Recent Advancements in the Conversion-Type Pnictide-Based Electrodes for Li-Ion Batteries

Nowadays conversion-type electrode materials definitively lie as the core of any research programs related to Li-ion batteries. Requirements are high capacity, good rate capability, and a long cycle life. Indeed, the goal of much lithium battery research is to achieve the highest energy density batt...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 118; no. 20; pp. 10531 - 10544
Main Author Monconduit, L.
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.05.2014
Online AccessGet full text

Cover

Loading…
Abstract Nowadays conversion-type electrode materials definitively lie as the core of any research programs related to Li-ion batteries. Requirements are high capacity, good rate capability, and a long cycle life. Indeed, the goal of much lithium battery research is to achieve the highest energy density battery as possible. In the case of pnictide materials, such performances are the results of the following conversion reaction: M x X y + 2yLi ↔ xM0 + yLi3X (X = P, Sb; M = Fe, Ni, Co, ...). However, these materials are still suffering from serious issues such as (i) low Coulombic efficiency, (ii) high polarization, (iii) poor cycle life (volume expansion), and (iv) limited rate capability that unfortunately still prevent them for any close commercial viability. In this article, the most recent research developments of our group and through collaborations in this specific field will be reported. In the interest of overcoming the limitations listed above, a cautious and rigorous scrutinizing of the electrochemical behavior of any studied materials is necessary. In our research group, we have extensive experience in the use of sophisticated in and ex situ characterization tools, in the aim to probe bulk pnictide in the Li batteries and the electrolyte/electrode surface as well. Indeed, thanks to these methods, we could unambiguously show that electrochemical conversion reactions are leading to some unstable phases, which cannot be synthesized via common chemical reaction paths. One can observe the key role of the solid/solid Li3X/M0 interfaces in the reversibility of the conversion mechanism. Contrarily, during the process, the solid/liquid electrode/electrolyte interfaces are subject to continuous parasitic reactions which drastically limit the cycle life of the battery. Fortunately, both nanostructuration of the pnictide electrodes as well as the confinement of pnictide into a porous carbon matrix play a great role in improving the performance of the cell mainly due (i) to the shortening of the distance over which Li+ diffuses or (ii) to the buffer effect of the carbon matrix against the local volume change during the charge and discharge process.
AbstractList Nowadays conversion-type electrode materials definitively lie as the core of any research programs related to Li-ion batteries. Requirements are high capacity, good rate capability, and a long cycle life. Indeed, the goal of much lithium battery research is to achieve the highest energy density battery as possible. In the case of pnictide materials, such performances are the results of the following conversion reaction: M x X y + 2yLi ↔ xM0 + yLi3X (X = P, Sb; M = Fe, Ni, Co, ...). However, these materials are still suffering from serious issues such as (i) low Coulombic efficiency, (ii) high polarization, (iii) poor cycle life (volume expansion), and (iv) limited rate capability that unfortunately still prevent them for any close commercial viability. In this article, the most recent research developments of our group and through collaborations in this specific field will be reported. In the interest of overcoming the limitations listed above, a cautious and rigorous scrutinizing of the electrochemical behavior of any studied materials is necessary. In our research group, we have extensive experience in the use of sophisticated in and ex situ characterization tools, in the aim to probe bulk pnictide in the Li batteries and the electrolyte/electrode surface as well. Indeed, thanks to these methods, we could unambiguously show that electrochemical conversion reactions are leading to some unstable phases, which cannot be synthesized via common chemical reaction paths. One can observe the key role of the solid/solid Li3X/M0 interfaces in the reversibility of the conversion mechanism. Contrarily, during the process, the solid/liquid electrode/electrolyte interfaces are subject to continuous parasitic reactions which drastically limit the cycle life of the battery. Fortunately, both nanostructuration of the pnictide electrodes as well as the confinement of pnictide into a porous carbon matrix play a great role in improving the performance of the cell mainly due (i) to the shortening of the distance over which Li+ diffuses or (ii) to the buffer effect of the carbon matrix against the local volume change during the charge and discharge process.
Author Monconduit, L.
AuthorAffiliation Institut Charles Gerhardt Montpellier-UMR 5253 CNRS, ALISTORE European Research Institute (3104 CNRS)
Université Montpellier 2
AuthorAffiliation_xml – name: Institut Charles Gerhardt Montpellier-UMR 5253 CNRS, ALISTORE European Research Institute (3104 CNRS)
– name: Université Montpellier 2
Author_xml – sequence: 1
  givenname: L.
  surname: Monconduit
  fullname: Monconduit, L.
  email: Laure.monconduit@um2.fr
BookMark eNptkEFPAjEUhBujiYAe_Ae9ePCw0u62y_YIBJWERGPw4Gnztn0bS6AlbSXy712C4WA4vTl8M3kzfXLpvENC7jh75Cznw9VWcK549XNBelwVeTYSUl6etBhdk36MK8ZkwXjRI5_vqNElOjY7cBo3nY7UOpq-kE6922GI1rtsud8ifXNWJ2swm0BEQ2dr1Cl4g5G2PtCFzebe0QmkhMFivCFXLawj3v7dAfl4mi2nL9ni9Xk-HS8yyFWZsqJFqYCr6vCR4lI1zajI5ajUpWyqHEqEnAlVCGlACG4aJiQzAGCqAquSFwPycMzVwccYsK23wW4g7GvO6sMm9WmTjh3-Y7VNkLqGKYBdn3XcHx2gY73y38F1Xc5wv5gPcak
CitedBy_id crossref_primary_10_1002_chin_201427233
crossref_primary_10_1039_C6TA06008K
crossref_primary_10_1021_cm503717e
crossref_primary_10_1002_smll_201800793
crossref_primary_10_1186_s11671_021_03631_x
crossref_primary_10_1016_j_jpowsour_2017_10_069
crossref_primary_10_1039_C6RA01637E
crossref_primary_10_1039_C4RA14609C
crossref_primary_10_1021_acs_inorgchem_6b02216
crossref_primary_10_1021_acs_chemmater_9b03740
crossref_primary_10_1016_j_jpowsour_2014_10_051
crossref_primary_10_1021_cm504413g
crossref_primary_10_1016_j_electacta_2015_04_060
crossref_primary_10_1039_D3TA02329J
crossref_primary_10_1021_acs_cgd_8b00445
crossref_primary_10_1016_j_ceramint_2015_09_163
crossref_primary_10_1021_ic502234w
crossref_primary_10_1007_s10008_017_3580_9
crossref_primary_10_1016_j_electacta_2015_02_178
crossref_primary_10_1039_C6QI00475J
Cites_doi 10.1016/j.jpowsour.2007.06.256
10.1149/1.2783772
10.1016/j.elecom.2007.10.001
10.1021/jp3073987
10.1016/j.jpowsour.2012.08.007
10.1016/j.elecom.2003.12.012
10.1039/b820555h
10.1016/S0013-4686(99)00215-7
10.1002/adma.201000717
10.1016/0013-4686(93)80057-7
10.1021/cm051574b
10.1021/cm060433m
10.1039/c1jm10710k
10.1016/j.jpowsour.2004.05.056
10.1007/s11581-007-0170-3
10.1016/j.jpowsour.2007.06.149
10.1149/1.1602331
10.1149/1.1622959
10.1039/b923908a
10.1016/j.ssi.2010.03.019
10.1002/anie.201204591
10.1016/j.jpowsour.2013.08.136
10.1021/cm901243a
10.1039/c3cp52125g
10.1149/1.1409971
10.1016/j.jpowsour.2013.06.159
10.1021/jp0205968
10.1021/cm801105p
10.1016/S0378-7753(03)00250-7
10.1021/ja206268a
10.1021/cm802393z
10.1002/adma.201204877
10.1149/1.1828344
10.1016/0025-5408(81)90126-4
10.1016/j.elecom.2013.08.008
10.1149/1.1938047
10.1016/S1293-2558(03)00114-6
10.1002/adma.200602035
10.1149/1.3148721
10.1002/adma.200306075
10.1039/c0jm04202a
10.1002/adma.200602592
10.1039/c2cc32730a
10.1016/j.jallcom.2004.09.060
10.1021/jp402973h
10.1016/S0167-2738(03)00302-3
10.1038/35035045
10.1016/j.jpowsour.2009.10.063
10.1021/cm303086j
10.1016/j.elecom.2011.01.021
10.1016/j.nanoen.2013.10.003
10.1038/nmat3623
10.1149/1.1435358
10.1021/ja301173q
10.1016/j.jpowsour.2012.01.095
10.1038/nmat1672
10.1149/1.1972812
10.1021/ja038401c
10.1016/j.jpowsour.2008.11.031
10.1016/0025-5408(80)90135-X
10.1016/j.electacta.2004.01.013
10.1021/la203712s
10.1021/ja310347x
10.1016/j.jpowsour.2006.10.096
10.1016/j.jpowsour.2004.11.050
10.1016/j.jpowsour.2007.09.067
10.1016/j.elecom.2011.09.020
10.1149/1.1467947
10.1149/1.2266418
10.1039/c0jm03831h
10.1039/C3TA13976J
10.1016/j.jpowsour.2008.08.089
10.1016/j.elecom.2012.08.023
10.1016/j.electacta.2008.08.066
10.1016/S0378-7753(03)00351-3
10.1021/jp906080j
10.1149/1.3082040
10.1016/S0966-9795(00)00091-1
10.1016/j.jpowsour.2007.11.110
10.1016/j.electacta.2007.01.083
10.1021/jp310366a
10.1002/anie.200702505
10.1021/cm020047e
10.1149/1.2194611
10.1149/1.2837650
10.1016/0378-7753(83)87029-3
10.1039/c2jm34562e
10.1149/1.2170551
10.1126/science.1071079
10.1021/cm025556v
10.1016/j.jpowsour.2003.12.042
10.1039/b810841b
10.1016/S1388-2481(02)00363-6
10.1149/1.2115880
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright_xml – notice: Copyright © 2014 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/jp411918x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 10544
ExternalDocumentID 10_1021_jp411918x
c202473852
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
LG6
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
AAYXX
ABBLG
ABLBI
CITATION
ID FETCH-LOGICAL-a296t-3fe59a19805309159bb732576c65b82a6ea2049345da441db0450daaad83e8613
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 01:21:50 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Wed Jul 10 01:28:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a296t-3fe59a19805309159bb732576c65b82a6ea2049345da441db0450daaad83e8613
PageCount 14
ParticipantIDs crossref_primary_10_1021_jp411918x
crossref_citationtrail_10_1021_jp411918x
acs_journals_10_1021_jp411918x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-22
PublicationDateYYYYMMDD 2014-05-22
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-22
  day: 22
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Pralong V. (ref12/cit12) 2002; 4
Souza D. (ref8/cit8) 2002; 296
Taberna P.-L. (ref76/cit76) 2006; 5
Jache B. (ref91/cit91) 2014; 247
Morcrette M. (ref40/cit40) 2007; 52
Guy D. (ref62/cit62) 2004; 16
Alcántara R. (ref92/cit92) 2002; 14
Xie J. (ref38/cit38) 2005; 393
Amadei I. (ref73/cit73) 2005; 143
Dalverny A. L. (ref44/cit44) 2011; 21
C L. (ref16/cit16) 2001; 148
Wilhelm H. A. (ref65/cit65) 2012; 24
Gillot F. (ref78/cit78) 2005; 17
Yamin H. (ref23/cit23) 1983; 9
Xiang J. Y. (ref17/cit17) 2009; 54
Aurbach D. (ref22/cit22) 2009; 156
Darwiche A. (ref98/cit98) 2012; 134
Hall J. W. (ref24/cit24) 2012; 134
Gillot F. (ref15/cit15) 2004; 49
Grugeon S. (ref51/cit51) 2003; 5
Guy D. (ref55/cit55) 2005; 8
Mazouzi D. (ref70/cit70) 2012; 220
Boyanov S. (ref26/cit26) 2009; 21
Sun Q. (ref94/cit94) 2011; 13
El Ouatani L. (ref58/cit58) 2009; 189
Thackeray M. M. (ref5/cit5) 1981; 16
Morales J. (ref33/cit33) 2005; 152
Wang F. (ref35/cit35) 2011; 133
Marino C. (ref53/cit53) 2013; 117
Woo S. G. (ref11/cit11) 2006; 153
ref39/cit39
Mukaibo H. (ref74/cit74) 2003; 6
Timmons A. (ref19/cit19) 2006; 153
Mukaibo H. (ref72/cit72) 2004; 132
Valvo M. (ref95/cit95) 2014; 245
Marino C. (ref84/cit84) 2012; 22
Godshall N. A. (ref4/cit4) 1980; 15
Ulldemolins M. (ref67/cit67) 2012; 206
Wang L. (ref86/cit86) 2012; 51
Boyanov S. (ref25/cit25) 2006; 18
Poizot P. (ref1/cit1) 2000; 407
Doublet M. L. (ref14/cit14) 2002; 14
Sougrati M. T. (ref45/cit45) 2011; 21
Villevieille C. (ref81/cit81) 2008; 18
Chen L. (ref69/cit69) 2007; 174
Doe R. E. (ref31/cit31) 2008; 20
Lu Y. (ref87/cit87) 2012; 116
Klein F. (ref99/cit99) 2013; 15
Pfeiffer H. (ref80/cit80) 2004; 6
Zhang S. S. (ref63/cit63) 2004; 138
Gmitter A. (ref54/cit54) 2010; 20
Golodnitsky D. (ref20/cit20) 1999; 45
Choi N.-S. (ref68/cit68) 2010; 195
Boyanov S. (ref27/cit27) 2009; 113
Jang J. Y. (ref90/cit90) 2013; 35
Shim J. (ref60/cit60) 2003; 122
Bruce P. (ref75/cit75) 2008; 47
Choi H. C. (ref34/cit34) 2002; 106
Sasaki T. (ref47/cit47) 2013; 12
Marino C. (ref83/cit83) 2011; 13
Park C. M. (ref9/cit9) 2007; 19
Bonino F. (ref18/cit18) 1984; 131
Doe R. E. (ref13/cit13) 2008; 20
Kim J.-S. (ref93/cit93) 2008; 178
Palacin M. R. (ref2/cit2) 2009; 38
Dupont L. (ref32/cit32) 2007; 164
Villevieille C. (ref41/cit41) 2009; 189
Qian C. (ref50/cit50) 2004; 126
Sisbandini C. (ref57/cit57) 2009; 12
Kim Y. (ref85/cit85) 2013; 25
Laruelle S. (ref52/cit52) 2002; 149
Hassoun J. (ref77/cit77) 2007; 19
Takizawa H. (ref42/cit42) 2000; 8
Larcher D. (ref30/cit30) 2002; 149
Stephenson D. E. (ref61/cit61) 2007; 154
Wen W. (ref89/cit89) 2013; 2
Zhou Y.-N. (ref36/cit36) 2008; 11
Khatib R. (ref43/cit43) 2013; 117
Boyanov S. (ref79/cit79) 2008; 14
Cabana J. (ref3/cit3) 2010; 22
Kim Y. U. (ref10/cit10) 2005; 152
Kostecki R. (ref59/cit59) 2006; 153
Kaun T. D. (ref7/cit7) 1993; 38
Gachot G. (ref48/cit48) 2008; 178
Villevieille C. (ref37/cit37) 2007; 172
Xu Y. (ref88/cit88) 2014; 3
Dominko R. (ref56/cit56) 2003; 119
Larcher D. (ref49/cit49) 2003; 150
Etacheri V. (ref71/cit71) 2012; 28
Gillot F. (ref28/cit28) 2005; 17
Fullenwarth J. (ref96/cit96) 2014; 2
Boyanov S. (ref29/cit29) 2008; 21
Lestriez B. (ref66/cit66) 2007; 9
Sivasankaran V. (ref64/cit64) 2011; 21
Gabano J.-P. (ref6/cit6) 1983
Villevieille C. (ref82/cit82) 2011; 192
Qian J. (ref97/cit97) 2012; 48
Strauss E. (ref21/cit21) 2003; 164
Marino C. (ref46/cit46) 2012; 24
References_xml – volume: 172
  start-page: 388
  year: 2007
  ident: ref37/cit37
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.06.256
– volume: 154
  start-page: A1146
  year: 2007
  ident: ref61/cit61
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2783772
– volume: 9
  start-page: 2801
  year: 2007
  ident: ref66/cit66
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.10.001
– volume: 116
  start-page: 22217
  year: 2012
  ident: ref87/cit87
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3073987
– volume: 220
  start-page: 180
  year: 2012
  ident: ref70/cit70
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.08.007
– volume: 6
  start-page: 263
  year: 2004
  ident: ref80/cit80
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2003.12.012
– volume: 38
  start-page: 2565
  year: 2009
  ident: ref2/cit2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b820555h
– volume: 45
  start-page: 335
  year: 1999
  ident: ref20/cit20
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00215-7
– volume: 22
  start-page: E170
  year: 2010
  ident: ref3/cit3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000717
– volume: 38
  start-page: 1269
  year: 1993
  ident: ref7/cit7
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(93)80057-7
– volume: 17
  start-page: 6327
  year: 2005
  ident: ref78/cit78
  publication-title: Chem. Mater.
  doi: 10.1021/cm051574b
– volume: 18
  start-page: 3531
  year: 2006
  ident: ref25/cit25
  publication-title: Chem. Mater.
  doi: 10.1021/cm060433m
– volume: 21
  start-page: 10069
  year: 2011
  ident: ref45/cit45
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10710k
– volume: 138
  start-page: 226
  year: 2004
  ident: ref63/cit63
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.05.056
– volume: 14
  start-page: 183
  issue: 3
  year: 2008
  ident: ref79/cit79
  publication-title: Ionics
  doi: 10.1007/s11581-007-0170-3
– volume: 174
  start-page: 538
  year: 2007
  ident: ref69/cit69
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.06.149
– volume: 6
  start-page: A218
  year: 2003
  ident: ref74/cit74
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1602331
– volume: 150
  start-page: A1643
  year: 2003
  ident: ref49/cit49
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1622959
– volume: 20
  start-page: 4149
  year: 2010
  ident: ref54/cit54
  publication-title: J. Mater. Chem.
  doi: 10.1039/b923908a
– volume: 192
  start-page: 298
  year: 2011
  ident: ref82/cit82
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.03.019
– volume: 51
  start-page: 9034
  year: 2012
  ident: ref86/cit86
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204591
– volume: 247
  start-page: 703
  issue: 1
  year: 2014
  ident: ref91/cit91
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.08.136
– volume: 21
  start-page: 3684
  issue: 15
  year: 2009
  ident: ref26/cit26
  publication-title: Chem. Mater.
  doi: 10.1021/cm901243a
– volume: 15
  start-page: 15876
  year: 2013
  ident: ref99/cit99
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52125g
– volume: 148
  start-page: A1266
  year: 2001
  ident: ref16/cit16
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1409971
– volume: 245
  start-page: 967
  year: 2014
  ident: ref95/cit95
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.159
– volume: 106
  start-page: 9252
  year: 2002
  ident: ref34/cit34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0205968
– volume: 20
  start-page: 5274
  year: 2008
  ident: ref13/cit13
  publication-title: Chem. Mater.
  doi: 10.1021/cm801105p
– volume: 119
  start-page: 770
  year: 2003
  ident: ref56/cit56
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00250-7
– volume: 133
  start-page: 18828
  year: 2011
  ident: ref35/cit35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206268a
– volume: 21
  start-page: 298
  year: 2008
  ident: ref29/cit29
  publication-title: Chem. Mater.
  doi: 10.1021/cm802393z
– volume: 25
  start-page: 3045
  year: 2013
  ident: ref85/cit85
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204877
– volume: 8
  start-page: A17
  year: 2005
  ident: ref55/cit55
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1828344
– volume: 16
  start-page: 591
  year: 1981
  ident: ref5/cit5
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(81)90126-4
– volume-title: Lithium Batteries
  year: 1983
  ident: ref6/cit6
– volume: 2
  start-page: 1383
  year: 2013
  ident: ref89/cit89
  publication-title: Energy
– volume: 35
  start-page: 72
  year: 2013
  ident: ref90/cit90
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.08.008
– volume: 152
  start-page: A1475
  year: 2005
  ident: ref10/cit10
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1938047
– volume: 5
  start-page: 895
  year: 2003
  ident: ref51/cit51
  publication-title: Solid State Sci.
  doi: 10.1016/S1293-2558(03)00114-6
– volume: 19
  start-page: 1632
  issue: 12
  year: 2007
  ident: ref77/cit77
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602035
– volume: 156
  start-page: A694
  year: 2009
  ident: ref22/cit22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3148721
– volume: 16
  start-page: 553
  year: 2004
  ident: ref62/cit62
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306075
– volume: 21
  start-page: 10134
  year: 2011
  ident: ref44/cit44
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04202a
– volume: 19
  start-page: 2465
  year: 2007
  ident: ref9/cit9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602592
– volume: 48
  start-page: 7070
  issue: 56
  year: 2012
  ident: ref97/cit97
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32730a
– volume: 393
  start-page: 283
  year: 2005
  ident: ref38/cit38
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2004.09.060
– volume: 117
  start-page: 19302
  year: 2013
  ident: ref53/cit53
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp402973h
– volume: 20
  start-page: 5274
  year: 2008
  ident: ref31/cit31
  publication-title: Chem. Mater.
  doi: 10.1021/cm801105p
– volume: 164
  start-page: 51
  year: 2003
  ident: ref21/cit21
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(03)00302-3
– volume: 407
  start-page: 496
  year: 2000
  ident: ref1/cit1
  publication-title: Nature
  doi: 10.1038/35035045
– volume: 195
  start-page: 2368
  year: 2010
  ident: ref68/cit68
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.10.063
– volume: 24
  start-page: 4735
  year: 2012
  ident: ref46/cit46
  publication-title: J. Chem. Mater.
  doi: 10.1021/cm303086j
– volume: 13
  start-page: 346
  year: 2011
  ident: ref83/cit83
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.01.021
– volume: 3
  start-page: 26
  year: 2014
  ident: ref88/cit88
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.10.003
– volume: 12
  start-page: 569
  issue: 6
  year: 2013
  ident: ref47/cit47
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3623
– volume: 149
  start-page: A234
  year: 2002
  ident: ref30/cit30
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1435358
– volume: 134
  start-page: 5532
  year: 2012
  ident: ref24/cit24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301173q
– volume: 206
  start-page: 245
  year: 2012
  ident: ref67/cit67
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.095
– volume: 5
  start-page: 567
  issue: 7
  year: 2006
  ident: ref76/cit76
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1672
– volume: 152
  start-page: A1748
  year: 2005
  ident: ref33/cit33
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1972812
– volume: 126
  start-page: 1195
  year: 2004
  ident: ref50/cit50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038401c
– volume: 189
  start-page: 72
  year: 2009
  ident: ref58/cit58
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.11.031
– volume: 15
  start-page: 561
  year: 1980
  ident: ref4/cit4
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(80)90135-X
– volume: 49
  start-page: 2325
  issue: 14
  year: 2004
  ident: ref15/cit15
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.01.013
– volume: 28
  start-page: 965
  year: 2012
  ident: ref71/cit71
  publication-title: Langmuir
  doi: 10.1021/la203712s
– volume: 134
  start-page: 20805
  year: 2012
  ident: ref98/cit98
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310347x
– volume: 164
  start-page: 839
  year: 2007
  ident: ref32/cit32
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.096
– volume: 143
  start-page: 227
  year: 2005
  ident: ref73/cit73
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.11.050
– volume: 178
  start-page: 852
  year: 2008
  ident: ref93/cit93
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.067
– volume: 13
  start-page: 1462
  year: 2011
  ident: ref94/cit94
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.09.020
– volume: 149
  start-page: A627
  year: 2002
  ident: ref52/cit52
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1467947
– volume: 17
  start-page: 6327
  year: 2005
  ident: ref28/cit28
  publication-title: Chem. Mater.
  doi: 10.1021/cm051574b
– volume: 153
  start-page: A1979
  year: 2006
  ident: ref11/cit11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2266418
– volume: 21
  start-page: 5076
  year: 2011
  ident: ref64/cit64
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03831h
– volume: 2
  start-page: 2050
  issue: 7
  year: 2014
  ident: ref96/cit96
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13976J
– volume: 189
  start-page: 324
  year: 2009
  ident: ref41/cit41
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.08.089
– volume: 24
  start-page: 89
  year: 2012
  ident: ref65/cit65
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.08.023
– volume: 54
  start-page: 1160
  year: 2009
  ident: ref17/cit17
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.08.066
– volume: 122
  start-page: 188
  year: 2003
  ident: ref60/cit60
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00351-3
– volume: 113
  start-page: 21441
  year: 2009
  ident: ref27/cit27
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906080j
– volume: 12
  start-page: A99
  year: 2009
  ident: ref57/cit57
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.3082040
– volume: 8
  start-page: 1399
  year: 2000
  ident: ref42/cit42
  publication-title: Intermetallics
  doi: 10.1016/S0966-9795(00)00091-1
– volume: 178
  start-page: 409
  year: 2008
  ident: ref48/cit48
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.110
– volume: 52
  start-page: 5339
  year: 2007
  ident: ref40/cit40
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.01.083
– volume: 117
  start-page: 837
  year: 2013
  ident: ref43/cit43
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp310366a
– volume: 47
  start-page: 2930
  year: 2008
  ident: ref75/cit75
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702505
– volume: 14
  start-page: 4126
  issue: 10
  year: 2002
  ident: ref14/cit14
  publication-title: Chem. Mater.
  doi: 10.1021/cm020047e
– volume: 153
  start-page: A1206
  year: 2006
  ident: ref19/cit19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2194611
– volume: 11
  start-page: A51
  year: 2008
  ident: ref36/cit36
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2837650
– volume: 9
  start-page: 281
  year: 1983
  ident: ref23/cit23
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(83)87029-3
– ident: ref39/cit39
– volume: 22
  start-page: 22713
  year: 2012
  ident: ref84/cit84
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34562e
– volume: 153
  start-page: A669
  year: 2006
  ident: ref59/cit59
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2170551
– volume: 296
  start-page: 2012
  year: 2002
  ident: ref8/cit8
  publication-title: Science
  doi: 10.1126/science.1071079
– volume: 14
  start-page: 2847
  year: 2002
  ident: ref92/cit92
  publication-title: Chem. Mater.
  doi: 10.1021/cm025556v
– volume: 132
  start-page: 225
  year: 2004
  ident: ref72/cit72
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.12.042
– volume: 18
  start-page: 5956
  year: 2008
  ident: ref81/cit81
  publication-title: J. Mater. Chem.
  doi: 10.1039/b810841b
– volume: 4
  start-page: 516
  year: 2002
  ident: ref12/cit12
  publication-title: Electrochem. Commun.
  doi: 10.1016/S1388-2481(02)00363-6
– volume: 131
  start-page: 1498
  year: 1984
  ident: ref18/cit18
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2115880
SSID ssj0053013
Score 2.2243567
Snippet Nowadays conversion-type electrode materials definitively lie as the core of any research programs related to Li-ion batteries. Requirements are high capacity,...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 10531
Title Recent Advancements in the Conversion-Type Pnictide-Based Electrodes for Li-Ion Batteries
URI http://dx.doi.org/10.1021/jp411918x
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1V5QAXdkRZKgs4cHGhjpPYxxJaFQQICSqVU2XHjlRAaUXTC1_POAuqVJb7RIkmdt57Gc8bgLPYaFSyrmPZSo4CJQmoUIxT1M4ySQyXRrnm5PuHoD_gt0N_WIPTXyr4rH3xOuXOhEwgUVxhAW5ex3-ip-pz6-MK9YrSMVJFzsPKPmjxUgc98WwBehYwpLcB11UnTnF05K01z3Qr_lw2Zvzr8TZhveSQpFO89C2o2XQbVqNqdNsOvCAZRDAhnaLAn3exkXFKkOyRyB0zz_-RUadByWPqmkKMpVeIZ4Z0i7E4xs4I0llyN6Y3k5QULpwoqndh0Os-R31azlCgiskgo15ifanaUrhESeQuWoeeExlx4GvBVGAVQ5Hgcd8oZEZGI8W7NEopIzwrEOv3oJ5OUrsPJBHGqBCRLsYg6WsVMhtzxhOprQmNaEATkzwq98BslJe3GcqLKkMNOK_yP4pLB3I3COP9p9CT79BpYbuxHHTw3w0PYQ35DXfFfsaOoJ59zO0xcohMN_M19AUJKcBV
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT8IwFG0MPuCL30b8wMb44EtRum5rH3HBgAIxERJ8Wtq1S1AziBsv_npv96FETfT9jjXlbuec3d5zEbqItAIlazuWjWAgUGKPcEkZAe0s4lgzoaVtTh6OvN6E3U3daWmTY3thYBEp_FKaF_G_3AXaV88LZr3IOPDFdSAh1GZzJ3is3rouJKpTVJCBMTLmVy5Cq5daBIrSFQRagZLbrWImUb6I_ATJS2uZqVb0_s2f8X-r3EabJaPEnSIFdtCaSXZRPagGue2hJ6CGAC24U5T78542PEswUD8c2EPn-RczYhUpfkhsi4g25AbQTeNuMSRHmxQDucWDGenPE1x4coLE3keT2-446JFyogKRVHgZcWLjCtkW3O6XACajlO9YyRF5ruJUekZSkAwOc7UEnqQVEL5rLaXU3DEckP8A1ZJ5Yg4RjrnW0gfciyBIuEr61ESMslgoo33NG6gJGxSWT0Qa5sVuCmKj2qEGuqz-hjAq_cjtWIzX30LPP0MXhQnHz6Cjv254huq98XAQDvqj-2O0AcyH2WMAlJ6gWva2NKfALjLVzNPqAxckyLY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QkIALb8R4jAhx4JLB0rRNjqNs2mCMSTBpnKakSaUB6ibaXfj1OH1MEyDB3W2j1Km_r7Y_I3QRagVM1nYsG8GAoEQe4ZIyAtxZRJFmQkvbnPzQ9zpDdjdyRwVRtL0wsIgE7pRkSXx7qmc6KhQGGlevM2b1yDhgxlWbrrMe3Qyeyi-vC87q5FlkQI2M-aWS0PKlNgqFyVIUWgon7S30uFhIVkXyVp-nqh5-ftNo_P9Kt9FmgSxxM3eFHbRi4l20HpQD3fbQC0BECDG4maf9s942PIkxQEAc2OLz7M8ZscwUD2LbKqINuYEop3ErH5ajTYIB5OLehHSnMc61OYFq76Nhu_UcdEgxWYFIKryUOJFxhWwIbvdMAKJRyncs9Qg9V3EqPSMpUAeHuVoCXtIKgN-1llJq7hgOCOAAVeJpbA4RjrjW0of4F4KRcJX0qQkZZZFQRvuaV1ENNmlcnIxknCW9KZCOcoeq6LJ8FeOw0CW34zHefzM9X5jOcjGOn0ZHfz3wDK0NbtvjXrd_f4w2AAAxWw1A6QmqpB9zcwogI1W1zLO-AM34yzk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advancements+in+the+Conversion-Type+Pnictide-Based+Electrodes+for+Li-Ion+Batteries&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Monconduit%2C+L.&rft.date=2014-05-22&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=118&rft.issue=20&rft.spage=10531&rft.epage=10544&rft_id=info:doi/10.1021%2Fjp411918x&rft.externalDocID=c202473852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon