/cit5 doi: 10.1109/IEC47844.2019.8950616 – ident: ref10/cit10 doi: 10.1007/BF00994018 – ident: ref28/cit28 doi: 10.1126/science.ade2574 – ident: ref51/cit51 – ident: ref46/cit46 doi: 10.1145/3458754 – ident: ref27/cit27 – volume: 35 start-page: 1950 year: 2022 ident: ref58/cit58 publication-title: Adv. Neural Inf. Process. Syst. – ident: ref16/cit16 – ident: ref32/cit32 doi: 10.4103/0019-5413.139827 – ident: ref44/cit44 doi: 10.18653/v1/2020.acl-main.207 – ident: ref9/cit9 doi: 10.3389/fgene.2023.1161047 – ident: ref42/cit42 – ident: ref45/cit45 doi: 10.18653/v1/W19-1909 – ident: ref13/cit13 doi: 10.3389/fgene.2022.894209 – ident: ref17/cit17 doi: 10.1207/s15516709cog1402_1 – volume: 33 start-page: 9459 year: 2020 ident: ref57/cit57 publication-title: Adv. Neural Inf. Process. Syst. – ident: ref43/cit43 – ident: ref26/cit26 – ident: ref37/cit37 – ident: ref49/cit49 doi: 10.18653/v1/2020.acl-main.383 – ident: ref21/cit21 – ident: ref2/cit2 doi: 10.1016/j.mayocp.2013.09.016 – ident: ref50/cit50 doi: 10.18653/v1/2024.hcinlp-1.2 – ident: ref53/cit53 doi: 10.1016/j.drudis.2023.103770 – ident: ref24/cit24 – ident: ref18/cit18 doi: 10.1162/neco.1997.9.8.1735 – ident: ref6/cit6 – volume: 34 start-page: 17413 year: 2021 ident: ref38/cit38 publication-title: Adv. Neural Inf. Process. Syst. – ident: ref33/cit33 doi: 10.48550/arXiv.2304.14454 – ident: ref12/cit12 doi: 10.3389/fgene.2023.1238140 – ident: ref3/cit3 doi: 10.1080/10937404.2023.2261848 – ident: ref30/cit30 doi: 10.7759/cureus.40895 – ident: ref7/cit7 doi: 10.3115/v1/D14-1162 – ident: ref15/cit15 – ident: ref54/cit54 doi: 10.1016/j.drudis.2024.103938 – ident: ref31/cit31 doi: 10.18653/v1/2022.emnlp-main.130 – ident: ref41/cit41 – ident: ref29/cit29 doi: 10.1038/s41586-023-06924-6 – ident: ref52/cit52 doi: 10.26434/chemrxiv-2022-v5p6m-v3 – ident: ref39/cit39 doi: 10.18653/v1/2021.emnlp-main.243 |
SSID | ssj0011027 |
Score | 2.4591696 |
Snippet | Drug-induced liver injury (DILI) stands as a significant concern in drug safety, representing the primary cause of acute liver failure. Identifying the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1524 |
Title | Toward an Explainable Large Language Model for the Automatic Identification of the Drug-Induced Liver Injury Literature |
URI | http://dx.doi.org/10.1021/acs.chemrestox.4c00134 https://www.ncbi.nlm.nih.gov/pubmed/39190012 https://www.proquest.com/docview/3097495235 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VckFCPMqjy0uDhHqh2W5s5-FjVagKWlARW2lvke0dF0FJUHcjKL-ecZzdFUIr4JJDIlvxeGx_45n5BuCFt0TOljqRIrOJsrOM98HSJNbnlBpfON3RF797n5-cqbfTbLoFow0efJEeGMfC_0RfQ6mK5sdQuYBa1DW4LnJeyQEMHX1c-Q24ReT21DIRopwuc4I39hMOJTf__VDagDS7E-f4NnxY5u3EQJMvw3Zhh-7nnzSO_zyYO3Crh594GPXlLmxRvQN7p5G_-mofJ-t0rPk-7uHpmtn6agduxks-jLlL9-D7pAu6RVNjiOXrE7FwHKLL-RlvQjGUW7tABsfIYBMP20XT0cRizBH2_aUhNr77_uqyPU9CQRFHMxyHqBF8U3_mmcfxigH6Ppwdv54cnSR9JYfE8AYS6t0XgiTNtLUFaTahvLChWqmzRWadJp5KqRUriXI-L40ULvemUKwoWtpR4eUD2K6bmnYBrdelcWzVk7KKSFpGvCnZLHM5zVxeDuAlC7nqV-K86pzsIq3Cy7Xkq17yAzhYTnz1LdJ7_LXF86V-VLwSg3vF1NS080qO2DbTbNhnA3gYFWfVp-SRBGT56L_-7jHcEIyhQnhKmj-B7cVlS08ZAy3ss07tfwG3jAZy |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOYCECpTX8hwk1AvNtrGdh4-rQrWFtKrEVtpbFHttpBYS1CQq5dcztrO7AqlCcMnBkS3bGcffvL4BeGuVMVrlMuIsUZFQi4T-g3kVKZuauLKZlp6--Og4nZ6Kj_NkPpguXC4MTaKlkVrvxF-zC8S7ro2W8c1VrGh-jIV24EXchFuESJgT7cn-55X7gHoEik_JI8by-TI1-Npx3N2k29_vpmsAp794Du7BfDVlH29yPu47NdY__2Bz_I813YfNAYziJEjPA7hh6i3YPgls1lc7OFsnZ7U7uI0na57rqy24G0x-GDKZHsLlzIfgYlWji-wb0rKwcLHm9Ax2UXTF174iQWUk6ImTvms8aSyGjGE7mBCxsf79-4v-S-TKi2izwMLFkOBhfUZygMWKD_oRnB58mO1Po6GuQ1TR76SLYp4xw81CKpUZSQqVZcrVLtUqS5SWhqWE2gSJjNA2zSvOdGqrTJDYSK72Mssfw0bd1OYpoLIyrzTp-EYoYQxXhH9jo5JEp2ah03wE72iTy-FctqV3ubO4dI3rnS-HnR_B7vL7l98D2cdfe7xZiklJ59I5W6raNH1b8j3S1CSp-ckIngT5WY3JaSUOZz77p9m9htvT2VFRFofHn57DHUboygWuxOkL2OguevOS0FGnXvmT8Ask2g7T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qBRFK1art-TmC9MXutbvJfgSfjtaj1bMceIV7EJZNNhFa3S3dXbT-9U6SvTsUiujLPmRJSMJM8pvMzG8AXhuptZKZCFgUy4DLMqZzMCsCaRIdFiZVwtEXfzxNjs_4-3k8X4O3i1wYmkRDIzXOiW-1-rI0PcNAuG_baSnfbNWK-seQKwtg-C24bX13VrxHh5-WLgTq4Wk-BQuiKJsv0oNvHMfeT6r5_X66AXS6y2d8Dz4vp-1iTi6GXSuH6ucfjI7_ua77sNmDUhx5KXoAa7ragt2pZ7W-3sPZKkmr2cNdnK74rq-3YMM__aHPaHoI32cuFBeLCm2EX5-ehRMbc05f_z6KtgjbVyTIjARBcdS1tSOPRZ85bPqnRKyN-3901X0JbJkRpUuc2FgSPKnOSR5wsuSFfgRn43ezw-Ogr-8QFHSstEHI0kgzXQopUy3IsDKRtDVMlUxjqYSOEkJvnESHK5NkBYtUYoqUk_gIJg9Swx7DelVXegdQGpEVimx9zSXXmknCwaGWcawSXaokG8Ab2uS8188md673KMxt42rn837nB7C_kIH80pN-_LXHq4Wo5KSf1ulSVLrumpwdkMUmyNyPB7DtZWg5JqOVWLz55J9m9xLuTI_G-eTk9MNTuBsRyLLxK2HyDNbbq04_J5DUyhdOGX4BwZcRVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+an+Explainable+Large+Language+Model+for+the+Automatic+Identification+of+the+Drug-Induced+Liver+Injury+Literature&rft.jtitle=Chemical+research+in+toxicology&rft.au=Ma%2C+Chunwei&rft.au=Wolfinger%2C+Russell+D.&rft.date=2024-09-16&rft.issn=0893-228X&rft.eissn=1520-5010&rft.volume=37&rft.issue=9&rft.spage=1524&rft.epage=1534&rft_id=info:doi/10.1021%2Facs.chemrestox.4c00134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_chemrestox_4c00134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-228X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-228X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-228X&client=summon |