Near-Barrierless CO Oxidation Using Phosphotungstic Acid-Supported Single-Atom Catalysts
Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-su...
Saved in:
Published in | Inorganic chemistry Vol. 63; no. 29; pp. 13253 - 13264 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.07.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N–O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications. |
---|---|
AbstractList | Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N–O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications. Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N-O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications.Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M1/PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh1/PTA, Pd1/PTA, and Pt1/PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd1/PTA and Pt1/PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 1010)11, markedly exceeding the threshold for room temperature reactions, set at 6.55 × 108. This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O2 and N-O bond dissociation in N2O to the more efficient dissociation of H2O2. Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications. Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H , yet achieving this remains a challenge with current methodologies. In this research, we extensively evaluated the catalytic performance of phosphotungstic acid (PTA)-supported 11 M /PTA single-atom catalysts (SACs) using density functional theory calculations across both gas phase and 12 common solvents. The Rh /PTA, Pd /PTA, and Pt /PTA systems exhibit moderate CO adsorption energies, facilitating the feasibility of oxygen vacancy formation. Remarkably, the Pd /PTA and Pt /PTA catalysts exhibited negligible energy barriers and demonstrated exceptionally high catalytic rates, with values reaching up to (1 × 10 ) , markedly exceeding the threshold for room temperature reactions, set at 6.55 × 10 . This phenomenon is attributed to a transition from the high-energy barrier processes of oxygen dissociation in O and N-O bond dissociation in N O to the more efficient dissociation of H O . Orbital analysis and charge variations at metal sites throughout the reaction process provide deeper insights into the role of the three metal catalytic sites in CO activation. Our findings not only reveal key aspects of SACs in facilitating CO oxidation at low temperatures but also provide valuable insights for future catalytic reaction mechanism studies and environmental applications. |
Author | Li, Shiyu Xu, Feng Yang, Song Chen, Dandan Zhang, Jian Wang, Kaijie Yang, Anqi Zhang, Li-Long |
AuthorAffiliation | Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering Center for R&D of Fine Chemicals of Guizhou University National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass School of Chemistry and Chemical Engineering Guizhou University |
AuthorAffiliation_xml | – name: Guizhou University – name: Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering – name: National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass – name: School of Chemistry and Chemical Engineering – name: Center for R&D of Fine Chemicals of Guizhou University – name: Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong |
Author_xml | – sequence: 1 givenname: Kaijie surname: Wang fullname: Wang, Kaijie organization: Guizhou University – sequence: 2 givenname: Shiyu surname: Li fullname: Li, Shiyu organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 3 givenname: Anqi surname: Yang fullname: Yang, Anqi organization: Institute of New Type Optoelectronic Materials and Technology, College of Big Data and Information Engineering – sequence: 4 givenname: Dandan surname: Chen fullname: Chen, Dandan organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 5 givenname: Feng surname: Xu fullname: Xu, Feng organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 6 givenname: Li-Long orcidid: 0000-0003-4724-913X surname: Zhang fullname: Zhang, Li-Long email: zhanglilong125@163.com organization: Center for R&D of Fine Chemicals of Guizhou University – sequence: 7 givenname: Jian orcidid: 0000-0001-7584-3799 surname: Zhang fullname: Zhang, Jian email: zhangjian7@hust.edu.cn organization: Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong – sequence: 8 givenname: Song orcidid: 0000-0003-1301-3030 surname: Yang fullname: Yang, Song email: jhzx.msm@gmail.com organization: Center for R&D of Fine Chemicals of Guizhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38984385$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkF1LwzAUhoMoOqc_QemlN50nTdMml3P4BeKEOdhdSduzLdImNUnB_Xsrm956dV44z3vgPOfk2FiDhFxRmFBI6K2q_EQb6zbVFttJWgGIjB2REeUJxJzC6piMAIZMs0yekXPvPwBAsjQ7JWdMSJEywUdk9YrKxXfKOY2uQe-j2Tyaf-laBW1NtPTabKK3rfXd1obebHzQVTStdB0v-q6zLmAdLQamwXgabBvNVFDNzgd_QU7WqvF4eZhjsny4f589xS_zx-fZ9CVWiZQhxlKlmDCp5LrMWMZFIhEEZ5xVtZJ5SWuQWYk8hzJVVIgURJqwtRBZUtdcSTYmN_u7nbOfPfpQtNpX2DTKoO19wSDPpUwpywf0-oD2ZYt10TndKrcrfm0MAN8DlbPeO1z_IRSKH-vFYL34s14crA89uu_9rD9s78zw8T-db0YoiaY |
Cites_doi | 10.1142/S0219633612500113 10.1039/b812100c 10.1002/slct.202102697 10.1021/jp205508z 10.1021/jp300548p 10.1038/nchem.1095 10.1021/acs.inorgchem.7b01480 10.1016/0263-7855(96)00018-5 10.1021/acs.inorgchem.7b02143 10.1038/s41467-019-09188-9 10.1039/D3QI00079F 10.1039/b505295p 10.1039/C7GC02218B 10.1103/PhysRevLett.85.2757 10.1038/ncomms9675 10.1063/1.1674902 10.1038/nmat3871 10.1039/D3QI00668A 10.1103/PhysRevLett.78.1396 10.1002/anie.201602801 10.1016/j.jcat.2009.09.019 10.1063/1.2370993 10.1021/acs.inorgchem.2c02977 10.1039/D2TA00561A 10.1007/s10563-014-9167-x 10.1016/j.joule.2023.04.005 10.1002/jcc.22885 10.1126/science.1256018 10.1073/pnas.2300549120 10.1103/PhysRevB.49.14251 10.1063/1.466847 10.1021/jp810292n 10.1063/1.448799 10.1021/ja101108w 10.1039/D1QI01592C 10.1021/jacs.6b06819 10.1021/acs.iecr.7b00376 10.1021/acscatal.7b03295 10.1039/C8DT03843K 10.1002/adma.201802304 10.1038/s41563-019-0571-5 10.1039/D3TA04850K 10.1016/j.mcat.2022.112802 10.1002/jcc.26812 10.1021/acs.inorgchem.9b00290 10.1007/BF00533485 10.1021/ja308625q 10.1016/j.mcat.2018.10.017 10.1016/j.apcatb.2022.121173 10.1103/PhysRevLett.80.890 10.1021/acs.est.9b03509 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.inorgchem.4c00863 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-510X |
EndPage | 13264 |
ExternalDocumentID | 38984385 10_1021_acs_inorgchem_4c00863 i66960991 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .K2 4.4 53G 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH2 IH9 IHE JG~ LG6 ROL RXW TAE TN5 TWZ UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YZZ ~02 AAYXX ABBLG ABLBI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a299t-eba4e239a9fb6365829e085353cda97b1d096be570b4a188408423f8862dd5a93 |
IEDL.DBID | ACS |
ISSN | 0020-1669 1520-510X |
IngestDate | Fri Jul 11 16:50:31 EDT 2025 Thu Apr 03 06:57:21 EDT 2025 Tue Jul 01 02:49:09 EDT 2025 Wed Jul 24 05:44:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a299t-eba4e239a9fb6365829e085353cda97b1d096be570b4a188408423f8862dd5a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1301-3030 0000-0003-4724-913X 0000-0001-7584-3799 |
PMID | 38984385 |
PQID | 3077994137 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3077994137 pubmed_primary_38984385 crossref_primary_10_1021_acs_inorgchem_4c00863 acs_journals_10_1021_acs_inorgchem_4c00863 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-22 |
PublicationDateYYYYMMDD | 2024-07-22 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Inorganic chemistry |
PublicationTitleAlternate | Inorg. Chem |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Testa M. (ref36/cit36) 2016 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref40/cit40 doi: 10.1142/S0219633612500113 – ident: ref31/cit31 doi: 10.1039/b812100c – ident: ref19/cit19 doi: 10.1002/slct.202102697 – ident: ref49/cit49 doi: 10.1021/jp205508z – ident: ref50/cit50 doi: 10.1021/jp300548p – ident: ref3/cit3 doi: 10.1038/nchem.1095 – ident: ref16/cit16 doi: 10.1021/acs.inorgchem.7b01480 – ident: ref41/cit41 doi: 10.1016/0263-7855(96)00018-5 – ident: ref51/cit51 doi: 10.1021/acs.inorgchem.7b02143 – ident: ref11/cit11 doi: 10.1038/s41467-019-09188-9 – ident: ref17/cit17 doi: 10.1039/D3QI00079F – ident: ref6/cit6 doi: 10.1039/b505295p – ident: ref18/cit18 doi: 10.1039/C7GC02218B – ident: ref45/cit45 doi: 10.1103/PhysRevLett.85.2757 – ident: ref10/cit10 doi: 10.1038/ncomms9675 – ident: ref43/cit43 doi: 10.1063/1.1674902 – ident: ref23/cit23 doi: 10.1038/nmat3871 – ident: ref28/cit28 doi: 10.1039/D3QI00668A – ident: ref34/cit34 doi: 10.1103/PhysRevLett.78.1396 – ident: ref52/cit52 doi: 10.1002/anie.201602801 – ident: ref2/cit2 doi: 10.1016/j.jcat.2009.09.019 – ident: ref42/cit42 doi: 10.1063/1.2370993 – ident: ref30/cit30 doi: 10.1021/acs.inorgchem.2c02977 – ident: ref38/cit38 doi: 10.1039/D2TA00561A – ident: ref5/cit5 doi: 10.1007/s10563-014-9167-x – ident: ref26/cit26 doi: 10.1016/j.joule.2023.04.005 – ident: ref39/cit39 doi: 10.1002/jcc.22885 – ident: ref8/cit8 doi: 10.1126/science.1256018 – ident: ref25/cit25 doi: 10.1073/pnas.2300549120 – ident: ref33/cit33 doi: 10.1103/PhysRevB.49.14251 – ident: ref47/cit47 doi: 10.1063/1.466847 – ident: ref48/cit48 doi: 10.1021/jp810292n – ident: ref44/cit44 doi: 10.1063/1.448799 – ident: ref1/cit1 doi: 10.1021/ja101108w – ident: ref29/cit29 doi: 10.1039/D1QI01592C – ident: ref9/cit9 doi: 10.1021/jacs.6b06819 – ident: ref13/cit13 doi: 10.1021/acs.iecr.7b00376 – ident: ref7/cit7 doi: 10.1021/acscatal.7b03295 – ident: ref4/cit4 doi: 10.1039/C8DT03843K – ident: ref12/cit12 doi: 10.1002/adma.201802304 – ident: ref24/cit24 doi: 10.1038/s41563-019-0571-5 – ident: ref20/cit20 doi: 10.1039/D3TA04850K – volume-title: Gaussian 16 A.03. year: 2016 ident: ref36/cit36 – ident: ref22/cit22 doi: 10.1016/j.mcat.2022.112802 – ident: ref37/cit37 doi: 10.1002/jcc.26812 – ident: ref15/cit15 doi: 10.1021/acs.inorgchem.9b00290 – ident: ref46/cit46 doi: 10.1007/BF00533485 – ident: ref32/cit32 doi: 10.1021/ja308625q – ident: ref21/cit21 doi: 10.1016/j.mcat.2018.10.017 – ident: ref27/cit27 doi: 10.1016/j.apcatb.2022.121173 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.80.890 – ident: ref14/cit14 doi: 10.1021/acs.est.9b03509 |
SSID | ssj0009346 |
Score | 2.4511185 |
Snippet | Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H2, yet achieving this remains... Efficient CO oxidation at ambient or low temperatures is essential for environmental purification and selective CO oxidation in H , yet achieving this remains... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13253 |
Title | Near-Barrierless CO Oxidation Using Phosphotungstic Acid-Supported Single-Atom Catalysts |
URI | http://dx.doi.org/10.1021/acs.inorgchem.4c00863 https://www.ncbi.nlm.nih.gov/pubmed/38984385 https://www.proquest.com/docview/3077994137 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3da9RAEMCHWh_0xfrttSor-CTs1f1M9vEMliLYFmrh3sLsZkNL20tpcmD713c2uVREDvV1SZbszGTnN_sxA_BRoakTJnDjhOJa1JY7lIYbE7TPc7S-zzP7_cDun-hvczPfgN01O_hS7GJoiUGphQZxOdUhQbh6AA-lzbMUbc2K419ZdtVwMyfFRMJaN17ZWddNckmh_d0lreHM3t_sbcHReGtnOGZyPl12fhpu_0zi-K9DeQpPVuzJZoOxPIONuHgOj4qx5NsLmB-Q3fMveJ3K2F3QHMiKQ3b482you8T64wXs6LRpr06bjmaJlOOZzcJZxVNx0HRst2LH9MxF5LOuuWRFWhu6abv2JZzsff1R7PNV6QWO5J86Hj3qKJVDV3uriFKkiwRnyqhQocu8qCj08dFkn71GkVOUmBOX1TnFR1Vl0KlXsLloFvENsMygRVuJCmvCgaAxxszGQGAkyE40TuATyaVc_Tpt2e-KS1GmxnthlSthTWA6qqq8GtJx_O2FD6NCSxJm2g3BRWyWbUmTW-Yc-fBsAq8HTd93SRSXa5Wb7f_5th14LIl40sKvlG9hs7texndELJ1_31vpHSmQ570 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5VAuUN5LeRgJLkheasd24gOHJVBtabtFaivtLdiJo65ok6rOCsoP4q_wtxgnm61AqhCHSlytxBp7xjPf2PMAeBkZWQaYQKVmERWsVFQbLqmUubBJYpRt68zuTdT4SHycyukK_OhzYZAIjzP59hH_sroAexPGZhWO4lpOhyIPWLxvWr3jLr6iq-bfbr9Hvr7ifOvDYTqmi24C1KDKbaizRjgeaaNLqyI0vFw7xBuRjPLC6NiyAtG8dTLetMKwBB2fBKFGmSDkLwppQtElVPU3EADx4OSN0oPL4r5RlxAUXDGmlO4zha4iO1jC3P9uCa-At62Z27oNP5cb1Ea3fBnOGzvMv_9RO_L_38F1uLVA2mTUHY07sOKqu7CW9g3u7sF0gkTRd-Y8NO07QY1P0n2y_23WdZkibTAF-XRc-7PjukGdGCpak1E-K2hohRqClAtygN-cODpq6lOShpuwC9_4-3B0LQt7AKtVXblHQGJplFEFK0yJ4CcXxrlYuRxhIMNTIcwAXiMfsoWi8FkbA8BZFgaXzMkWzBnAsJeQ7KwrPvK3H170cpThZoa3H1O5eu4zVOWx1ohY4gE87ARsOSVi1kREiXz8L7Q9h7Xx4d5utrs92dmAmxyxXrjy5vwJrDbnc_cUsVpjn7UHhcDn65arX7RYSKk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqIgGXUt4LBYwEFyQv2LGd-NDDkrJqKWwrlUp7S-3YUVdtk1WdFZSfxF_pn2KcxyKQKsShB655WGPP6xt7PIPQq0iLIsAEIhSNCKeFJEozQYTIuUkSLU1TZ_bzRG4f8o9TMV1BP_q7MECEh5F8c4gftHpui67CAH0bns9KeAPzORvyPODxvnH1rrv4CuGa39zZAt6-Zmz84Uu6TbqOAkSD2a2JM5o7FimtCiMjcL5MOcAckYhyq1VsqAVEb5yI3xmuaQLBTwJwo0gA9lsrdCi8BOb-RjgqDIHeKD34VeA3ai8FhXCMSqn620JXkR28Ye5_94ZXQNzG1Y3voMvlIjUZLifDRW2G-fc_6kf-H6u4jtY6xI1HrYrcRSuuvIdupX2ju_toOgGiyHt9Hpr3nYLlx-ke3vs2a7tN4SapAu8fV35-XNVgG0NlazzKZ5aElqghWdniA_jm1JFRXZ3hNOyIXfjaP0CH1zKxh2i1rEr3GOFYaKmlpVYXAIJyrp2LpcsBDlLQDq4H6A3wIesMhs-aXABGs_BwyZysY84ADXspyeZtEZK__fCyl6UMFjOcAenSVQufgUmPlQLkEg_Qo1bIlkMCdk14lIgn_0LbC3Rzf2ucfdqZ7D5FtxlAvrDzzdgGWq3PF-4ZQLbaPG90BaOj6xarn5OpSyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Barrierless+CO+Oxidation+Using+Phosphotungstic+Acid-Supported+Single-Atom+Catalysts&rft.jtitle=Inorganic+chemistry&rft.au=Wang%2C+Kaijie&rft.au=Li%2C+Shiyu&rft.au=Yang%2C+Anqi&rft.au=Chen%2C+Dandan&rft.date=2024-07-22&rft.pub=American+Chemical+Society&rft.issn=0020-1669&rft.eissn=1520-510X&rft.volume=63&rft.issue=29&rft.spage=13253&rft.epage=13264&rft_id=info:doi/10.1021%2Facs.inorgchem.4c00863&rft.externalDocID=i66960991 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-1669&client=summon |