日本のイネ品種を背景とした準同質遺伝子系統の比較栽培による収量関連9対立遺伝子の遺伝的効果

イネでは,毎年多くの収量関連遺伝子単離の論文が公表されるが,実際の育種に応用されているものは必ずしも多くない.そこで,日本のイネ品種を遺伝的背景とした収量に関連する9の対立遺伝子について,準同質遺伝子系統を収集・作出し,背景品種との比較試験を実施した.粗玄米重の増加が確認されたものは「コシヒカリ」の遺伝的背景にqCTd11Takanari,SD1DGWG,TGW6KasalathとSD1DGWGの2つの対立遺伝子を導入した系統および「あきだわら」の遺伝的背景にDEP1Ballilaを導入した系統であった.これらの対立遺伝子やQTLは,遺伝的背景が日本の品種の場合でも収量を向上させるポテンシャル...

Full description

Saved in:
Bibliographic Details
Published inIkushugaku kenkyu Vol. 23; no. 1; pp. 16 - 27
Main Authors 上田, 忠正, 後藤, 明俊, 林, 武司, 松原, 一樹, 山本, 敏央, 一家, 崇志, 近藤, 勝彦, 石丸, 健, 田中, 淳一
Format Journal Article
LanguageJapanese
Published 日本育種学会 01.06.2021
Subjects
Online AccessGet full text
ISSN1344-7629
1348-1290
DOI10.1270/jsbbr.20J21

Cover

Abstract イネでは,毎年多くの収量関連遺伝子単離の論文が公表されるが,実際の育種に応用されているものは必ずしも多くない.そこで,日本のイネ品種を遺伝的背景とした収量に関連する9の対立遺伝子について,準同質遺伝子系統を収集・作出し,背景品種との比較試験を実施した.粗玄米重の増加が確認されたものは「コシヒカリ」の遺伝的背景にqCTd11Takanari,SD1DGWG,TGW6KasalathとSD1DGWGの2つの対立遺伝子を導入した系統および「あきだわら」の遺伝的背景にDEP1Ballilaを導入した系統であった.これらの対立遺伝子やQTLは,遺伝的背景が日本の品種の場合でも収量を向上させるポテンシャルが期待できる.一方で,「コシヒカリ」の遺伝的背景にqLIA3Takanari,GPSTakanari,GS3Oochikara,GW2BG1およびGN1ATakanariを導入した系統では粗玄米重の増加が確認できなかった.これらの対立遺伝子やQTLは,単独ではその効果が小さかったり,シンク容量が大きくなりすぎてソース能が不十分である等の可能性が示唆された.また,「コシヒカリ」を遺伝的背景とした複数の準同質遺伝子系統を用いた試験では,穂重と穂数の負の相関が検出された.これは,シンク容量の増加が期待されたGW2BG1およびGS3Oochikara(粒大の増加)やGN1ATakanari(粒数の増加)の多収化の効果が確認できなかった主要な要因と推察された.シンク容量の増加だけでは多収化は達成できず,qCTd11Takanariのように単位葉面積あたりの光合成能力の向上に繋がる対立遺伝子や,sd1DGWGやDEP1Ballilaなどのような群落構造を大きく変化させる対立遺伝子を組合せて利用するなど,ソース能の向上と並行して取組む必要があると考察された.
AbstractList イネでは,毎年多くの収量関連遺伝子単離の論文が公表されるが,実際の育種に応用されているものは必ずしも多くない.そこで,日本のイネ品種を遺伝的背景とした収量に関連する9の対立遺伝子について,準同質遺伝子系統を収集・作出し,背景品種との比較試験を実施した.粗玄米重の増加が確認されたものは「コシヒカリ」の遺伝的背景にqCTd11Takanari,SD1DGWG,TGW6KasalathとSD1DGWGの2つの対立遺伝子を導入した系統および「あきだわら」の遺伝的背景にDEP1Ballilaを導入した系統であった.これらの対立遺伝子やQTLは,遺伝的背景が日本の品種の場合でも収量を向上させるポテンシャルが期待できる.一方で,「コシヒカリ」の遺伝的背景にqLIA3Takanari,GPSTakanari,GS3Oochikara,GW2BG1およびGN1ATakanariを導入した系統では粗玄米重の増加が確認できなかった.これらの対立遺伝子やQTLは,単独ではその効果が小さかったり,シンク容量が大きくなりすぎてソース能が不十分である等の可能性が示唆された.また,「コシヒカリ」を遺伝的背景とした複数の準同質遺伝子系統を用いた試験では,穂重と穂数の負の相関が検出された.これは,シンク容量の増加が期待されたGW2BG1およびGS3Oochikara(粒大の増加)やGN1ATakanari(粒数の増加)の多収化の効果が確認できなかった主要な要因と推察された.シンク容量の増加だけでは多収化は達成できず,qCTd11Takanariのように単位葉面積あたりの光合成能力の向上に繋がる対立遺伝子や,sd1DGWGやDEP1Ballilaなどのような群落構造を大きく変化させる対立遺伝子を組合せて利用するなど,ソース能の向上と並行して取組む必要があると考察された.
イネでは,毎年多くの収量関連遺伝子単離の論文が公表されるが,実際の育種に応用されているものは必ずしも多くない。そこで,日本のイネ品種を遺伝的背景とした収量に関連する9の対立遺伝子について,準同質遺伝子系統を収集・作出し,背景品種との比較試験を実施した。粗玄米重の増加が確認されたものは「コシヒカリ」の遺伝的背景にqCTd11Takanari,SD1DGWG,TGW6KasalathとSD1DGWGの2つの対立遺伝子を導入した系統および「あきだわら」の遺伝的背景にDEP1Ballilaを導入した系統であった。これらの対立遺伝子やQTLは,遺伝的背景が日本の品種の場合でも収量を向上させるポテンシャルが期待できる。一方で,「コシヒカリ」の遺伝的背景にqLIA3Takanari,GPS Takanari,GS3Oochikara,GW2BG1およびGN1A Takanariを導入した系統では粗玄米重の増加が確認できなかった。これらの対立遺伝子やQTLは,単独ではその効果が小さかったり,シンク容量が大きくなりすぎてソース能が不十分である等の可能性が示唆された。また,「コシヒカリ」を遺伝的背景とした複数の準同質遺伝子系統を用いた試験では,穂重と穂数の負の相関が検出された。これは,シンク容量の増加が期待されたGW2BG1およびGS3Oochikara(粒大の増加)やGN1A Takanari(粒数の増加)の多収化の効果が確認できなかった主要な要因と推察された。シンク容量の増加だけでは多収化は達成できず,qCTd11Takanariのように単位葉面積あたりの光合成能力の向上に繋がる対立遺伝子や,sd1DGWGやDEP1Ballilaなどのような群落構造を大きく変化させる対立遺伝子を組合せて利用するなど,ソース能の向上と並行して取組む必要があると考察された。
Author 石丸, 健
山本, 敏央
田中, 淳一
後藤, 明俊
松原, 一樹
近藤, 勝彦
一家, 崇志
林, 武司
上田, 忠正
Author_xml – sequence: 1
  fullname: 上田, 忠正
  organization: 農研機構・次世代作物開発研究センター
– sequence: 1
  fullname: 後藤, 明俊
  organization: 農研機構・次世代作物開発研究センター
– sequence: 1
  fullname: 林, 武司
  organization: 農研機構・次世代作物開発研究センター
– sequence: 1
  fullname: 松原, 一樹
  organization: 農研機構・次世代作物開発研究センター
– sequence: 1
  fullname: 山本, 敏央
  organization: 現:岡山大学資源植物科学研究所
– sequence: 1
  fullname: 一家, 崇志
  organization: 現:静岡大学農学部
– sequence: 1
  fullname: 近藤, 勝彦
  organization: 現:国際農林水産業研究センター
– sequence: 1
  fullname: 石丸, 健
  organization: 農研機構・次世代作物開発研究センター
– sequence: 1
  fullname: 田中, 淳一
  organization: 筑波大学理工情報生命学術院生命地球科学研究群
BackLink https://agriknowledge.affrc.go.jp/RN/2030938206$$DView record in AgriKnowledge
BookMark eNo9kUtLw0AQxxdR8NWTnyM6u0mT5ijiE8GLnpdNsqmptZWkIN5Mqyi-UVEUteIDilWLiAefX2ZN0n4LYyteZn7wn98cZrpRey6f4wj1YejHRIOBjGcYbj-BCYLbUBeWlZSEiQ7tTVYkTSV6J0p4nmMAqCqougJdaDU8vg3P7oX_KIo3orQdHPhRJeb9emkrPKkJvyL8Y-GXw7ejYG-r_nzX8N--P86Dh73o-T16eYrFsHZY_yiFl59B-VX4VVFcF8XNYHensbbbOLpqLF_rQe0rqm7-m7HT4uh0Jdh4DS_OelGHzbIeT_z1HjQzMjw9NCZNTo2ODw1OSkwGAIkTSKlJbNiqDCoHiydTLGnamGsmKMywmM1MQ1F027QsHqcWNhWNYMIxj0Gx5R6ktfYy23adAmVp15nL5Rez3EpzmmcO_Q1Mms7TzAIFTAH0JAaCY3OwZWa8AotnF1xnnrlLlLkFx8xy2jw-JTLFv6X5hP_MnGUuzTD5BzLas48
ContentType Journal Article
Copyright 2021 日本育種学会
Copyright_xml – notice: 2021 日本育種学会
DBID N5S
DOI 10.1270/jsbbr.20J21
DatabaseName AgriKnowledge(アグリナレッジ)AGROLib
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1348-1290
EndPage 27
ExternalDocumentID oai_affrc_go_jp_01_00951021
article_jsbbr_23_1_23_20J21_article_char_ja
GroupedDBID 2WC
5GY
ABJNI
ACGFS
ACIWK
ACPRK
AFRAH
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSF
KQ8
OK1
RJT
XSB
N5S
ID FETCH-LOGICAL-a3000-e208651bf6306e0de58a5cf1e7c04abdafacb449fcddede5d1c47212e1ec474f3
ISSN 1344-7629
IngestDate Fri Aug 15 12:23:05 EDT 2025
Wed Sep 03 06:30:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3000-e208651bf6306e0de58a5cf1e7c04abdafacb449fcddede5d1c47212e1ec474f3
Notes ZZ00015503
938206
OpenAccessLink https://agriknowledge.affrc.go.jp/RN/2030938206
PageCount 12
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00951021
jstage_primary_article_jsbbr_23_1_23_20J21_article_char_ja
PublicationCentury 2000
PublicationDate 20210600
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationTitle Ikushugaku kenkyu
PublicationYear 2021
Publisher 日本育種学会
Publisher_xml – name: 日本育種学会
References Huang, X., Q. Qian, Z. Liu, H. Sun, S. He, D. Luo, G. Xia, C. Chu, J. ‍Li and X. Fu (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41: 494–497.
笹原英樹・後藤明俊・重宗明子・長岡一朗・松下 景・前田英郎・山口誠之・三浦清之(2018)早生で多収の極良食味水稲品種「つきあかり」の育成.中央農研研報 6: 1–21.
Sato, Y., H. Takehisa, K. Kamatsuki, H. Minami, N. Namiki, H. Ikawa, H. Ohyanagi, K. Sugimoto, B.A. Antonio and Y. Nagamura (2013) RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res. 41: D1206–D1213.
Revelle, W. (2018) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA. URL: https://CRAN.R-project.org/package=psych Version=1.8.12.
McCouch, S.R. and CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative) (2008) Gene nomenclature system for rice. Rice 1: 72–84.
Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo et al. (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18: 1199–1209.
International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436: 793–800.
田中淳一(2011)チャ品種・系統における葉身傾斜角度と収量性との関係.育種学研究 13: 89–98.
Takai, T., T. Ikka, K. Kondo, Y. Nonoue, N. Ono, Y. Sanoh-Arai, N. Iwasawa, S. Yoshinaga, S. Hirose, Y. Taniguchi et al. (2013) A ‍natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3: 2149.
Wang, S., S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang, C. Gao et al. (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47: 949–954.
Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. ‍Li, J. Xiao et al. (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43: 1266–1269.
Hori, K., K. Suzuki, H. Ishikawa, Y. Nonoue, K. Nagata, S. Fukuoka and J. Tanaka (2021) Genomic regions involved in differences in eating and cooking quality other than Wx and Alk genes between indica and japonica rice cultivars. Rice (Accepted).
表野元保・山崎明彦・王 子軒・美濃部侑三・尾崎秀宣・森川真紀子・小島洋一朗・木谷吉則・宝田 研・山口琢也ら(2013)短稈性といもち病抵抗性を有する9種類のコシヒカリ同質遺伝子系統「コシヒカリ富筑SDBL」の育成.育種学研究 15: 98–104.
Ikeda, K., N. Nagasawa and Y. Nagato (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev. Biol. 282: 349–360.
Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B. Shimizu, A. Onishi et al. (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45: 707–711.
Kato, H., F. Li and A. Shimizu (2020) The selection of gamma-ray irradiated higher yield rice mutants by directed evolution method. Plants 9: 1004.
伊藤大雄(1985)桑における受光態勢関連形質の品種間差異と層位別変化.蚕糸試験場報告 29: 731–745.
Takai, T., T. Ika, K. Kondo, Y. Nonoue, N. Ono, Y. Arai-Sanoh, S. Yoshinaga, H. Nakano, M. Yano, M. Kondo et al. (2014) Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines. BMC Plant Biol. 14: 1–11.
Jiao, Y., Y. Wang, D. Xue, J. Wang, M. Yan, G. Liu, G. Dong, D. Zeng, Z. Lu, X. Zhu et al. (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42: 541–544.
San, N.S., Y. Ootsuki, S. Adachi, T. Yamamoto, T. Ueda, T. Tanabata, T. Motobayashi, T. Ookawa and T. Hirasawa (2018) A near-isogenic rice line carring a QTL for larger leaf inclination angle yields heavier biomass and grain. Field Crop Res. 219: 131–138.
Murai, M., I. Takamure, S. Sato, T. Tokutome and Y. Sato (2002) Effect of the dwarfing gene originating from ‘Dee-geo-woo-gen’ on yield and its related traits in rice. Breed. Sci. 52: 95–100.
Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Quan et al. (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44: 950–954.
曹 鉄華・礒田昭弘(2008)密植条件下におけるラッカセイ日中多収性品種の受光態勢および光合成関連形質.日作紀 77: 48–53.
Zhou, Y., J. Zhu, Z. Li, C. Yi, J. Liu, H. Zhang, S. Tang, M. Gu and G. Liang (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183: 315–324.
Xu, H., M. Zhao, Q. Zhang, Z. Xu and Q. Xu (2016) The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breed. Sci. 66: 659–667.
黒田栄喜・阿部 進・石橋富久子・平野 貢・村田孝雄(1999)水稲における1株穂数と主茎,1次分げつおよび2次分げつ1穂籾数との関係の品種間差異.日作紀 68: 385–389.
Wei, T. and V. Simko (2017) R package “corrplot”: Visualization of ‍a ‍correlation matrix (Version 0.84). Available from https://github.com/taiyun/corrplot.
鐘ヶ江弘美・堀 清純・片岡知守・田中淳一・岩田洋佳(2017)ゲノムワイドあるいは収量関連12遺伝子のSNPsに基づくゲノミック予測モデルの制度比較.育種学研究 19(別1): 133.
Hu, Z., H. He, S. Zhang, F. Sun, X. Xin, W. Wang, X. Qian, J. Yang and X. Luo (2012) A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J. Integr. Plant Biol. 54: 979–990.
安東郁男・根本 博・加藤 浩・太田久稔・平林秀介・竹内善信・佐藤宏之・石井卓朗・前田英郎・井辺時雄ら(2011)多収・良質・良食味の水稲新品種「あきだわら」の育成.育種学研究 13: 35–41.
Shomura, A., T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi and M. Yano (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40: 1023–1028.
岡本和之・西宮智美・平山正賢・眞部 徹・飯田幸彦・桐原俊明・横田国夫・小菅一真・田畑美奈子・平澤秀雄(2015)水稲新品種「ふくまる」の育成.茨城農総セ生工研報 15: 33–40.
Wang, J., T. Nakazaki, S. Chen, W. Chen, H. Saito, T. Tsukiyama, Y. Okumoto, Z. Xu and T. Tanisaka (2009) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor. Appl. Genet. 119: 85–91.
Zhang, X., J. Wang, J. Huang, H. Lan, C. Wang, C. Yin, Y. Wu, H. Tang, Q. Qian, J. Li et al. (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl. Acad. Sci. USA 109: 21534–21539.
王 子軒・阪口誠二・岡 羊一・北澤則之・美濃部侑三(2005)ゲノム育種法を用いた短稈コシヒカリの育成.育種学研究 7(別1・2): 217.
Sasaki, A., M. Ashikari, M. Ueguchi-Tanaka, H. Ito, A. Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi, G.S. Khush et al. (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416: 701–702.
Ashikari, M., H. Sakakibara, S. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E.R. Angeles, Q. Qian, H. Kitano and M. Matsuoka (2005) Cytokinin oxidase regulates rice grain production. Science 309: 741–745.
Song, X.J., W. Huang, M. Shi, M.Z. Zhu and H.X. Lin (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39: 623–630.
Hothorn, T., F. Bretz and P. Westfall (2008) Simultaneous inference in general parametric models. Biom. J. 50: 346–363.
Miura, K., M. Ikeda, A. Matsubara, X.J. Song, M. Ito, K. Asano, M. Matsuoka, H. Kitano and M. Ashikari (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42: 545–549.
Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li and Q. Zhang (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice encodes a putative transmembrane protein. Theor. Appl. Genet. 112: 1167–1171.
Fukuda, A., K. Kondo, T. Ikka, T. Takai, T. Tanabata and T. Yamatoto (2018) A novel QTL associated with rice canopy temperature difference affects stomatal conductance and leaf photosynthesis. Breed. Sci. 68: 305–315.
Tanaka, J., T. Hayashi and H. Iwata (2016) A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed. Sci. 66: 542–551.
Adachi, S., K. Yoshikawa, U. Yamanouchi, T. Tanabata, J. Sun, T. Ookawa, T. Yamamoto, R.F. Sage, T. Hirasawa and J. Yonemaru (2017) Fine mapping of carbon assimilation rate 8, a quantitative trait locus for frag leaf nitrogen content, stomatal conductance and photosynthesis in rice. Front. Plant Sci. 8: 60.
Donald, C.M. (1968) The breeding of crop ideotypes. Euphytica 17: 385–403.
荒井(三王)裕見子・岡村昌樹・向山雄大・小林伸哉・荻原 均・吉田ひろえ・近藤始彦(2020)業務・加工用水稲多収品種の収穫適期の検討.日作紀 89: 102–109.
国分牧衛(1988)大豆の多収草型モデルの設計と検証.農業技術 43: 193–197.
Matsubara, K., E. Yamamoto, N. Kobayashi, T. Ishii, J. Tanaka, H. Tsunematsu, S. Yoshinaga, O. Matsumura, J. Yonemaru, R. Mizobuchi et al. (2016) Improvement of rice biomass yield through QTL-based selection. PLoS One 11: e0151830.
R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
Sato, Y., B.A. Antonio, N. Namiki, H. Takehisa, H. Minami, K. Kamatsuki, K. Sugimoto, Y. Shimizu, H. Hirochika and Y. Nagamura (2011) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res. 39: D1141–D1148.
Qi, J., Q. Qian, Q. Bu, S. Li, Q. Chen, J. Sun, W. Liang, Y. Zhou, C. Chu, X. Li et al. (2008) Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol. 147: 1947–1959.
白川立彦・橋川 潮・高 進吾・酒井綾子(1994)ダイス品種の光エネルギー変換効率と受光態勢ならびに葉身窒素濃度との関係.日作紀 63: 1–8.
References_xml – reference: 曹 鉄華・礒田昭弘(2008)密植条件下におけるラッカセイ日中多収性品種の受光態勢および光合成関連形質.日作紀 77: 48–53.
– reference: Matsubara, K., E. Yamamoto, N. Kobayashi, T. Ishii, J. Tanaka, H. Tsunematsu, S. Yoshinaga, O. Matsumura, J. Yonemaru, R. Mizobuchi et al. (2016) Improvement of rice biomass yield through QTL-based selection. PLoS One 11: e0151830.
– reference: International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436: 793–800.
– reference: Wang, J., T. Nakazaki, S. Chen, W. Chen, H. Saito, T. Tsukiyama, Y. Okumoto, Z. Xu and T. Tanisaka (2009) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor. Appl. Genet. 119: 85–91.
– reference: Adachi, S., K. Yoshikawa, U. Yamanouchi, T. Tanabata, J. Sun, T. Ookawa, T. Yamamoto, R.F. Sage, T. Hirasawa and J. Yonemaru (2017) Fine mapping of carbon assimilation rate 8, a quantitative trait locus for frag leaf nitrogen content, stomatal conductance and photosynthesis in rice. Front. Plant Sci. 8: 60.
– reference: 岡本和之・西宮智美・平山正賢・眞部 徹・飯田幸彦・桐原俊明・横田国夫・小菅一真・田畑美奈子・平澤秀雄(2015)水稲新品種「ふくまる」の育成.茨城農総セ生工研報 15: 33–40.
– reference: Sato, Y., H. Takehisa, K. Kamatsuki, H. Minami, N. Namiki, H. Ikawa, H. Ohyanagi, K. Sugimoto, B.A. Antonio and Y. Nagamura (2013) RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res. 41: D1206–D1213.
– reference: Xu, H., M. Zhao, Q. Zhang, Z. Xu and Q. Xu (2016) The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breed. Sci. 66: 659–667.
– reference: 笹原英樹・後藤明俊・重宗明子・長岡一朗・松下 景・前田英郎・山口誠之・三浦清之(2018)早生で多収の極良食味水稲品種「つきあかり」の育成.中央農研研報 6: 1–21.
– reference: Takai, T., T. Ika, K. Kondo, Y. Nonoue, N. Ono, Y. Arai-Sanoh, S. Yoshinaga, H. Nakano, M. Yano, M. Kondo et al. (2014) Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines. BMC Plant Biol. 14: 1–11.
– reference: Tanaka, J., T. Hayashi and H. Iwata (2016) A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breed. Sci. 66: 542–551.
– reference: Hothorn, T., F. Bretz and P. Westfall (2008) Simultaneous inference in general parametric models. Biom. J. 50: 346–363.
– reference: 国分牧衛(1988)大豆の多収草型モデルの設計と検証.農業技術 43: 193–197.
– reference: Huang, X., Q. Qian, Z. Liu, H. Sun, S. He, D. Luo, G. Xia, C. Chu, J. ‍Li and X. Fu (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41: 494–497.
– reference: Ashikari, M., H. Sakakibara, S. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E.R. Angeles, Q. Qian, H. Kitano and M. Matsuoka (2005) Cytokinin oxidase regulates rice grain production. Science 309: 741–745.
– reference: 白川立彦・橋川 潮・高 進吾・酒井綾子(1994)ダイス品種の光エネルギー変換効率と受光態勢ならびに葉身窒素濃度との関係.日作紀 63: 1–8.
– reference: Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo et al. (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 18: 1199–1209.
– reference: Revelle, W. (2018) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA. URL: https://CRAN.R-project.org/package=psych Version=1.8.12.
– reference: 鐘ヶ江弘美・堀 清純・片岡知守・田中淳一・岩田洋佳(2017)ゲノムワイドあるいは収量関連12遺伝子のSNPsに基づくゲノミック予測モデルの制度比較.育種学研究 19(別1): 133.
– reference: Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B. Shimizu, A. Onishi et al. (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45: 707–711.
– reference: 黒田栄喜・阿部 進・石橋富久子・平野 貢・村田孝雄(1999)水稲における1株穂数と主茎,1次分げつおよび2次分げつ1穂籾数との関係の品種間差異.日作紀 68: 385–389.
– reference: R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
– reference: Wei, T. and V. Simko (2017) R package “corrplot”: Visualization of ‍a ‍correlation matrix (Version 0.84). Available from https://github.com/taiyun/corrplot.
– reference: McCouch, S.R. and CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative) (2008) Gene nomenclature system for rice. Rice 1: 72–84.
– reference: Sato, Y., B.A. Antonio, N. Namiki, H. Takehisa, H. Minami, K. Kamatsuki, K. Sugimoto, Y. Shimizu, H. Hirochika and Y. Nagamura (2011) RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res. 39: D1141–D1148.
– reference: Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Quan et al. (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44: 950–954.
– reference: Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li and Q. Zhang (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice encodes a putative transmembrane protein. Theor. Appl. Genet. 112: 1167–1171.
– reference: Fukuda, A., K. Kondo, T. Ikka, T. Takai, T. Tanabata and T. Yamatoto (2018) A novel QTL associated with rice canopy temperature difference affects stomatal conductance and leaf photosynthesis. Breed. Sci. 68: 305–315.
– reference: 表野元保・山崎明彦・王 子軒・美濃部侑三・尾崎秀宣・森川真紀子・小島洋一朗・木谷吉則・宝田 研・山口琢也ら(2013)短稈性といもち病抵抗性を有する9種類のコシヒカリ同質遺伝子系統「コシヒカリ富筑SDBL」の育成.育種学研究 15: 98–104.
– reference: Shomura, A., T. Izawa, K. Ebana, T. Ebitani, H. Kanegae, S. Konishi and M. Yano (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40: 1023–1028.
– reference: 王 子軒・阪口誠二・岡 羊一・北澤則之・美濃部侑三(2005)ゲノム育種法を用いた短稈コシヒカリの育成.育種学研究 7(別1・2): 217.
– reference: Murai, M., I. Takamure, S. Sato, T. Tokutome and Y. Sato (2002) Effect of the dwarfing gene originating from ‘Dee-geo-woo-gen’ on yield and its related traits in rice. Breed. Sci. 52: 95–100.
– reference: Zhou, Y., J. Zhu, Z. Li, C. Yi, J. Liu, H. Zhang, S. Tang, M. Gu and G. Liang (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183: 315–324.
– reference: Hu, Z., H. He, S. Zhang, F. Sun, X. Xin, W. Wang, X. Qian, J. Yang and X. Luo (2012) A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. J. Integr. Plant Biol. 54: 979–990.
– reference: Ikeda, K., N. Nagasawa and Y. Nagato (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev. Biol. 282: 349–360.
– reference: 安東郁男・根本 博・加藤 浩・太田久稔・平林秀介・竹内善信・佐藤宏之・石井卓朗・前田英郎・井辺時雄ら(2011)多収・良質・良食味の水稲新品種「あきだわら」の育成.育種学研究 13: 35–41.
– reference: San, N.S., Y. Ootsuki, S. Adachi, T. Yamamoto, T. Ueda, T. Tanabata, T. Motobayashi, T. Ookawa and T. Hirasawa (2018) A near-isogenic rice line carring a QTL for larger leaf inclination angle yields heavier biomass and grain. Field Crop Res. 219: 131–138.
– reference: Sasaki, A., M. Ashikari, M. Ueguchi-Tanaka, H. Ito, A. Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi, G.S. Khush et al. (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416: 701–702.
– reference: Takai, T., T. Ikka, K. Kondo, Y. Nonoue, N. Ono, Y. Sanoh-Arai, N. Iwasawa, S. Yoshinaga, S. Hirose, Y. Taniguchi et al. (2013) A ‍natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3: 2149.
– reference: Jiao, Y., Y. Wang, D. Xue, J. Wang, M. Yan, G. Liu, G. Dong, D. Zeng, Z. Lu, X. Zhu et al. (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42: 541–544.
– reference: Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. ‍Li, J. Xiao et al. (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43: 1266–1269.
– reference: Donald, C.M. (1968) The breeding of crop ideotypes. Euphytica 17: 385–403.
– reference: Hori, K., K. Suzuki, H. Ishikawa, Y. Nonoue, K. Nagata, S. Fukuoka and J. Tanaka (2021) Genomic regions involved in differences in eating and cooking quality other than Wx and Alk genes between indica and japonica rice cultivars. Rice (Accepted).
– reference: Kato, H., F. Li and A. Shimizu (2020) The selection of gamma-ray irradiated higher yield rice mutants by directed evolution method. Plants 9: 1004.
– reference: Zhang, X., J. Wang, J. Huang, H. Lan, C. Wang, C. Yin, Y. Wu, H. Tang, Q. Qian, J. Li et al. (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl. Acad. Sci. USA 109: 21534–21539.
– reference: Qi, J., Q. Qian, Q. Bu, S. Li, Q. Chen, J. Sun, W. Liang, Y. Zhou, C. Chu, X. Li et al. (2008) Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol. 147: 1947–1959.
– reference: 田中淳一(2011)チャ品種・系統における葉身傾斜角度と収量性との関係.育種学研究 13: 89–98.
– reference: Song, X.J., W. Huang, M. Shi, M.Z. Zhu and H.X. Lin (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39: 623–630.
– reference: Miura, K., M. Ikeda, A. Matsubara, X.J. Song, M. Ito, K. Asano, M. Matsuoka, H. Kitano and M. Ashikari (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42: 545–549.
– reference: 伊藤大雄(1985)桑における受光態勢関連形質の品種間差異と層位別変化.蚕糸試験場報告 29: 731–745.
– reference: Wang, S., S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang, C. Gao et al. (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47: 949–954.
– reference: 荒井(三王)裕見子・岡村昌樹・向山雄大・小林伸哉・荻原 均・吉田ひろえ・近藤始彦(2020)業務・加工用水稲多収品種の収穫適期の検討.日作紀 89: 102–109.
SSID ssib006606940
ssib023157660
ssib020470636
ssib000937635
ssib005901890
ssib002223772
ssib002484330
ssib002222522
ssj0056923
ssib000417031
Score 2.2393844
Snippet ...
SourceID affrit
jstage
SourceType Open Access Repository
Publisher
StartPage 16
SubjectTerms あきだわら
コシヒカリ
トレードオフ
収量関連遺伝子
形質間相関
準同質遺伝子系統
Title 日本のイネ品種を背景とした準同質遺伝子系統の比較栽培による収量関連9対立遺伝子の遺伝的効果
URI https://www.jstage.jst.go.jp/article/jsbbr/23/1/23_20J21/_article/-char/ja
https://agriknowledge.affrc.go.jp/RN/2030938206
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 育種学研究, 2021/06/01, Vol.23(1), pp.16-27
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9RGELbQckkOESRB4RVxSB8nsdvtdje39qxHiCiRIoHECcv2eBBzWNBmuXBidkEgdsmigECJSIjykBCPrBDKgVf-jJmZ3X-RqmrPbBNWiIc0smq6q6rLX7enq3q62p73herKuMs1eG52tarKW6pX-nBRkSx5IYsAE5y_-VYeOioOH4uObZs57uxaOrNQfFme3TKv5F16FcqgXzFL9i16dqoUCoCG_oUr9DBc36iPWSqZjpmJiGgz02ZpCL4hMykRnBlBBHxmWRoxTbUpiKhNHs1ZqoinTXo0M52JHtUQ0EpDdJAnMUxLUuiTlGJJyIxhqUYeqE0FS9pMU6NmFtmgUeBJEiIilgSOqRJb1IL0tNESLPFZYm3usERPmJPGZqUmRII8qsNUSq3HSAMB5hlOJT4zoSY7QFFKN5-Q2GtsnVr2Kk_MtGFKUKuGLAPIUkDfdfMJUM4S7mBNyo2kEp_uFgjNkunSKDWiUCs2ArSP4x8Fkw6KICigIdzkj_CGLP44DITlB3sUwSFQUJlNfmtpPGFr7CH4EvUS2yxBFaEawJ_4rXHWDOgn7a4XcWdfGz3hW43M10Bi0TXODBkK0YIZ1LZSTcpUCxc03WnVppG_9PNh58hAOt6WPRjilXmcx7jxtf99UeCZvYdtEv3_DkZvHruMuDIeZgFeiDub1GHqYtaH-Gk7j2PaxvH1d274H-DrG9zVvdg9m4njYohzvCX60rGTZ86FEqETfmMet5tXLiWmlU-_c1_EEBFM3X8IrSDax-UJ6zlGUtPrKKcQN_nEAMZXDhTgK-e93vxJjIT7EEJOtp-SR3xkh_dRE8oeMBaEnd62fv6x96E5Md8c51N94l0Y3fxrdOt-Pfi7XvyzXroyvDYY3wH6x_WlldFPa_XgTj24WQ9uj57cGF5dWX90d2Pw5MWzX4YPro4fPR3_8xAER2vX158tjX57Prz9uB7cqxcv1YvLw9UfNi6ubtz4fePcH3q49u_43vJUEmQsPf75_PDy49Gvtz71jnbSI-1DrebFL608xJMuKu4rGQVFT4a-rPxuFak8KntBFZe-yItu3svLQgjdK8E5g9puUIoYfPAqqIAQvXCXNzN3aq76zDuA-xR4pQqRh0pUOi4URESALUxcgZQ83-35FswsB3im_2NkdOo-VJTZiVNZ_3TmB5mNRnmw2ztoYc9O2wOBsrcYiXveR3iv98HmE73Pm1mYP1Pth5hooficBvZ_AEoxqg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%97%A5%E6%9C%AC%E3%81%AE%E3%82%A4%E3%83%8D%E5%93%81%E7%A8%AE%E3%82%92%E8%83%8C%E6%99%AF%E3%81%A8%E3%81%97%E3%81%9F%E6%BA%96%E5%90%8C%E8%B3%AA%E9%81%BA%E4%BC%9D%E5%AD%90%E7%B3%BB%E7%B5%B1%E3%81%AE%E6%AF%94%E8%BC%83%E6%A0%BD%E5%9F%B9%E3%81%AB%E3%82%88%E3%82%8B%E5%8F%8E%E9%87%8F%E9%96%A2%E9%80%A39%E5%AF%BE%E7%AB%8B%E9%81%BA%E4%BC%9D%E5%AD%90%E3%81%AE%E9%81%BA%E4%BC%9D%E7%9A%84%E5%8A%B9%E6%9E%9C&rft.jtitle=%E8%82%B2%E7%A8%AE%E5%AD%A6%E7%A0%94%E7%A9%B6&rft.au=%E4%B8%8A%E7%94%B0%2C+%E5%BF%A0%E6%AD%A3&rft.au=%E5%BE%8C%E8%97%A4%2C+%E6%98%8E%E4%BF%8A&rft.au=%E6%9E%97%2C+%E6%AD%A6%E5%8F%B8&rft.au=%E6%9D%BE%E5%8E%9F%2C+%E4%B8%80%E6%A8%B9&rft.date=2021-06-01&rft.pub=%E6%97%A5%E6%9C%AC%E8%82%B2%E7%A8%AE%E5%AD%A6%E4%BC%9A&rft.issn=1344-7629&rft.eissn=1348-1290&rft.volume=23&rft.issue=1&rft.spage=16&rft.epage=27&rft_id=info:doi/10.1270%2Fjsbbr.20J21&rft.externalDocID=article_jsbbr_23_1_23_20J21_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-7629&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-7629&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-7629&client=summon