Parameters Driving Anomalous Transport in Colloids: Dimensional Analysis

The anomalous transport of identical colloids, characterized by multiexponential and nonmonotonic retention profiles, under unfavorable conditions, has been the subject of significant interest over the past few decades. This study conducts a dimensional analysis of the governing equations for colloi...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 41; no. 30; pp. 19924 - 19938
Main Authors Al-Zghoul, Bashar M., Johnson, William P., Ullauri, Luis, Bolster, Diogo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.08.2025
Online AccessGet full text

Cover

Loading…
Abstract The anomalous transport of identical colloids, characterized by multiexponential and nonmonotonic retention profiles, under unfavorable conditions, has been the subject of significant interest over the past few decades. This study conducts a dimensional analysis of the governing equations for colloid transport to explore the impact of various dimensionless groups on colloid attachment efficiency (α), defined as the ratio of the number of attached colloids to the number intercepted (i.e., those that enter the near-surface zone). The primary objective of this article is to identify the dimensionless groups responsible for explaining potential variation in α. Our analysis revealed that 15 dimensionless groups govern colloid transport in porous media, which we categorized into three groups: (i) hydrodynamic, (ii) DLVO, and (iii) surface charge heterogeneity dimensionless groups. We assessed the impact of each category on the magnitude of α via pore-assembly colloid trajectory simulations. Our findings indicate that the surface charge heterogeneity dimensionless groups exert a dramatic influence on the value of α compared to the mean-field DLVO or hydrodynamic groups. In particular, the surface charge heterogeneity dimensionless group, H r (the ratio of the heterodomain radius to the radius of the colloid–surface zone of interaction), significantly impacts α in the approximate range of 0.6 < H r < 2. As a result, within this range, even a slight variation in H r causes a marked change in α, facilitating the transition between multiexponential and nonmonotonic retention profiles under unfavorable conditions.
AbstractList The anomalous transport of identical colloids, characterized by multiexponential and nonmonotonic retention profiles, under unfavorable conditions, has been the subject of significant interest over the past few decades. This study conducts a dimensional analysis of the governing equations for colloid transport to explore the impact of various dimensionless groups on colloid attachment efficiency (α), defined as the ratio of the number of attached colloids to the number intercepted (i.e., those that enter the near-surface zone). The primary objective of this article is to identify the dimensionless groups responsible for explaining potential variation in α. Our analysis revealed that 15 dimensionless groups govern colloid transport in porous media, which we categorized into three groups: (i) hydrodynamic, (ii) DLVO, and (iii) surface charge heterogeneity dimensionless groups. We assessed the impact of each category on the magnitude of α via pore-assembly colloid trajectory simulations. Our findings indicate that the surface charge heterogeneity dimensionless groups exert a dramatic influence on the value of α compared to the mean-field DLVO or hydrodynamic groups. In particular, the surface charge heterogeneity dimensionless group, (the ratio of the heterodomain radius to the radius of the colloid-surface zone of interaction), significantly impacts α in the approximate range of 0.6 < < 2. As a result, within this range, even a slight variation in causes a marked change in α, facilitating the transition between multiexponential and nonmonotonic retention profiles under unfavorable conditions.
The anomalous transport of identical colloids, characterized by multiexponential and nonmonotonic retention profiles, under unfavorable conditions, has been the subject of significant interest over the past few decades. This study conducts a dimensional analysis of the governing equations for colloid transport to explore the impact of various dimensionless groups on colloid attachment efficiency (α), defined as the ratio of the number of attached colloids to the number intercepted (i.e., those that enter the near-surface zone). The primary objective of this article is to identify the dimensionless groups responsible for explaining potential variation in α. Our analysis revealed that 15 dimensionless groups govern colloid transport in porous media, which we categorized into three groups: (i) hydrodynamic, (ii) DLVO, and (iii) surface charge heterogeneity dimensionless groups. We assessed the impact of each category on the magnitude of α via pore-assembly colloid trajectory simulations. Our findings indicate that the surface charge heterogeneity dimensionless groups exert a dramatic influence on the value of α compared to the mean-field DLVO or hydrodynamic groups. In particular, the surface charge heterogeneity dimensionless group, Hr (the ratio of the heterodomain radius to the radius of the colloid-surface zone of interaction), significantly impacts α in the approximate range of 0.6 < Hr < 2. As a result, within this range, even a slight variation in Hr causes a marked change in α, facilitating the transition between multiexponential and nonmonotonic retention profiles under unfavorable conditions.The anomalous transport of identical colloids, characterized by multiexponential and nonmonotonic retention profiles, under unfavorable conditions, has been the subject of significant interest over the past few decades. This study conducts a dimensional analysis of the governing equations for colloid transport to explore the impact of various dimensionless groups on colloid attachment efficiency (α), defined as the ratio of the number of attached colloids to the number intercepted (i.e., those that enter the near-surface zone). The primary objective of this article is to identify the dimensionless groups responsible for explaining potential variation in α. Our analysis revealed that 15 dimensionless groups govern colloid transport in porous media, which we categorized into three groups: (i) hydrodynamic, (ii) DLVO, and (iii) surface charge heterogeneity dimensionless groups. We assessed the impact of each category on the magnitude of α via pore-assembly colloid trajectory simulations. Our findings indicate that the surface charge heterogeneity dimensionless groups exert a dramatic influence on the value of α compared to the mean-field DLVO or hydrodynamic groups. In particular, the surface charge heterogeneity dimensionless group, Hr (the ratio of the heterodomain radius to the radius of the colloid-surface zone of interaction), significantly impacts α in the approximate range of 0.6 < Hr < 2. As a result, within this range, even a slight variation in Hr causes a marked change in α, facilitating the transition between multiexponential and nonmonotonic retention profiles under unfavorable conditions.
The anomalous transport of identical colloids, characterized by multiexponential and nonmonotonic retention profiles, under unfavorable conditions, has been the subject of significant interest over the past few decades. This study conducts a dimensional analysis of the governing equations for colloid transport to explore the impact of various dimensionless groups on colloid attachment efficiency (α), defined as the ratio of the number of attached colloids to the number intercepted (i.e., those that enter the near-surface zone). The primary objective of this article is to identify the dimensionless groups responsible for explaining potential variation in α. Our analysis revealed that 15 dimensionless groups govern colloid transport in porous media, which we categorized into three groups: (i) hydrodynamic, (ii) DLVO, and (iii) surface charge heterogeneity dimensionless groups. We assessed the impact of each category on the magnitude of α via pore-assembly colloid trajectory simulations. Our findings indicate that the surface charge heterogeneity dimensionless groups exert a dramatic influence on the value of α compared to the mean-field DLVO or hydrodynamic groups. In particular, the surface charge heterogeneity dimensionless group, H r (the ratio of the heterodomain radius to the radius of the colloid–surface zone of interaction), significantly impacts α in the approximate range of 0.6 < H r < 2. As a result, within this range, even a slight variation in H r causes a marked change in α, facilitating the transition between multiexponential and nonmonotonic retention profiles under unfavorable conditions.
Author Al-Zghoul, Bashar M.
Johnson, William P.
Bolster, Diogo
Ullauri, Luis
AuthorAffiliation Department of Civil and Environmental Engineering and Earth Science
Department of Geology and Geophysics
AuthorAffiliation_xml – name: Department of Geology and Geophysics
– name: Department of Civil and Environmental Engineering and Earth Science
Author_xml – sequence: 1
  givenname: Bashar M.
  orcidid: 0009-0008-0758-528X
  surname: Al-Zghoul
  fullname: Al-Zghoul, Bashar M.
  email: balzghou@nd.edu
  organization: Department of Civil and Environmental Engineering and Earth Science
– sequence: 2
  givenname: William P.
  orcidid: 0000-0003-3126-3877
  surname: Johnson
  fullname: Johnson, William P.
  email: william.johnson@utah.edu
  organization: Department of Geology and Geophysics
– sequence: 3
  givenname: Luis
  surname: Ullauri
  fullname: Ullauri, Luis
  organization: Department of Geology and Geophysics
– sequence: 4
  givenname: Diogo
  surname: Bolster
  fullname: Bolster, Diogo
  organization: Department of Civil and Environmental Engineering and Earth Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40711363$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOwzAQRS1URB_wBwhlySbFr9g1u6oFilQJFmVtTRKncpXYxU6Q-vekasuS1Szm3KuZM0YD551B6J7gKcGUPEERpzW4bdPZMM0KTFQmrtCIZBSn2YzKARphyVkquWBDNI5xhzFWjKsbNORYEsIEG6HVJwRoTGtCTJbB_li3TebON1D7LiabAC7ufWgT65KFr2tvy_icLG1jXLTeQd3DUB-ijbfouoI6mrvznKCv15fNYpWuP97eF_N1ClSpNgWljCopcAaKFCKHQhIqiowJWSlSKl4JmgspqABe0BwTYJXKS6hyJjNiMjZBj6feffDfnYmtbmwsTN2rMP3JmlHGqMAzOevRhzPa5Y0p9T7YBsJBX77vAX4CiuBjDKb6QwjWR8m6l6wvkvVZch_Dp9hxu_Nd6BXE_yO_gaSDVg
Cites_doi 10.1021/acs.est.5c03239
10.1103/PhysRevE.74.041127
10.1016/j.jcis.2008.05.019
10.1021/acsearthspacechem.3c00255
10.1002/andp.201200232
10.1016/j.jhydrol.2021.127020
10.1063/1.1427920
10.1016/j.jcis.2008.07.004
10.1016/j.advwatres.2025.104905
10.1021/es061301x
10.1021/es049154v
10.1006/jcis.1998.5806
10.1021/es052501w
10.1021/es048289y
10.1029/2023WR036877
10.1016/0021-9797(81)90018-7
10.1021/acs.est.4c06509
10.1002/aic.690220316
10.5149/ARC-GR.1582
10.1021/es048963b
10.1016/j.jhydrol.2024.132483
10.1006/jcis.1999.6424
10.1016/j.geoderma.2020.114894
10.1039/tf9666201638
10.1016/j.cej.2019.121984
10.1016/j.advwatres.2024.104770
10.1021/es00080a012
10.1016/0009-2509(67)80047-2
10.1016/j.jcis.2009.05.046
10.1002/aic.690450305
10.1006/jcis.1996.0259
10.1002/2015WR017318
10.1021/es034049r
10.1039/D0EN00815J
10.1016/j.jcis.2023.03.005
10.1021/la501006p
10.1021/es901242b
10.1039/C9EN00306A
10.1088/0034-4885/29/1/306
10.21083/978-1-77470-070-9
10.1021/es8024275
10.1016/0166-6622(89)80178-7
10.1029/2006WR005770
10.1021/es030416n
10.1021/acs.langmuir.5b02369
10.1016/S0065-2113(08)60427-7
10.1021/acs.est.8b00811
10.1016/j.advwatres.2024.104878
10.1016/0009-2509(71)83008-7
10.1007/s11051-013-1692-4
10.5149/ARC-GR.1294
10.1002/2015WR017403
10.1016/j.jhazmat.2024.134583
10.1002/wrcr.20433
10.1016/j.watres.2020.116012
10.1029/2018WR024261
10.1029/2010WR009218
10.5281/zenodo.10068085
10.1029/2005WR004791
10.1016/j.cis.2017.06.002
10.1016/j.seppur.2025.132055
10.1021/es502503y
10.1016/0043-1354(92)90104-C
10.1029/2010WR009587
10.1021/es60058a005
10.1016/j.jcis.2006.12.068
10.2136/vzj2007.0066
10.1029/2002WR001340
10.1016/0021-9797(91)90458-K
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.langmuir.5c01956
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 19938
ExternalDocumentID 40711363
10_1021_acs_langmuir_5c01956
c388009559
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-a299t-a99e9d2a43a91c6bac7126c5367f91d94f62b67626a4c2b01a3f9bdafb3751e53
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 25 18:52:37 EDT 2025
Wed Aug 06 16:36:34 EDT 2025
Wed Aug 06 19:08:18 EDT 2025
Wed Aug 06 16:49:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a299t-a99e9d2a43a91c6bac7126c5367f91d94f62b67626a4c2b01a3f9bdafb3751e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-0758-528X
0000-0003-3126-3877
PMID 40711363
PQID 3233260878
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3233260878
pubmed_primary_40711363
crossref_primary_10_1021_acs_langmuir_5c01956
acs_journals_10_1021_acs_langmuir_5c01956
PublicationCentury 2000
PublicationDate 2025-08-05
PublicationDateYYYYMMDD 2025-08-05
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
Christopher J. (ref49/cit49) 2022
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
Johnson W. P. (ref8/cit8) 2023
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
Elimelech M. (ref59/cit59) 1995
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1021/acs.est.5c03239
– ident: ref48/cit48
  doi: 10.1103/PhysRevE.74.041127
– ident: ref6/cit6
  doi: 10.1016/j.jcis.2008.05.019
– ident: ref3/cit3
  doi: 10.1021/acsearthspacechem.3c00255
– ident: ref52/cit52
  doi: 10.1002/andp.201200232
– volume-title: Particle Deposition and Aggregation
  year: 1995
  ident: ref59/cit59
– ident: ref32/cit32
  doi: 10.1016/j.jhydrol.2021.127020
– ident: ref51/cit51
  doi: 10.1063/1.1427920
– ident: ref25/cit25
  doi: 10.1016/j.jcis.2008.07.004
– ident: ref36/cit36
  doi: 10.1016/j.advwatres.2025.104905
– ident: ref66/cit66
  doi: 10.1021/es061301x
– ident: ref11/cit11
  doi: 10.1021/es049154v
– ident: ref58/cit58
  doi: 10.1006/jcis.1998.5806
– ident: ref65/cit65
  doi: 10.1021/es052501w
– ident: ref12/cit12
  doi: 10.1021/es048289y
– ident: ref38/cit38
  doi: 10.1029/2023WR036877
– ident: ref67/cit67
  doi: 10.1016/0021-9797(81)90018-7
– ident: ref37/cit37
  doi: 10.1021/acs.est.4c06509
– ident: ref15/cit15
  doi: 10.1002/aic.690220316
– ident: ref41/cit41
  doi: 10.5149/ARC-GR.1582
– ident: ref13/cit13
  doi: 10.1021/es048963b
– volume-title: OpenFOAM The OpenFOAM Foundation User Guide
  year: 2022
  ident: ref49/cit49
– ident: ref29/cit29
  doi: 10.1016/j.jhydrol.2024.132483
– ident: ref44/cit44
  doi: 10.1006/jcis.1999.6424
– ident: ref7/cit7
  doi: 10.1016/j.geoderma.2020.114894
– ident: ref57/cit57
  doi: 10.1039/tf9666201638
– ident: ref34/cit34
  doi: 10.1016/j.cej.2019.121984
– ident: ref70/cit70
  doi: 10.1016/j.advwatres.2024.104770
– ident: ref23/cit23
  doi: 10.1021/es00080a012
– ident: ref54/cit54
  doi: 10.1016/0009-2509(67)80047-2
– ident: ref28/cit28
  doi: 10.1016/j.jcis.2009.05.046
– ident: ref64/cit64
  doi: 10.1002/aic.690450305
– ident: ref43/cit43
  doi: 10.1006/jcis.1996.0259
– ident: ref1/cit1
  doi: 10.1002/2015WR017318
– ident: ref18/cit18
  doi: 10.1021/es034049r
– ident: ref62/cit62
  doi: 10.1039/D0EN00815J
– ident: ref27/cit27
  doi: 10.1016/j.jcis.2023.03.005
– ident: ref26/cit26
  doi: 10.1021/la501006p
– ident: ref17/cit17
  doi: 10.1021/es901242b
– ident: ref61/cit61
  doi: 10.1039/C9EN00306A
– ident: ref55/cit55
  doi: 10.1088/0034-4885/29/1/306
– volume-title: Colloid (Nano- and Micro-Particle) Transport and Surface Interaction in Groundwater
  year: 2023
  ident: ref8/cit8
  doi: 10.21083/978-1-77470-070-9
– ident: ref16/cit16
  doi: 10.1021/es8024275
– ident: ref22/cit22
  doi: 10.1016/0166-6622(89)80178-7
– ident: ref63/cit63
  doi: 10.1029/2006WR005770
– ident: ref45/cit45
  doi: 10.1021/es030416n
– ident: ref47/cit47
  doi: 10.1021/acs.langmuir.5b02369
– ident: ref4/cit4
  doi: 10.1016/S0065-2113(08)60427-7
– ident: ref35/cit35
  doi: 10.1021/acs.est.8b00811
– ident: ref40/cit40
  doi: 10.1016/j.advwatres.2024.104878
– ident: ref53/cit53
  doi: 10.1016/0009-2509(71)83008-7
– ident: ref10/cit10
  doi: 10.1007/s11051-013-1692-4
– ident: ref71/cit71
  doi: 10.5149/ARC-GR.1294
– ident: ref20/cit20
  doi: 10.1002/2015WR017403
– ident: ref5/cit5
  doi: 10.1016/j.jhazmat.2024.134583
– ident: ref21/cit21
  doi: 10.1002/wrcr.20433
– ident: ref68/cit68
  doi: 10.1016/j.watres.2020.116012
– ident: ref69/cit69
  doi: 10.1029/2018WR024261
– ident: ref46/cit46
  doi: 10.1029/2010WR009218
– ident: ref50/cit50
  doi: 10.5281/zenodo.10068085
– ident: ref31/cit31
  doi: 10.1029/2005WR004791
– ident: ref2/cit2
  doi: 10.1016/j.cis.2017.06.002
– ident: ref33/cit33
  doi: 10.1016/j.seppur.2025.132055
– ident: ref60/cit60
  doi: 10.1021/es502503y
– ident: ref42/cit42
  doi: 10.1016/0043-1354(92)90104-C
– ident: ref19/cit19
  doi: 10.1029/2010WR009587
– ident: ref14/cit14
  doi: 10.1021/es60058a005
– ident: ref24/cit24
  doi: 10.1016/j.jcis.2006.12.068
– ident: ref9/cit9
  doi: 10.2136/vzj2007.0066
– ident: ref30/cit30
  doi: 10.1029/2002WR001340
– ident: ref56/cit56
  doi: 10.1016/0021-9797(91)90458-K
SSID ssj0009349
Score 2.4835994
Snippet The anomalous transport of identical colloids, characterized by multiexponential and nonmonotonic retention profiles, under unfavorable conditions, has been...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 19924
Title Parameters Driving Anomalous Transport in Colloids: Dimensional Analysis
URI http://dx.doi.org/10.1021/acs.langmuir.5c01956
https://www.ncbi.nlm.nih.gov/pubmed/40711363
https://www.proquest.com/docview/3233260878
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB60HvTivtSNEbx4SM0smXS8ldZSBBfQQm_hzSQDQZtK01789c4kTYtKUa8hDMl7M_O-t30PoUt76RkO0vcC4L7HNZEeKDfN3do6RY0wpJgNeP8gen1-NwgGC0fxewafkmvQecPF7obTdNwIdNHgtorWqLDn2EGh9vOCZJeVcNfRboZcsKpVbskqziDp_KtBWoIyC2vT3UKPVc9OWWTy2phOVEN__KRw_OOPbKPNGfDErXKn7KCVJNtF6-1q3tse6j2BK9RybJu4M05doAG3stEQ3kbTHM9J0HGaYRdtGKVxfoM7bjhASeyBK36TfdTv3r60e95szoIH1hhNPJAykTEFzkASLRTokFChAyZCI0ksuRFUCXtrCuCaKp8AM1LFYBQLA5IE7ADVslGWHCFsnUMZxLQZQ8i56_oxwqexiqn1ioQBU0dXVgzR7JzkUZECpyRyDyvZRDPZ1JFXKSZ6L6k3fnn_otJeZEXnEh-QJVZEEaPMolS_GTbr6LBU63xF59ASJtjxP77sBG1QNwa4qAM8RbXJeJqcWWwyUefFhvwEGUvfxg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHODCvpTVSFw4pMRram5VAZVVSCziFtlJLFVAipr2wtfjSZoikBDiakUjZ8b2jGc87wEc-kPPCaPDQBoRBiKhOjAW2dy9r7PMKUdLbsCbW9V9FJfP8nkKZN0L4ydReElFWcT_QhegxziGKby3UW_QlEnZ5zYNsz4eYbiw2537L6xdXkW9iL4ZCcXrjrlfpKBfSorvfumXYLN0OueL8DSZbvnW5KU5Gtpm8vEDyfHf_7MEC-MwlLSrdbMMU1m-AnOdmv1tFbp3Bp9tIfYmOR30MO1A2nn_zbz2RwWZQKKTXk4w99DvpcUJOUWqgArmg9RoJ2vweH720OkGY9aFwHjXNAyM1plOmRHcaJooa5KIMpVIriKnaaqFU8wqf4YqIxJmQ2q40zY1zvJI0kzydZjJ-3m2CcRfFbVMWSs1kRDYA-RUyFKbMn9HUs64Bhx5NcTjXVPEZUGc0RgHa93EY900IKjtE79XQBx_fH9QGzH2qsMyiMkzr6KYM-5j1rAVtRqwUVl3IhGvt5QrvvWPme3DXPfh5jq-vri92oZ5hgTB-KZE7sDMcDDKdn3UMrR75Rr9BGp26Cs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5SB9pe2qSP1GmTKNBLD-usHqu1cjN2jPuIMbSG0MsirVawNFkbr33pr69mH24bMKW5ikVoZyTNS_N9AO_9peeEVmEQaREGIqUq0AbZ3L2tM8xJRytuwOupnMzFp5vo5g-qL7-I0s9UVkV8PNVL6xqEAXqB45jGu9vkq16UVr1uj2AfK3e4uQfDr7_xdnnt-SICZywkb7vmdsyCtikt_7ZNOxzOyvCMn8P37ZKr9yY_epu16aU_76E5PuifDuBZ446SQb1_DmEvK17Ak2HLAvcSJjONz7cQg5OMVjmmH8igWNzp28WmJFtodJIXBHMQi9yWl2SElAE13AdpUU9ewXx89W04CRr2hUB7E7UOtFKZskwLrhVNpdFpTJlMIy5jp6hVwklmpL9LpRYpMyHV3CljtTM8jmgW8dfQKRZF9gaIDxlVZFnf6lgI7AVyMmTWWOZjJem068IHL4akOT1lUhXGGU1wsJVN0simC0Gro2RZA3L84_vzVpGJFx2WQ3SReRElnHHvu4b9uN-Fo1rD2xkxzKVc8uP_WNkZPJ6NxsmXj9PPb-EpQ55gfFoSvYPOerXJTrzzsjan1Tb9BfbJ6q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameters+Driving+Anomalous+Transport+in+Colloids%3A+Dimensional+Analysis&rft.jtitle=Langmuir&rft.au=Al-Zghoul%2C+Bashar+M&rft.au=Johnson%2C+William+P&rft.au=Ullauri%2C+Luis&rft.au=Bolster%2C+Diogo&rft.date=2025-08-05&rft.eissn=1520-5827&rft.volume=41&rft.issue=30&rft.spage=19924&rft_id=info:doi/10.1021%2Facs.langmuir.5c01956&rft_id=info%3Apmid%2F40711363&rft.externalDocID=40711363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon