Near-Barrierless CO Oxidation Using Phosphotungstic Acid-Supported Single-Atom Catalysts

Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-su...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry Vol. 63; no. 29; pp. 13253 - 13264
Main Authors Wang, Kaijie, Li, Shiyu, Yang, Anqi, Chen, Dandan, Xu, Feng, Zhang, Li-Long, Zhang, Jian, Yang, Song
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.07.2024
Online AccessGet full text

Cover

Loading…
Abstract Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N–O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications.
AbstractList Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N–O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications.
Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N-O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications.Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N-O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications.
Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H , yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M /PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh /PTA, Pd /PTA, and Pt /PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd /PTA and Pt /PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 10 ) , markedly exceeding the threshold for room temperature reactions, set at 6.55 × 10 . This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O and N-O bond dissociation in N O to the more efficient dissociation of H O . Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications.
Author Li, Shiyu
Xu, Feng
Yang, Song
Chen, Dandan
Zhang, Jian
Wang, Kaijie
Yang, Anqi
Zhang, Li-Long
AuthorAffiliation Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong
Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering
Center for R&D of Fine Chemicals of Guizhou University
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass
School of Chemistry and Chemical Engineering
Guizhou University
AuthorAffiliation_xml – name: Guizhou University
– name: Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering
– name: National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass
– name: School of Chemistry and Chemical Engineering
– name: Center for R&D of Fine Chemicals of Guizhou University
– name: Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong
Author_xml – sequence: 1
  givenname: Kaijie
  surname: Wang
  fullname: Wang, Kaijie
  organization: Guizhou University
– sequence: 2
  givenname: Shiyu
  surname: Li
  fullname: Li, Shiyu
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 3
  givenname: Anqi
  surname: Yang
  fullname: Yang, Anqi
  organization: Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering
– sequence: 4
  givenname: Dandan
  surname: Chen
  fullname: Chen, Dandan
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 5
  givenname: Feng
  surname: Xu
  fullname: Xu, Feng
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 6
  givenname: Li-Long
  orcidid: 0000-0003-4724-913X
  surname: Zhang
  fullname: Zhang, Li-Long
  email: zhanglilong125@163.com
  organization: Center for R&D of Fine Chemicals of Guizhou University
– sequence: 7
  givenname: Jian
  orcidid: 0000-0001-7584-3799
  surname: Zhang
  fullname: Zhang, Jian
  email: zhangjian7@hust.edu.cn
  organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong
– sequence: 8
  givenname: Song
  orcidid: 0000-0003-1301-3030
  surname: Yang
  fullname: Yang, Song
  email: jhzx.msm@gmail.com
  organization: Center for R&D of Fine Chemicals of Guizhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38984385$$D View this record in MEDLINE/PubMed
BookMark eNqFkF1LwzAUhoMoOqc_QemlN50nTdMml3P4BeKEOdhdSduzLdImNUnB_Xsrm956dV44z3vgPOfk2FiDhFxRmFBI6K2q_EQb6zbVFttJWgGIjB2REeUJxJzC6piMAIZMs0yekXPvPwBAsjQ7JWdMSJEywUdk9YrKxXfKOY2uQe-j2Tyaf-laBW1NtPTabKK3rfXd1obebHzQVTStdB0v-q6zLmAdLQamwXgabBvNVFDNzgd_QU7WqvF4eZhjsny4f589xS_zx-fZ9CVWiZQhxlKlmDCp5LrMWMZFIhEEZ5xVtZJ5SWuQWYk8hzJVVIgURJqwtRBZUtdcSTYmN_u7nbOfPfpQtNpX2DTKoO19wSDPpUwpywf0-oD2ZYt10TndKrcrfm0MAN8DlbPeO1z_IRSKH-vFYL34s14crA89uu_9rD9s78zw8T-db0YoiaY
Cites_doi 10.1142/S0219633612500113
10.1039/b812100c
10.1002/slct.202102697
10.1021/jp205508z
10.1021/jp300548p
10.1038/nchem.1095
10.1021/acs.inorgchem.7b01480
10.1016/0263-7855(96)00018-5
10.1021/acs.inorgchem.7b02143
10.1038/s41467-019-09188-9
10.1039/D3QI00079F
10.1039/b505295p
10.1039/C7GC02218B
10.1103/PhysRevLett.85.2757
10.1038/ncomms9675
10.1063/1.1674902
10.1038/nmat3871
10.1039/D3QI00668A
10.1103/PhysRevLett.78.1396
10.1002/anie.201602801
10.1016/j.jcat.2009.09.019
10.1063/1.2370993
10.1021/acs.inorgchem.2c02977
10.1039/D2TA00561A
10.1007/s10563-014-9167-x
10.1016/j.joule.2023.04.005
10.1002/jcc.22885
10.1126/science.1256018
10.1073/pnas.2300549120
10.1103/PhysRevB.49.14251
10.1063/1.466847
10.1021/jp810292n
10.1063/1.448799
10.1021/ja101108w
10.1039/D1QI01592C
10.1021/jacs.6b06819
10.1021/acs.iecr.7b00376
10.1021/acscatal.7b03295
10.1039/C8DT03843K
10.1002/adma.201802304
10.1038/s41563-019-0571-5
10.1039/D3TA04850K
10.1016/j.mcat.2022.112802
10.1002/jcc.26812
10.1021/acs.inorgchem.9b00290
10.1007/BF00533485
10.1021/ja308625q
10.1016/j.mcat.2018.10.017
10.1016/j.apcatb.2022.121173
10.1103/PhysRevLett.80.890
10.1021/acs.est.9b03509
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.inorgchem.4c00863
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
EndPage 13264
ExternalDocumentID 38984385
10_1021_acs_inorgchem_4c00863
i66960991
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
IHE
JG~
LG6
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YZZ
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
ID FETCH-LOGICAL-a299t-eba4e239a9fb6365829e085353cda97b1d096be570b4a188408423f8862dd5a93
IEDL.DBID ACS
ISSN 0020-1669
1520-510X
IngestDate Fri Jul 11 16:50:31 EDT 2025
Thu Apr 03 06:57:21 EDT 2025
Tue Jul 01 02:49:09 EDT 2025
Wed Jul 24 05:44:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a299t-eba4e239a9fb6365829e085353cda97b1d096be570b4a188408423f8862dd5a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1301-3030
0000-0003-4724-913X
0000-0001-7584-3799
PMID 38984385
PQID 3077994137
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3077994137
pubmed_primary_38984385
crossref_primary_10_1021_acs_inorgchem_4c00863
acs_journals_10_1021_acs_inorgchem_4c00863
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-22
PublicationDateYYYYMMDD 2024-07-22
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg. Chem
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Testa M. (ref36/cit36) 2016
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref40/cit40
  doi: 10.1142/S0219633612500113
– ident: ref31/cit31
  doi: 10.1039/b812100c
– ident: ref19/cit19
  doi: 10.1002/slct.202102697
– ident: ref49/cit49
  doi: 10.1021/jp205508z
– ident: ref50/cit50
  doi: 10.1021/jp300548p
– ident: ref3/cit3
  doi: 10.1038/nchem.1095
– ident: ref16/cit16
  doi: 10.1021/acs.inorgchem.7b01480
– ident: ref41/cit41
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref51/cit51
  doi: 10.1021/acs.inorgchem.7b02143
– ident: ref11/cit11
  doi: 10.1038/s41467-019-09188-9
– ident: ref17/cit17
  doi: 10.1039/D3QI00079F
– ident: ref6/cit6
  doi: 10.1039/b505295p
– ident: ref18/cit18
  doi: 10.1039/C7GC02218B
– ident: ref45/cit45
  doi: 10.1103/PhysRevLett.85.2757
– ident: ref10/cit10
  doi: 10.1038/ncomms9675
– ident: ref43/cit43
  doi: 10.1063/1.1674902
– ident: ref23/cit23
  doi: 10.1038/nmat3871
– ident: ref28/cit28
  doi: 10.1039/D3QI00668A
– ident: ref34/cit34
  doi: 10.1103/PhysRevLett.78.1396
– ident: ref52/cit52
  doi: 10.1002/anie.201602801
– ident: ref2/cit2
  doi: 10.1016/j.jcat.2009.09.019
– ident: ref42/cit42
  doi: 10.1063/1.2370993
– ident: ref30/cit30
  doi: 10.1021/acs.inorgchem.2c02977
– ident: ref38/cit38
  doi: 10.1039/D2TA00561A
– ident: ref5/cit5
  doi: 10.1007/s10563-014-9167-x
– ident: ref26/cit26
  doi: 10.1016/j.joule.2023.04.005
– ident: ref39/cit39
  doi: 10.1002/jcc.22885
– ident: ref8/cit8
  doi: 10.1126/science.1256018
– ident: ref25/cit25
  doi: 10.1073/pnas.2300549120
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.49.14251
– ident: ref47/cit47
  doi: 10.1063/1.466847
– ident: ref48/cit48
  doi: 10.1021/jp810292n
– ident: ref44/cit44
  doi: 10.1063/1.448799
– ident: ref1/cit1
  doi: 10.1021/ja101108w
– ident: ref29/cit29
  doi: 10.1039/D1QI01592C
– ident: ref9/cit9
  doi: 10.1021/jacs.6b06819
– ident: ref13/cit13
  doi: 10.1021/acs.iecr.7b00376
– ident: ref7/cit7
  doi: 10.1021/acscatal.7b03295
– ident: ref4/cit4
  doi: 10.1039/C8DT03843K
– ident: ref12/cit12
  doi: 10.1002/adma.201802304
– ident: ref24/cit24
  doi: 10.1038/s41563-019-0571-5
– ident: ref20/cit20
  doi: 10.1039/D3TA04850K
– volume-title: Gaussian 16 A.03.
  year: 2016
  ident: ref36/cit36
– ident: ref22/cit22
  doi: 10.1016/j.mcat.2022.112802
– ident: ref37/cit37
  doi: 10.1002/jcc.26812
– ident: ref15/cit15
  doi: 10.1021/acs.inorgchem.9b00290
– ident: ref46/cit46
  doi: 10.1007/BF00533485
– ident: ref32/cit32
  doi: 10.1021/ja308625q
– ident: ref21/cit21
  doi: 10.1016/j.mcat.2018.10.017
– ident: ref27/cit27
  doi: 10.1016/j.apcatb.2022.121173
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.80.890
– ident: ref14/cit14
  doi: 10.1021/acs.est.9b03509
SSID ssj0009346
Score 2.4511185
Snippet Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains...
Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H , yet achieving this remains...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 13253
Title Near-Barrierless CO Oxidation Using Phosphotungstic Acid-Supported Single-Atom Catalysts
URI http://dx.doi.org/10.1021/acs.inorgchem.4c00863
https://www.ncbi.nlm.nih.gov/pubmed/38984385
https://www.proquest.com/docview/3077994137
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3da9RAEMCHWh_0xfrttSor-CTs1f1M9vEMliLYFmrh3sLsZkNL20tpcmD713c2uVREDvV1SZbszGTnN_sxA_BRoakTJnDjhOJa1JY7lIYbE7TPc7S-zzP7_cDun-hvczPfgN01O_hS7GJoiUGphQZxOdUhQbh6AA-lzbMUbc2K419ZdtVwMyfFRMJaN17ZWddNckmh_d0lreHM3t_sbcHReGtnOGZyPl12fhpu_0zi-K9DeQpPVuzJZoOxPIONuHgOj4qx5NsLmB-Q3fMveJ3K2F3QHMiKQ3b482you8T64wXs6LRpr06bjmaJlOOZzcJZxVNx0HRst2LH9MxF5LOuuWRFWhu6abv2JZzsff1R7PNV6QWO5J86Hj3qKJVDV3uriFKkiwRnyqhQocu8qCj08dFkn71GkVOUmBOX1TnFR1Vl0KlXsLloFvENsMygRVuJCmvCgaAxxszGQGAkyE40TuATyaVc_Tpt2e-KS1GmxnthlSthTWA6qqq8GtJx_O2FD6NCSxJm2g3BRWyWbUmTW-Yc-fBsAq8HTd93SRSXa5Wb7f_5th14LIl40sKvlG9hs7texndELJ1_31vpHSmQ570
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5VAuUN5LeRgJLkheasd24gOHJVBtabtFaivtLdiJo65ok6rOCsoP4q_wtxgnm61AqhCHSlytxBp7xjPf2PMAeBkZWQaYQKVmERWsVFQbLqmUubBJYpRt68zuTdT4SHycyukK_OhzYZAIjzP59hH_sroAexPGZhWO4lpOhyIPWLxvWr3jLr6iq-bfbr9Hvr7ifOvDYTqmi24C1KDKbaizRjgeaaNLqyI0vFw7xBuRjPLC6NiyAtG8dTLetMKwBB2fBKFGmSDkLwppQtElVPU3EADx4OSN0oPL4r5RlxAUXDGmlO4zha4iO1jC3P9uCa-At62Z27oNP5cb1Ea3fBnOGzvMv_9RO_L_38F1uLVA2mTUHY07sOKqu7CW9g3u7sF0gkTRd-Y8NO07QY1P0n2y_23WdZkibTAF-XRc-7PjukGdGCpak1E-K2hohRqClAtygN-cODpq6lOShpuwC9_4-3B0LQt7AKtVXblHQGJplFEFK0yJ4CcXxrlYuRxhIMNTIcwAXiMfsoWi8FkbA8BZFgaXzMkWzBnAsJeQ7KwrPvK3H170cpThZoa3H1O5eu4zVOWx1ohY4gE87ARsOSVi1kREiXz8L7Q9h7Xx4d5utrs92dmAmxyxXrjy5vwJrDbnc_cUsVpjn7UHhcDn65arX7RYSKk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqIgGXUt4LBYwEFyQv2LGd-NDDkrJqKWwrlUp7S-3YUVdtk1WdFZSfxF_pn2KcxyKQKsShB655WGPP6xt7PIPQq0iLIsAEIhSNCKeFJEozQYTIuUkSLU1TZ_bzRG4f8o9TMV1BP_q7MECEh5F8c4gftHpui67CAH0bns9KeAPzORvyPODxvnH1rrv4CuGa39zZAt6-Zmz84Uu6TbqOAkSD2a2JM5o7FimtCiMjcL5MOcAckYhyq1VsqAVEb5yI3xmuaQLBTwJwo0gA9lsrdCi8BOb-RjgqDIHeKD34VeA3ai8FhXCMSqn620JXkR28Ye5_94ZXQNzG1Y3voMvlIjUZLifDRW2G-fc_6kf-H6u4jtY6xI1HrYrcRSuuvIdupX2ju_toOgGiyHt9Hpr3nYLlx-ke3vs2a7tN4SapAu8fV35-XNVgG0NlazzKZ5aElqghWdniA_jm1JFRXZ3hNOyIXfjaP0CH1zKxh2i1rEr3GOFYaKmlpVYXAIJyrp2LpcsBDlLQDq4H6A3wIesMhs-aXABGs_BwyZysY84ADXspyeZtEZK__fCyl6UMFjOcAenSVQufgUmPlQLkEg_Qo1bIlkMCdk14lIgn_0LbC3Rzf2ucfdqZ7D5FtxlAvrDzzdgGWq3PF-4ZQLbaPG90BaOj6xarn5OpSyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Barrierless+CO+Oxidation+Using+Phosphotungstic+Acid-Supported+Single-Atom+Catalysts&rft.jtitle=Inorganic+chemistry&rft.au=Wang%2C+Kaijie&rft.au=Li%2C+Shiyu&rft.au=Yang%2C+Anqi&rft.au=Chen%2C+Dandan&rft.date=2024-07-22&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=63&rft.issue=29&rft.spage=13253&rft.epage=13264&rft_id=info:doi/10.1021%2Facs.inorgchem.4c00863&rft.externalDocID=i66960991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon