In Situ Environmental Transmission Electron Microscopy Investigation on LiH Formation Prompted by LiF
Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycli...
Saved in:
Published in | Nano letters Vol. 25; no. 20; pp. 8303 - 8309 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries. |
---|---|
AbstractList | Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries' cycling stability. Herein, by using
environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation.
coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries. Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries' cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries' cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries. Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries. |
Author | Hua, Ze Wang, Dazhuang Qiao, Lijie Ma, Yuan Ruan, Digen Zheng, Xuzhi Kang, Zhuo Yu, Xinyang Shao, Ruiwen Ren, Xiaodi He, Yang |
AuthorAffiliation | University of Science and Technology of China University of Science and Technology Beijing Department of Materials Science and Engineering Academy for Advanced Interdisciplinary Science and Technology, State Key Laboratory for Advanced Metals and Materials Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology – name: University of Science and Technology Beijing – name: Academy for Advanced Interdisciplinary Science and Technology, State Key Laboratory for Advanced Metals and Materials – name: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Xinyang surname: Yu fullname: Yu, Xinyang organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering – sequence: 2 givenname: Digen surname: Ruan fullname: Ruan, Digen organization: University of Science and Technology of China – sequence: 3 givenname: Yuan surname: Ma fullname: Ma, Yuan organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering – sequence: 4 givenname: Xuzhi surname: Zheng fullname: Zheng, Xuzhi organization: University of Science and Technology Beijing – sequence: 5 givenname: Ze surname: Hua fullname: Hua, Ze organization: Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology – sequence: 6 givenname: Ruiwen orcidid: 0000-0002-3082-0486 surname: Shao fullname: Shao, Ruiwen organization: Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology – sequence: 7 givenname: Dazhuang surname: Wang fullname: Wang, Dazhuang organization: University of Science and Technology of China – sequence: 8 givenname: Zhuo surname: Kang fullname: Kang, Zhuo email: zhuokang@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 9 givenname: Xiaodi orcidid: 0000-0002-2025-7554 surname: Ren fullname: Ren, Xiaodi email: xdren@ustc.edu.cn organization: University of Science and Technology of China – sequence: 10 givenname: Lijie surname: Qiao fullname: Qiao, Lijie organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering – sequence: 11 givenname: Yang orcidid: 0000-0001-8095-2068 surname: He fullname: He, Yang email: yanghe@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40344183$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rwyAYhWV0rB_bPxgjl7tJ9xo11ctR2rXQscG662CsGSmJdmoK_fez9ONyICie57x4PEPUM9ZohB4xjDFk-EUqPzbS2EaHMGYKMBVwgwaYEUhzIbLe9cxpHw293wKAIAzuUJ8CoRRzMkB6aZKvOnTJzOxrZ02rTZBNsnbS-Lb2vrYmmTVahagl77Vy1iu7OyRLs9c-1D8yHIm4VvUimVvXni4-nW13QW-S8hCV-T26rWTj9cN5H6Hv-Ww9XaSrj7fl9HWVykyIkJaS4QpKlk8ozrnChNEMKwaMAyabUpCSABeynFT5hFS5qgRwXYnJhnMiSibJCD2f5u6c_e3iA4uYQemmkUbbzhckg4wIQXkW0acz2pWt3hQ7V7fSHYrL10SAnoBjZu90dUUwFMcGithAcWmgODcQbXCyHdWt7ZyJgf-3_AFj240G |
Cites_doi | 10.1002/anie.202218005 10.1063/1.4812323 10.1126/science.abi8703 10.1107/S0365110X56001790 10.1126/science.aam6014 10.1016/0029-5493(73)90052-6 10.1016/S0378-7753(98)00201-8 10.1016/S0304-3991(98)00035-7 10.1126/sciadv.adf3609 10.1016/S1388-2481(99)00064-8 10.1002/zaac.19201130116 10.1016/j.apsusc.2021.151776 10.1038/sdata.2018.151 10.1126/sciadv.abl8245 10.1073/pnas.2010852117 10.1149/1.2969947 10.1016/j.ensm.2023.102916 10.1039/D2CS00873D 10.1149/2.1151605jes 10.1016/j.joule.2018.03.008 10.1002/aenm.201400993 10.1038/nphys1864 10.1021/acs.accounts.1c00183 10.1126/science.219.4588.1071 10.1038/s41565-022-01273-3 10.1073/pnas.2214357120 10.1021/ja312241y 10.1002/anie.202013812 10.1021/nn204476h 10.1002/zaac.19703720216 10.1039/D0TA11444H 10.1002/advs.202100676 10.1038/s41565-020-00845-5 10.1038/s41570-023-00557-z 10.1002/aenm.202100046 10.1021/jp910266m 10.1007/978-0-85729-221-6 10.1126/science.aal4886 10.1016/j.joule.2020.06.016 10.1016/j.micron.2004.02.003 10.1038/s41586-018-0397-3 10.1038/nnano.2017.16 10.1038/s41560-020-0601-1 10.1021/nl3044508 10.1016/j.joule.2019.09.022 10.1038/s41560-017-0047-2 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.5c01490 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 8309 |
ExternalDocumentID | 40344183 10_1021_acs_nanolett_5c01490 b326561016 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH ABBLG ABJNI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F AAYXX ABLBI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a299t-ba51f0b5674168c135421c5058013db93b3089ab7f673f6cf908ef97d8839b5a3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Wed Jul 02 04:26:33 EDT 2025 Thu May 22 05:05:18 EDT 2025 Sun Jul 06 05:04:11 EDT 2025 Thu May 22 04:22:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | lithium dendrite lithium fluoride lithium hydride solid-electrolyte interphase lithium battery |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a299t-ba51f0b5674168c135421c5058013db93b3089ab7f673f6cf908ef97d8839b5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8095-2068 0000-0002-3082-0486 0000-0002-2025-7554 |
PMID | 40344183 |
PQID | 3202399482 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3202399482 pubmed_primary_40344183 crossref_primary_10_1021_acs_nanolett_5c01490 acs_journals_10_1021_acs_nanolett_5c01490 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-21 |
PublicationDateYYYYMMDD | 2025-05-21 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref17/cit17a ref29/cit29c ref23/cit23a ref29/cit29b ref11/cit11 ref25/cit25 ref29/cit29a ref16/cit16 ref29/cit29 ref21/cit21b ref23/cit23 ref14/cit14 ref21/cit21a ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref1/cit1a ref1/cit1b ref28/cit28 ref20/cit20 ref5/cit5b ref17/cit17 ref10/cit10 ref5/cit5a ref26/cit26 ref4/cit2a ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref26/cit26a ref11/cit11a ref20/cit20a ref22/cit22 ref13/cit13 ref20/cit20c ref20/cit20b ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref20/cit20b doi: 10.1002/anie.202218005 – ident: ref26/cit26a doi: 10.1063/1.4812323 – ident: ref16/cit16 doi: 10.1126/science.abi8703 – ident: ref29/cit29 doi: 10.1107/S0365110X56001790 – ident: ref31/cit31 doi: 10.1126/science.aam6014 – ident: ref11/cit11a doi: 10.1016/0029-5493(73)90052-6 – ident: ref18/cit18 doi: 10.1016/S0378-7753(98)00201-8 – ident: ref27/cit27 doi: 10.1016/S0304-3991(98)00035-7 – ident: ref6/cit6 doi: 10.1126/sciadv.adf3609 – ident: ref11/cit11 doi: 10.1016/S1388-2481(99)00064-8 – ident: ref17/cit17 doi: 10.1002/zaac.19201130116 – ident: ref22/cit22 doi: 10.1016/j.apsusc.2021.151776 – ident: ref26/cit26 doi: 10.1038/sdata.2018.151 – ident: ref3/cit3 doi: 10.1126/sciadv.abl8245 – ident: ref25/cit25 doi: 10.1073/pnas.2010852117 – ident: ref15/cit15 doi: 10.1149/1.2969947 – ident: ref12/cit12 doi: 10.1016/j.ensm.2023.102916 – ident: ref20/cit20 doi: 10.1039/D2CS00873D – ident: ref13/cit13 doi: 10.1149/2.1151605jes – ident: ref1/cit1b doi: 10.1016/j.joule.2018.03.008 – ident: ref4/cit4 doi: 10.1002/aenm.201400993 – ident: ref29/cit29c doi: 10.1038/nphys1864 – ident: ref20/cit20c doi: 10.1021/acs.accounts.1c00183 – ident: ref29/cit29b doi: 10.1126/science.219.4588.1071 – ident: ref14/cit14 doi: 10.1038/s41565-022-01273-3 – ident: ref20/cit20a doi: 10.1073/pnas.2214357120 – ident: ref28/cit28 – ident: ref4/cit2a doi: 10.1021/ja312241y – ident: ref10/cit10 doi: 10.1002/anie.202013812 – ident: ref23/cit23a doi: 10.1021/nn204476h – ident: ref21/cit21b doi: 10.1002/zaac.19703720216 – ident: ref21/cit21 doi: 10.1016/j.apsusc.2021.151776 – ident: ref24/cit24 doi: 10.1039/D0TA11444H – ident: ref9/cit9 doi: 10.1002/advs.202100676 – ident: ref8/cit8 doi: 10.1038/s41565-020-00845-5 – ident: ref5/cit5b doi: 10.1038/s41570-023-00557-z – ident: ref19/cit19 doi: 10.1002/aenm.202100046 – ident: ref17/cit17a doi: 10.1021/jp910266m – ident: ref21/cit21a doi: 10.1007/978-0-85729-221-6 – ident: ref29/cit29a doi: 10.1126/science.aal4886 – ident: ref5/cit5 doi: 10.1016/j.joule.2020.06.016 – ident: ref30/cit30 doi: 10.1016/j.micron.2004.02.003 – ident: ref7/cit7 doi: 10.1038/s41586-018-0397-3 – ident: ref1/cit1 doi: 10.1038/nnano.2017.16 – ident: ref5/cit5a doi: 10.1038/s41560-020-0601-1 – ident: ref23/cit23 doi: 10.1021/nl3044508 – ident: ref2/cit2 doi: 10.1016/j.joule.2019.09.022 – ident: ref1/cit1a doi: 10.1038/s41560-017-0047-2 |
SSID | ssj0009350 |
Score | 2.478933 |
Snippet | Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are... Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 8303 |
Title | In Situ Environmental Transmission Electron Microscopy Investigation on LiH Formation Prompted by LiF |
URI | http://dx.doi.org/10.1021/acs.nanolett.5c01490 https://www.ncbi.nlm.nih.gov/pubmed/40344183 https://www.proquest.com/docview/3202399482 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQvcABCqVlKa2M1AsHb_2M7eNqtast4lEJkLhFtrElhJRFbPYAv55xNulSKlSQcooTK54Ze76J_c0g9INSZwvvHWE8aiKNo8RLGYmwzCfNEqMus5FPTovJpTy6UlfLQPHlDj5nP12Y9StXTWEYdV-FDOkhRP_AC6NzsDUYni-T7IqmIitMYgiJrJEdVe6VXrJDCrO_HdIrKLPxNuNNdNZxdhaHTG7789r3w-O_KRzfOJCPaKMFnniwsJQttBKrbbT-LB3hJxR_Vfj8pp7j0ZL9Bq807gzMIf9Xw6O2bA4-ySf5MqflAT_L1QENcB3fTPC4Y0Xi3_ew5gCwxf4BWsY76HI8uhhOSFuGgTjwVTXxTrFEvSoyeDOBCSU5C4CcwLmJa2-FF9RY53UqtEhFSJaamKy-NgC-vHLiM1qtplXcRThqr7kDjKR8klpJR23gBhCCTqFwheihQ5BS2U6jWdnskHNW5pud6MpWdD1EOr2Vd4vMHP95_qBTbgkyy_sirorT-axsSshbKw3voS8Lrf_pUeaUiLDs7b3jy76iNZ6rBFNFONtHq_X9PH4D6FL77429PgH4xerR |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hOLQ9tIW2dEuhRuLSg7f-jOMjQrta2l2EBFTcIjvYEkLKIpI90F_fcTZhaSWEkHKyE8ueGXueY88bgAPGnM28d5SLYKjKHaNeqUCl5T4aHjlzKRp5dpJNLtTPS325BrqPhcFO1NhS3R7ir9gF-I9UVrlqjqNphrpMyB536huIR0Tacx0ena24dmWbmBXnMu6MbK76iLknWkl-qaz_9UtPgM3W6Yzfwe-H7rZ3TW6Gi8YPyz__MTm-eDzv4W0HQ8nh0m42YS1UW_DmETnhBwjHFTm7bhZktIqFw09a54bGkf6ykVGXRIfM0r2-FOFyTx4xd2AFPtPrCRn3MZLk9A5XIIS5xN9jzfgjXIxH50cT2iVloA49V0O90zwyr7ME5fKSS60ELxFHoauTV95KL1lunTcxMzJmZbQsD9GaqxyhmNdOfoL1al6Fz0CC8UY4REzaR2W0csyWIke8YGKZuUwO4DtKqegmVV205-WCF6mwF13RiW4AtFdfcbvk6Xjm_f1exwXKLJ2SuCrMF3XRJpS3VuViANtL5T-0qBJBIi6CX17Qs2_wanI-mxbT45NfO_BapPzBTFPBv8J6c7cIuwhqGr_XmvBfgSbzMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA_iguhB1-9xdzWCFw8ZkyZpmuMwO2X8RFBBvJSkk4AIHbGdg_71vnRaHQVZXOgpaUPy8pL3S1_e7yF0QKnRsbWGsMgpIhJDiRXCEa6Z9Yp5Rk2IRj6_iIc34uRW3s6k-oJOlNBSWTvxw6p-HPmGYYAdhfLCFGMYUdWVeUD3cFr_ETx34dzV61-98-3yOjkrrGc4HelEtFFzX7QSbFNefrRNXwDO2vCkK-jurcv1fZOH7qSy3fzlE5vjf43pJ1pu4CjuTfVnFc25Yg0tzZAUriN3XOCr-2qCB-8xcfBJbeRAScLfNjxokung83C_L0S6POMZBg-ogOfsfojTNlYSXz7BTgRwF9tnqEk30E06uO4PSZOcgRiwYBWxRjJPrYwDpEtyxqWIWA54CkweH1nNLaeJNlb5WHEf517TxHmtRglAMisN30Tzxbhw2wg7ZVVkADlJ64WSwlCdRwngBuXz2MS8gw5BSlmzuMqs9ptHLAuFreiyRnQdRNopzB6nfB3_eH-_necMZBa8JaZw40mZ1YnltRZJ1EFbUwV4a1EEokTYDHe-0bM9tHD5N83Oji9Of6HFKKQRppJE7Dear54m7g9gm8ru1lr8CmDh9bU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Environmental+Transmission+Electron+Microscopy+Investigation+on+LiH+Formation+Prompted+by+LiF&rft.jtitle=Nano+letters&rft.au=Yu%2C+Xinyang&rft.au=Ruan%2C+Digen&rft.au=Ma%2C+Yuan&rft.au=Zheng%2C+Xuzhi&rft.date=2025-05-21&rft.issn=1530-6992&rft.eissn=1530-6992&rft_id=info:doi/10.1021%2Facs.nanolett.5c01490&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |