Bifunctional Catalytic Activity of Iodine Species for Lithium–Carbon Dioxide Battery
Carbon dioxide (CO2) is a greenhouse gas, the emission of which is a concern due to its contribution to global warming. The lithium–CO2 battery has attracted attention as a means of CO2 reduction and its effective utilization. Li–CO2 batteries undergo discharge by the conversion of CO2 into lithium...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 7; no. 16; pp. 14280 - 14287 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
19.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon dioxide (CO2) is a greenhouse gas, the emission of which is a concern due to its contribution to global warming. The lithium–CO2 battery has attracted attention as a means of CO2 reduction and its effective utilization. Li–CO2 batteries undergo discharge by the conversion of CO2 into lithium carbonate (Li2CO3), while charging is caused by the electrochemical decomposition of Li2CO3. Here, an iodine species was investigated as a bifunctional catalyst for both the discharge and charge processes. When the electrolyte in the Li–CO2 battery contains a small amount of iodine, lithium iodide (LiI) is first formed at the cathode during the initial stage of discharge and subsequently CO2 reduction occurs. The LiI that is formed accelerates CO2 reduction. Li2CO3 formed on the cathode during discharge is an insulator; therefore, the accumulation of Li2CO3 produces a passivation layer, which leads to charging at high overpotential (ca. 4.5 V vs Li+/Li). Iodine with a redox potential below 3.5 V vs Li+/Li cannot decompose Li2CO3, because the decomposition potential of Li2CO3 is 3.82 V. However, the redox potential of iodine in the trimethyl phosphate (TMP) electrolyte was greater than 3.8 V, so Li2CO3 could be chemically decomposed by the iodine in TMP. The iodine mediator (3I2/2I3 –) in the Li salt–TMP electrolyte was confirmed to enhance the decomposition of Li2CO3 under a low charge voltage. |
---|---|
AbstractList | Carbon dioxide (CO2) is a greenhouse gas, the emission of which is a concern due to its contribution to global warming. The lithium–CO2 battery has attracted attention as a means of CO2 reduction and its effective utilization. Li–CO2 batteries undergo discharge by the conversion of CO2 into lithium carbonate (Li2CO3), while charging is caused by the electrochemical decomposition of Li2CO3. Here, an iodine species was investigated as a bifunctional catalyst for both the discharge and charge processes. When the electrolyte in the Li–CO2 battery contains a small amount of iodine, lithium iodide (LiI) is first formed at the cathode during the initial stage of discharge and subsequently CO2 reduction occurs. The LiI that is formed accelerates CO2 reduction. Li2CO3 formed on the cathode during discharge is an insulator; therefore, the accumulation of Li2CO3 produces a passivation layer, which leads to charging at high overpotential (ca. 4.5 V vs Li+/Li). Iodine with a redox potential below 3.5 V vs Li+/Li cannot decompose Li2CO3, because the decomposition potential of Li2CO3 is 3.82 V. However, the redox potential of iodine in the trimethyl phosphate (TMP) electrolyte was greater than 3.8 V, so Li2CO3 could be chemically decomposed by the iodine in TMP. The iodine mediator (3I2/2I3 –) in the Li salt–TMP electrolyte was confirmed to enhance the decomposition of Li2CO3 under a low charge voltage. |
Author | Shiga, Tohru Hase, Yoko Kato, Yuichi Inoue, Masae |
AuthorAffiliation | Toyota Central Research & Development Laboratories Inc |
AuthorAffiliation_xml | – name: Toyota Central Research & Development Laboratories Inc |
Author_xml | – sequence: 1 givenname: Tohru orcidid: 0000-0001-7331-3380 surname: Shiga fullname: Shiga, Tohru email: e0560@mosk.tytlabs.co.jp – sequence: 2 givenname: Yuichi surname: Kato fullname: Kato, Yuichi – sequence: 3 givenname: Masae surname: Inoue fullname: Inoue, Masae – sequence: 4 givenname: Yoko orcidid: 0000-0001-8805-7922 surname: Hase fullname: Hase, Yoko |
BookMark | eNqFkE1OwzAQhS1UJErpEZB8gRQ7iWN72Ya_SpVY8LONHMemrlq7sh1EdtyBG3ISjNoFrJjNG83TG-l952BknVUAXGI0wyjHV0KG0Ae5VjtlX2e8RQUv-QkY57hiGSoZGf3az8A0hA1Kw3mRMzwGLwujeyujcVZsYS2i2A7RSDhPpzcTB-g0XLrOWAUf90oaFaB2Hq5MXJt-9_XxWQvfOguvjXs3nYILEaPywwU41WIb1PSoE_B8e_NU32erh7tlPV9lIuckZpqxElWVQDmVndCCl4wK3hHFCS46RWmJMaloy5NSxpEkqNSFrJKlK6pVMQHk8Fd6F4JXutl7sxN-aDBqfvg0f_g0Rz4phw-5ZDcb1_vUPvyT-QZ9snGD |
CitedBy_id | crossref_primary_10_1039_D0EE00039F crossref_primary_10_1002_sus2_123 crossref_primary_10_1016_j_ensm_2021_11_048 crossref_primary_10_1021_acs_chemrev_3c00167 crossref_primary_10_1039_D0EE03058A crossref_primary_10_1021_acsami_3c09625 crossref_primary_10_1002_ange_202313264 crossref_primary_10_1002_anie_202313264 crossref_primary_10_1016_j_ensm_2020_09_014 crossref_primary_10_1021_acs_energyfuels_1c00635 crossref_primary_10_1016_j_electacta_2022_140424 crossref_primary_10_1016_j_nanoen_2022_106964 crossref_primary_10_1002_cnma_202100381 crossref_primary_10_1039_C9TA06506G crossref_primary_10_1016_j_ensm_2021_12_035 crossref_primary_10_1021_acsami_2c18323 crossref_primary_10_1002_cey2_313 crossref_primary_10_1002_sstr_202000027 crossref_primary_10_1002_adfm_202300926 |
Cites_doi | 10.1021/ja208944x 10.1016/j.electacta.2010.08.065 10.1038/nchem.2101 10.1038/ncomms3819 10.1021/jacs.6b01821 10.1021/jp9625570 10.1021/acs.jpclett.6b00323 10.1039/C5CC05767A 10.1039/c3cc43477j 10.1021/acssuschemeng.8b03843 10.1021/acsnano.5b01079 10.1021/ja00866a007 10.1039/C6EE00004E 10.1021/ja01157a151 10.1038/nchem.2132 10.1021/ja00903a016 10.1021/cr500054y 10.1039/C5EE02803E 10.1021/jp8050092 10.1002/anie.201612214 10.1039/c3ee43318h 10.1021/jp5093306 10.1016/j.jpowsour.2012.05.113 10.1021/jp205368k 10.1021/jp953052x 10.1039/C5TA02499D 10.1039/C8CC03639J 10.1126/science.aaf4767 10.1021/ie0200454 10.1021/cr0204101 10.1021/jp070560l 10.1021/j100609a012 10.1021/ja960605o 10.1002/anie.201501214 10.1039/c0cc05176d 10.1021/jp980375v 10.1021/acs.jpcc.8b09967 10.1039/c3ra40394g |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acssuschemeng.9b03949 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 14287 |
ExternalDocumentID | 10_1021_acssuschemeng_9b03949 c875200479 |
GroupedDBID | 53G 55A AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a295t-f884066a027cdafa9487a9d5e9513de77411567b94117890c504f3c6de7f67fe3 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Fri Aug 23 03:04:53 EDT 2024 Thu Aug 27 13:43:29 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Mediator Carbon material CO2 capture Li2CO3 decomposition Catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a295t-f884066a027cdafa9487a9d5e9513de77411567b94117890c504f3c6de7f67fe3 |
ORCID | 0000-0001-8805-7922 0000-0001-7331-3380 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1021_acssuschemeng_9b03949 acs_journals_10_1021_acssuschemeng_9b03949 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20190819 2019-08-19 |
PublicationDateYYYYMMDD | 2019-08-19 |
PublicationDate_xml | – month: 08 year: 2019 text: 20190819 day: 19 |
PublicationDecade | 2010 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1021/ja208944x – ident: ref15/cit15 doi: 10.1016/j.electacta.2010.08.065 – ident: ref37/cit37 doi: 10.1038/nchem.2101 – ident: ref11/cit11 doi: 10.1038/ncomms3819 – ident: ref16/cit16 doi: 10.1021/jacs.6b01821 – ident: ref34/cit34 doi: 10.1021/jp9625570 – ident: ref25/cit25 doi: 10.1021/acs.jpclett.6b00323 – ident: ref4/cit4 doi: 10.1039/C5CC05767A – ident: ref19/cit19 doi: 10.1039/c3cc43477j – ident: ref7/cit7 doi: 10.1021/acssuschemeng.8b03843 – ident: ref12/cit12 doi: 10.1021/acsnano.5b01079 – ident: ref21/cit21 doi: 10.1021/ja00866a007 – ident: ref17/cit17 doi: 10.1039/C6EE00004E – ident: ref20/cit20 doi: 10.1021/ja01157a151 – ident: ref38/cit38 doi: 10.1038/nchem.2132 – ident: ref22/cit22 doi: 10.1021/ja00903a016 – ident: ref3/cit3 doi: 10.1021/cr500054y – ident: ref24/cit24 doi: 10.1039/C5EE02803E – ident: ref29/cit29 doi: 10.1021/jp8050092 – ident: ref8/cit8 doi: 10.1002/anie.201612214 – ident: ref2/cit2 doi: 10.1039/c3ee43318h – ident: ref6/cit6 doi: 10.1021/jp5093306 – ident: ref18/cit18 doi: 10.1016/j.jpowsour.2012.05.113 – ident: ref35/cit35 doi: 10.1021/jp205368k – ident: ref27/cit27 doi: 10.1021/jp953052x – ident: ref36/cit36 doi: 10.1039/C5TA02499D – ident: ref10/cit10 doi: 10.1039/C8CC03639J – ident: ref9/cit9 doi: 10.1126/science.aaf4767 – ident: ref14/cit14 doi: 10.1021/ie0200454 – ident: ref28/cit28 doi: 10.1021/cr0204101 – ident: ref30/cit30 doi: 10.1021/jp070560l – ident: ref23/cit23 doi: 10.1021/j100609a012 – ident: ref13/cit13 doi: 10.1021/ja960605o – ident: ref5/cit5 doi: 10.1002/anie.201501214 – ident: ref1/cit1 doi: 10.1039/c0cc05176d – ident: ref33/cit33 doi: 10.1021/jp980375v – ident: ref32/cit32 doi: 10.1021/acs.jpcc.8b09967 – ident: ref31/cit31 doi: 10.1039/c3ra40394g |
SSID | ssj0000993281 |
Score | 2.3561566 |
Snippet | Carbon dioxide (CO2) is a greenhouse gas, the emission of which is a concern due to its contribution to global warming. The lithium–CO2 battery has attracted... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 14280 |
Title | Bifunctional Catalytic Activity of Iodine Species for Lithium–Carbon Dioxide Battery |
URI | http://dx.doi.org/10.1021/acssuschemeng.9b03949 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKWWDgG1G-5IEJKSFxEqceS6AqCBASFHWLbMeGCNGgNpUoE_-Bf8gv4ZykqAgVwZQhsWWdL3nvnnN3CB3A544I6YcWoD-1fE20xTn4Mndhj1nCk6YwesflFe10_fNe0Kuhoxkn-MQ94hIWAJGeUcvubSYcj_lsDs2T0GGmV0MruvkSVYDueKRoTEpc2rTAO4NJ1s6smQwqyeEUKk3BS3sZXU-SdMq_Sh7tUS5s-fqzZuNfV76CliqqiVulb6yimuqvocWpAoTr6O44NcBW6oE4MlLOGJ7GLVk2lcCZxmcZwJvCRaN6NcRAcvFFmj-ko6ePt_eID0TWxydp9pImCpfVOscbqNs-vY06VtVpweKEBbmlmxDnUcohRpUJ15xBGMNZEijgX16igCICcaShYHA1mbMycHztSQq3NA218jZRvZ_11RbCVJgIztPa92CU43OpgeJJKlxFVCKSBjoEu8TVmzKMi0Nw4sbfjBVXxmoge7It8XNZfeP3Adv_mX0HLQD9YUYhdtkuqueDkdoDipGL_cKtPgGAi9Ch |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGOAAH3ojxzIETUsf6SpfjGEwDBheetypJE6gQK1o7iXHiP_AP-SU47TYGEkicKrWNlTpuv89ObQPs4efOEdILLER_anna0RbnaMvcxjVmEY_qwsQ7zi9o-9o7vfPvSkBHuTA4iRQlpfkm_ld1AfsAz6V9dPhM0Oy-ykTNZR6bgmk_qAWmc0GjeTmOrSDrcZ28P6lj07qFRuqPknd-k2TASaYT4DSBMq0FuB3PL_-55LHaz0RVvv4o3fj_B1iE-SHxJI3CUpagpLrLMDdRjnAFbg5jA3NFdJA0TWBngHeThixaTJBEk5MEwU6RvG29SglSXtKJs4e4__Tx9t7kPZF0yVGcvMSRIkXtzsEqXLeOr5pta9h3weIO8zNL19Hro5SjxyojrjlDp4azyFfIxtxIIWFEGkkDwfBo8milX_O0Kyle0jTQyl2DcjfpqnUgVBh_ztXac3FUzeNSI-GTVNjKUZGIKrCPegmH700a5lvijh1-U1Y4VFYFqqPVCZ-LWhx_D9j4j_RdmGlfnXfCzsnF2SbMIjFiJnZssy0oZ72-2kbykYmd3NI-AQrp2Qo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gujBt_h2D56E1Oa17R5ra6lai6AVwUPYpwaxkSYB68n_4D_0lzibpKUKCnoKJNlhszub-ebbnRmEDuB353DhVS2w_sTytKMtxkCXmQ1zTCWTNW74josuafe8s1v_tjhVaWJhoBMxSIqzTXyzqp-lLjIM2EdwP07B6TPE2X2Z8opLPTqNZvyq7ZjqBfXG1ZhfAeTjOlmNUscmNQsU1R8F8PwkyRgoEU8YqAlL01pEd-M-ZgdMHstpwsvi9Vv6xv99xBJaKAAorucas4ymVH8FzU-kJVxFN8ehMXc5S4gbhuAZwtu4LvJSEzjS-DQCo6dwVr5exRigL-6EyUOYPn28vTfYgEd93Ayjl1AqnOfwHK6hXuvkutG2ivoLFnOon1i6Bt4fIQw8VyGZZhScG0alrwCVuVIBcAQ4SaqcwtXE0wq_4mlXEHikSVUrdx2V-lFfbSBMuPHrXK09F1pVPCY0AD9BuK0cJbncRIcwLkGxfuIg2xp37ODLYAXFYG2i8miGguc8J8fvDbb-In0fzV42W0HntHu-jeYAH1FDIdt0B5WSQap2AYMkfC9Ttk_13duE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+Catalytic+Activity+of+Iodine+Species+for+Lithium%E2%80%93Carbon+Dioxide+Battery&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Shiga%2C+Tohru&rft.au=Kato%2C+Yuichi&rft.au=Inoue%2C+Masae&rft.au=Hase%2C+Yoko&rft.date=2019-08-19&rft.pub=American+Chemical+Society&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=7&rft.issue=16&rft.spage=14280&rft.epage=14287&rft_id=info:doi/10.1021%2Facssuschemeng.9b03949&rft.externalDocID=c875200479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |