In Situ Environmental Transmission Electron Microscopy Investigation on LiH Formation Prompted by LiF

Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycli...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 25; no. 20; pp. 8303 - 8309
Main Authors Yu, Xinyang, Ruan, Digen, Ma, Yuan, Zheng, Xuzhi, Hua, Ze, Shao, Ruiwen, Wang, Dazhuang, Kang, Zhuo, Ren, Xiaodi, Qiao, Lijie, He, Yang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.
AbstractList Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries' cycling stability. Herein, by using environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.
Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries' cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries' cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.
Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are diverse and hardly evitable, unraveling the key factors promoting LiH formation is fundamentally crucial in improving lithium batteries’ cycling stability. Herein, by using in situ environmental transmission electron microscope, we revealed a critical role of lithium fluoride in the LiH formation during the electrochemical deposition of Li in a hydrogen environment, presumably by facilitating the kinetic process of hydrogen dissociation and the LiH nucleation. Ex situ coin-cell studies and DFT calculations corroborate this finding, further suggesting that the commonly used fluorine-rich electrolytes could promote LiH formation. Additionally, the LiH lattices in the dendrites are distorted and likely nonstoichiometric with face-centered cubic structured domains of Li metal. These fundamental insights on the LiH formation may pave the way for enhancing the cycle stability of lithium batteries.
Author Hua, Ze
Wang, Dazhuang
Qiao, Lijie
Ma, Yuan
Ruan, Digen
Zheng, Xuzhi
Kang, Zhuo
Yu, Xinyang
Shao, Ruiwen
Ren, Xiaodi
He, Yang
AuthorAffiliation University of Science and Technology of China
University of Science and Technology Beijing
Department of Materials Science and Engineering
Academy for Advanced Interdisciplinary Science and Technology, State Key Laboratory for Advanced Metals and Materials
Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering
Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology
– name: University of Science and Technology Beijing
– name: Academy for Advanced Interdisciplinary Science and Technology, State Key Laboratory for Advanced Metals and Materials
– name: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Xinyang
  surname: Yu
  fullname: Yu, Xinyang
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering
– sequence: 2
  givenname: Digen
  surname: Ruan
  fullname: Ruan, Digen
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Yuan
  surname: Ma
  fullname: Ma, Yuan
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering
– sequence: 4
  givenname: Xuzhi
  surname: Zheng
  fullname: Zheng, Xuzhi
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Ze
  surname: Hua
  fullname: Hua, Ze
  organization: Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology
– sequence: 6
  givenname: Ruiwen
  orcidid: 0000-0002-3082-0486
  surname: Shao
  fullname: Shao, Ruiwen
  organization: Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology
– sequence: 7
  givenname: Dazhuang
  surname: Wang
  fullname: Wang, Dazhuang
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Zhuo
  surname: Kang
  fullname: Kang, Zhuo
  email: zhuokang@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 9
  givenname: Xiaodi
  orcidid: 0000-0002-2025-7554
  surname: Ren
  fullname: Ren, Xiaodi
  email: xdren@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Lijie
  surname: Qiao
  fullname: Qiao, Lijie
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering
– sequence: 11
  givenname: Yang
  orcidid: 0000-0001-8095-2068
  surname: He
  fullname: He, Yang
  email: yanghe@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40344183$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rwyAYhWV0rB_bPxgjl7tJ9xo11ctR2rXQscG662CsGSmJdmoK_fez9ONyICie57x4PEPUM9ZohB4xjDFk-EUqPzbS2EaHMGYKMBVwgwaYEUhzIbLe9cxpHw293wKAIAzuUJ8CoRRzMkB6aZKvOnTJzOxrZ02rTZBNsnbS-Lb2vrYmmTVahagl77Vy1iu7OyRLs9c-1D8yHIm4VvUimVvXni4-nW13QW-S8hCV-T26rWTj9cN5H6Hv-Ww9XaSrj7fl9HWVykyIkJaS4QpKlk8ozrnChNEMKwaMAyabUpCSABeynFT5hFS5qgRwXYnJhnMiSibJCD2f5u6c_e3iA4uYQemmkUbbzhckg4wIQXkW0acz2pWt3hQ7V7fSHYrL10SAnoBjZu90dUUwFMcGithAcWmgODcQbXCyHdWt7ZyJgf-3_AFj240G
Cites_doi 10.1002/anie.202218005
10.1063/1.4812323
10.1126/science.abi8703
10.1107/S0365110X56001790
10.1126/science.aam6014
10.1016/0029-5493(73)90052-6
10.1016/S0378-7753(98)00201-8
10.1016/S0304-3991(98)00035-7
10.1126/sciadv.adf3609
10.1016/S1388-2481(99)00064-8
10.1002/zaac.19201130116
10.1016/j.apsusc.2021.151776
10.1038/sdata.2018.151
10.1126/sciadv.abl8245
10.1073/pnas.2010852117
10.1149/1.2969947
10.1016/j.ensm.2023.102916
10.1039/D2CS00873D
10.1149/2.1151605jes
10.1016/j.joule.2018.03.008
10.1002/aenm.201400993
10.1038/nphys1864
10.1021/acs.accounts.1c00183
10.1126/science.219.4588.1071
10.1038/s41565-022-01273-3
10.1073/pnas.2214357120
10.1021/ja312241y
10.1002/anie.202013812
10.1021/nn204476h
10.1002/zaac.19703720216
10.1039/D0TA11444H
10.1002/advs.202100676
10.1038/s41565-020-00845-5
10.1038/s41570-023-00557-z
10.1002/aenm.202100046
10.1021/jp910266m
10.1007/978-0-85729-221-6
10.1126/science.aal4886
10.1016/j.joule.2020.06.016
10.1016/j.micron.2004.02.003
10.1038/s41586-018-0397-3
10.1038/nnano.2017.16
10.1038/s41560-020-0601-1
10.1021/nl3044508
10.1016/j.joule.2019.09.022
10.1038/s41560-017-0047-2
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.5c01490
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 8309
ExternalDocumentID 40344183
10_1021_acs_nanolett_5c01490
b326561016
Genre Journal Article
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
VF5
VG9
W1F
AAYXX
ABLBI
CITATION
NPM
7X8
ID FETCH-LOGICAL-a299t-ba51f0b5674168c135421c5058013db93b3089ab7f673f6cf908ef97d8839b5a3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Wed Jul 02 04:26:33 EDT 2025
Thu May 22 05:05:18 EDT 2025
Sun Jul 06 05:04:11 EDT 2025
Thu May 22 04:22:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords lithium dendrite
lithium fluoride
lithium hydride
solid-electrolyte interphase
lithium battery
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a299t-ba51f0b5674168c135421c5058013db93b3089ab7f673f6cf908ef97d8839b5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8095-2068
0000-0002-3082-0486
0000-0002-2025-7554
PMID 40344183
PQID 3202399482
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_3202399482
pubmed_primary_40344183
crossref_primary_10_1021_acs_nanolett_5c01490
acs_journals_10_1021_acs_nanolett_5c01490
PublicationCentury 2000
PublicationDate 2025-05-21
PublicationDateYYYYMMDD 2025-05-21
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref17/cit17a
ref29/cit29c
ref23/cit23a
ref29/cit29b
ref11/cit11
ref25/cit25
ref29/cit29a
ref16/cit16
ref29/cit29
ref21/cit21b
ref23/cit23
ref14/cit14
ref21/cit21a
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref1/cit1a
ref1/cit1b
ref28/cit28
ref20/cit20
ref5/cit5b
ref17/cit17
ref10/cit10
ref5/cit5a
ref26/cit26
ref4/cit2a
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref26/cit26a
ref11/cit11a
ref20/cit20a
ref22/cit22
ref13/cit13
ref20/cit20c
ref20/cit20b
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref20/cit20b
  doi: 10.1002/anie.202218005
– ident: ref26/cit26a
  doi: 10.1063/1.4812323
– ident: ref16/cit16
  doi: 10.1126/science.abi8703
– ident: ref29/cit29
  doi: 10.1107/S0365110X56001790
– ident: ref31/cit31
  doi: 10.1126/science.aam6014
– ident: ref11/cit11a
  doi: 10.1016/0029-5493(73)90052-6
– ident: ref18/cit18
  doi: 10.1016/S0378-7753(98)00201-8
– ident: ref27/cit27
  doi: 10.1016/S0304-3991(98)00035-7
– ident: ref6/cit6
  doi: 10.1126/sciadv.adf3609
– ident: ref11/cit11
  doi: 10.1016/S1388-2481(99)00064-8
– ident: ref17/cit17
  doi: 10.1002/zaac.19201130116
– ident: ref22/cit22
  doi: 10.1016/j.apsusc.2021.151776
– ident: ref26/cit26
  doi: 10.1038/sdata.2018.151
– ident: ref3/cit3
  doi: 10.1126/sciadv.abl8245
– ident: ref25/cit25
  doi: 10.1073/pnas.2010852117
– ident: ref15/cit15
  doi: 10.1149/1.2969947
– ident: ref12/cit12
  doi: 10.1016/j.ensm.2023.102916
– ident: ref20/cit20
  doi: 10.1039/D2CS00873D
– ident: ref13/cit13
  doi: 10.1149/2.1151605jes
– ident: ref1/cit1b
  doi: 10.1016/j.joule.2018.03.008
– ident: ref4/cit4
  doi: 10.1002/aenm.201400993
– ident: ref29/cit29c
  doi: 10.1038/nphys1864
– ident: ref20/cit20c
  doi: 10.1021/acs.accounts.1c00183
– ident: ref29/cit29b
  doi: 10.1126/science.219.4588.1071
– ident: ref14/cit14
  doi: 10.1038/s41565-022-01273-3
– ident: ref20/cit20a
  doi: 10.1073/pnas.2214357120
– ident: ref28/cit28
– ident: ref4/cit2a
  doi: 10.1021/ja312241y
– ident: ref10/cit10
  doi: 10.1002/anie.202013812
– ident: ref23/cit23a
  doi: 10.1021/nn204476h
– ident: ref21/cit21b
  doi: 10.1002/zaac.19703720216
– ident: ref21/cit21
  doi: 10.1016/j.apsusc.2021.151776
– ident: ref24/cit24
  doi: 10.1039/D0TA11444H
– ident: ref9/cit9
  doi: 10.1002/advs.202100676
– ident: ref8/cit8
  doi: 10.1038/s41565-020-00845-5
– ident: ref5/cit5b
  doi: 10.1038/s41570-023-00557-z
– ident: ref19/cit19
  doi: 10.1002/aenm.202100046
– ident: ref17/cit17a
  doi: 10.1021/jp910266m
– ident: ref21/cit21a
  doi: 10.1007/978-0-85729-221-6
– ident: ref29/cit29a
  doi: 10.1126/science.aal4886
– ident: ref5/cit5
  doi: 10.1016/j.joule.2020.06.016
– ident: ref30/cit30
  doi: 10.1016/j.micron.2004.02.003
– ident: ref7/cit7
  doi: 10.1038/s41586-018-0397-3
– ident: ref1/cit1
  doi: 10.1038/nnano.2017.16
– ident: ref5/cit5a
  doi: 10.1038/s41560-020-0601-1
– ident: ref23/cit23
  doi: 10.1021/nl3044508
– ident: ref2/cit2
  doi: 10.1016/j.joule.2019.09.022
– ident: ref1/cit1a
  doi: 10.1038/s41560-017-0047-2
SSID ssj0009350
Score 2.478933
Snippet Lithium hydride is a common but unfavorable component that leads to “dead Li” formation in lithium batteries. Since the hydrogen sources in the batteries are...
Lithium hydride is a common but unfavorable component that leads to "dead Li" formation in lithium batteries. Since the hydrogen sources in the batteries are...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 8303
Title In Situ Environmental Transmission Electron Microscopy Investigation on LiH Formation Prompted by LiF
URI http://dx.doi.org/10.1021/acs.nanolett.5c01490
https://www.ncbi.nlm.nih.gov/pubmed/40344183
https://www.proquest.com/docview/3202399482
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQvcABCqVlKa2M1AsHb_2M7eNqtast4lEJkLhFtrElhJRFbPYAv55xNulSKlSQcooTK54Ze76J_c0g9INSZwvvHWE8aiKNo8RLGYmwzCfNEqMus5FPTovJpTy6UlfLQPHlDj5nP12Y9StXTWEYdV-FDOkhRP_AC6NzsDUYni-T7IqmIitMYgiJrJEdVe6VXrJDCrO_HdIrKLPxNuNNdNZxdhaHTG7789r3w-O_KRzfOJCPaKMFnniwsJQttBKrbbT-LB3hJxR_Vfj8pp7j0ZL9Bq807gzMIf9Xw6O2bA4-ySf5MqflAT_L1QENcB3fTPC4Y0Xi3_ew5gCwxf4BWsY76HI8uhhOSFuGgTjwVTXxTrFEvSoyeDOBCSU5C4CcwLmJa2-FF9RY53UqtEhFSJaamKy-NgC-vHLiM1qtplXcRThqr7kDjKR8klpJR23gBhCCTqFwheihQ5BS2U6jWdnskHNW5pud6MpWdD1EOr2Vd4vMHP95_qBTbgkyy_sirorT-axsSshbKw3voS8Lrf_pUeaUiLDs7b3jy76iNZ6rBFNFONtHq_X9PH4D6FL77429PgH4xerR
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hOLQ9tIW2dEuhRuLSg7f-jOMjQrta2l2EBFTcIjvYEkLKIpI90F_fcTZhaSWEkHKyE8ueGXueY88bgAPGnM28d5SLYKjKHaNeqUCl5T4aHjlzKRp5dpJNLtTPS325BrqPhcFO1NhS3R7ir9gF-I9UVrlqjqNphrpMyB536huIR0Tacx0ena24dmWbmBXnMu6MbK76iLknWkl-qaz_9UtPgM3W6Yzfwe-H7rZ3TW6Gi8YPyz__MTm-eDzv4W0HQ8nh0m42YS1UW_DmETnhBwjHFTm7bhZktIqFw09a54bGkf6ykVGXRIfM0r2-FOFyTx4xd2AFPtPrCRn3MZLk9A5XIIS5xN9jzfgjXIxH50cT2iVloA49V0O90zwyr7ME5fKSS60ELxFHoauTV95KL1lunTcxMzJmZbQsD9GaqxyhmNdOfoL1al6Fz0CC8UY4REzaR2W0csyWIke8YGKZuUwO4DtKqegmVV205-WCF6mwF13RiW4AtFdfcbvk6Xjm_f1exwXKLJ2SuCrMF3XRJpS3VuViANtL5T-0qBJBIi6CX17Qs2_wanI-mxbT45NfO_BapPzBTFPBv8J6c7cIuwhqGr_XmvBfgSbzMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-QwFA_iguhB1-9xdzWCFw8ZkyZpmuMwO2X8RFBBvJSkk4AIHbGdg_71vnRaHQVZXOgpaUPy8pL3S1_e7yF0QKnRsbWGsMgpIhJDiRXCEa6Z9Yp5Rk2IRj6_iIc34uRW3s6k-oJOlNBSWTvxw6p-HPmGYYAdhfLCFGMYUdWVeUD3cFr_ETx34dzV61-98-3yOjkrrGc4HelEtFFzX7QSbFNefrRNXwDO2vCkK-jurcv1fZOH7qSy3fzlE5vjf43pJ1pu4CjuTfVnFc25Yg0tzZAUriN3XOCr-2qCB-8xcfBJbeRAScLfNjxokung83C_L0S6POMZBg-ogOfsfojTNlYSXz7BTgRwF9tnqEk30E06uO4PSZOcgRiwYBWxRjJPrYwDpEtyxqWIWA54CkweH1nNLaeJNlb5WHEf517TxHmtRglAMisN30Tzxbhw2wg7ZVVkADlJ64WSwlCdRwngBuXz2MS8gw5BSlmzuMqs9ptHLAuFreiyRnQdRNopzB6nfB3_eH-_necMZBa8JaZw40mZ1YnltRZJ1EFbUwV4a1EEokTYDHe-0bM9tHD5N83Oji9Of6HFKKQRppJE7Dear54m7g9gm8ru1lr8CmDh9bU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Environmental+Transmission+Electron+Microscopy+Investigation+on+LiH+Formation+Prompted+by+LiF&rft.jtitle=Nano+letters&rft.au=Yu%2C+Xinyang&rft.au=Ruan%2C+Digen&rft.au=Ma%2C+Yuan&rft.au=Zheng%2C+Xuzhi&rft.date=2025-05-21&rft.issn=1530-6992&rft.eissn=1530-6992&rft_id=info:doi/10.1021%2Facs.nanolett.5c01490&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon