Superconducting SrSnP with Strong Sn–P Antibonding Interaction: Is the Sn Atom Single or Mixed Valent?

The large single crystals of SrSnP were prepared using Sn self-flux method. The superconductivity in the tetragonal SrSnP is observed with the critical temperature of ∼2.3 K. The results of a crystallographic analysis, superconducting characterization, and theoretical assessment of tetragonal SrSnP...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 30; no. 17; pp. 6005 - 6013
Main Authors Gui, Xin, Sobczak, Zuzanna, Chang, Tay-Rong, Xu, Xitong, Huang, Angus, Jia, Shuang, Jeng, Horng-Tay, Klimczuk, Tomasz, Xie, Weiwei
Format Journal Article
LanguageEnglish
Published American Chemical Society 11.09.2018
Online AccessGet full text

Cover

Loading…
Abstract The large single crystals of SrSnP were prepared using Sn self-flux method. The superconductivity in the tetragonal SrSnP is observed with the critical temperature of ∼2.3 K. The results of a crystallographic analysis, superconducting characterization, and theoretical assessment of tetragonal SrSnP are presented. The SrSnP crystallizes in the CaGaN structure type with space group P4/nmm (S.G. 129, Pearson symbol tP6) according to the single-crystal X-ray diffraction characterization. A combination of magnetic susceptibility, resistivity, and heat capacity measurements confirms the bulk superconductivity with T c = 2.3(1) K in SrSnP. According to the X-ray photoelectron spectroscopy measurement, the assignments of Sr2+ and P3– are consistent with the chemical valence electron balance principles. Moreover, it is highly likely that Sn atom has only one unusual oxidation state. First-principles calculations indicate the bands around Fermi level are hybridized among Sr d, Sn p, and P p orbitals. The strong Sn–P and Sr–P interactions pose as keys to stabilize the crystallographic structure and induce the superconductivity, respectively. The physics-based electronic and phononic calculations are consistent with the molecular viewpoint. After inclusion of the spin–orbit coupling into the calculation, the band degeneracies at Γ-point in the first Brillouin zone split into two bands, which yield to the van Hove singularities around Fermi level.
AbstractList The large single crystals of SrSnP were prepared using Sn self-flux method. The superconductivity in the tetragonal SrSnP is observed with the critical temperature of ∼2.3 K. The results of a crystallographic analysis, superconducting characterization, and theoretical assessment of tetragonal SrSnP are presented. The SrSnP crystallizes in the CaGaN structure type with space group P4/nmm (S.G. 129, Pearson symbol tP6) according to the single-crystal X-ray diffraction characterization. A combination of magnetic susceptibility, resistivity, and heat capacity measurements confirms the bulk superconductivity with T c = 2.3(1) K in SrSnP. According to the X-ray photoelectron spectroscopy measurement, the assignments of Sr2+ and P3– are consistent with the chemical valence electron balance principles. Moreover, it is highly likely that Sn atom has only one unusual oxidation state. First-principles calculations indicate the bands around Fermi level are hybridized among Sr d, Sn p, and P p orbitals. The strong Sn–P and Sr–P interactions pose as keys to stabilize the crystallographic structure and induce the superconductivity, respectively. The physics-based electronic and phononic calculations are consistent with the molecular viewpoint. After inclusion of the spin–orbit coupling into the calculation, the band degeneracies at Γ-point in the first Brillouin zone split into two bands, which yield to the van Hove singularities around Fermi level.
Author Huang, Angus
Jeng, Horng-Tay
Jia, Shuang
Klimczuk, Tomasz
Xie, Weiwei
Gui, Xin
Sobczak, Zuzanna
Chang, Tay-Rong
Xu, Xitong
AuthorAffiliation Department of Chemistry
Faculty of Applied Physics and Mathematics
National Center for Theoretical Sciences
Louisiana State University
International Center for Quantum Materials, School of Physics
Gdansk University of Technology
Department of Physics
Collaborative Innovation Center of Quantum Matter
Physics Division
AuthorAffiliation_xml – name: Gdansk University of Technology
– name: Department of Chemistry
– name: Faculty of Applied Physics and Mathematics
– name: Louisiana State University
– name: Collaborative Innovation Center of Quantum Matter
– name: National Center for Theoretical Sciences
– name: Department of Physics
– name: Physics Division
– name: International Center for Quantum Materials, School of Physics
Author_xml – sequence: 1
  givenname: Xin
  surname: Gui
  fullname: Gui, Xin
  organization: Louisiana State University
– sequence: 2
  givenname: Zuzanna
  surname: Sobczak
  fullname: Sobczak, Zuzanna
  organization: Gdansk University of Technology
– sequence: 3
  givenname: Tay-Rong
  surname: Chang
  fullname: Chang, Tay-Rong
  organization: Department of Physics
– sequence: 4
  givenname: Xitong
  surname: Xu
  fullname: Xu, Xitong
  organization: International Center for Quantum Materials, School of Physics
– sequence: 5
  givenname: Angus
  surname: Huang
  fullname: Huang, Angus
  organization: Department of Physics
– sequence: 6
  givenname: Shuang
  surname: Jia
  fullname: Jia, Shuang
  organization: Collaborative Innovation Center of Quantum Matter
– sequence: 7
  givenname: Horng-Tay
  surname: Jeng
  fullname: Jeng, Horng-Tay
  email: jeng@phys.nthu.edu.tw
  organization: National Center for Theoretical Sciences
– sequence: 8
  givenname: Tomasz
  surname: Klimczuk
  fullname: Klimczuk, Tomasz
  organization: Gdansk University of Technology
– sequence: 9
  givenname: Weiwei
  orcidid: 0000-0002-5500-8195
  surname: Xie
  fullname: Xie, Weiwei
  email: weiweix@lsu.edu
  organization: Louisiana State University
BookMark eNqFkN9KwzAUh4NMcJs-gpAX6EyyJmm8kTH8M5g4qHpb0iS1HWsy0hT1znfwDX0SUza89erAOd93zuE3ASPrrAHgEqMZRgRfSdXNVG3aVgbjZ1mJCKHZCRhjSlBCESIjMEaZ4EnKKTsDk67bIoSjmo1Bnfd745WzulehsW8w97ndwPcm1DAP3g0d-_P1vYELG5oycgO0svGSjIKz13DVwVCbiMFFcC3MI7Az0Hn42HwYDV_lzthwcw5OK7nrzMWxTsHL3e3z8iFZP92vlot1IomgISkJkcxorbDiFZ1XWlDBDaNKpkzQEnNFEGNzIbkQJZdaZynjJU9lSjIZqfkU0MNe5V3XeVMVe9-00n8WGBVDXEWMq_iLqzjGFT188Ibx1vXexi__cX4Bx7Z2cg
CitedBy_id crossref_primary_10_1021_acs_chemmater_3c02398
crossref_primary_10_1016_j_jallcom_2019_05_239
crossref_primary_10_1021_acs_chemmater_9b05277
crossref_primary_10_1063_5_0094013
crossref_primary_10_1103_PhysRevMaterials_4_014801
crossref_primary_10_1039_C9DT00449A
crossref_primary_10_1002_admi_201801396
crossref_primary_10_1021_acs_chemmater_0c00179
crossref_primary_10_1103_PhysRevMaterials_8_054411
crossref_primary_10_1002_qua_27340
crossref_primary_10_1021_acscentsci_9b00202
crossref_primary_10_1088_1367_2630_ac1df3
Cites_doi 10.1088/0953-8984/21/39/395502
10.1103/PhysRevLett.119.207001
10.1016/S0925-8388(02)00235-9
10.1038/332814a0
10.1021/ac60214a047
10.1103/PhysRev.167.331
10.1116/1.1247723
10.1103/PhysRevLett.58.908
10.1107/S2053229614024218
10.1002/(SICI)1521-3749(199803)624:3<406::AID-ZAAC406>3.0.CO;2-E
10.1039/C6CP02856J
10.1103/PhysRevLett.58.1676
10.1103/PhysRevA.52.1096
10.1021/ja057307o
10.1016/j.physc.2015.02.020
10.1107/S0365110X65001081
10.1103/PhysRevLett.53.2571
10.1002/anie.199512041
10.1021/cm503992d
10.1142/9789814317665_0046
10.1103/PhysRevLett.101.107006
10.1107/S0108767383000252
10.1103/PhysRevA.52.1086
10.1088/1361-648X/aa8f79
10.1038/367252a0
10.1021/ja800073m
10.1021/j100135a014
10.1038/372532a0
10.1103/PhysRevB.58.7260
10.1103/PhysRevLett.77.3865
10.1038/367146a0
10.1021/ic50084a032
10.1016/0022-5088(86)90233-X
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.8b02258
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 6013
ExternalDocumentID 10_1021_acs_chemmater_8b02258
b75247546
GroupedDBID 29B
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a295t-b22a6eddc1c7f53fd9597e65ca4695b17c206639a799b7add8467b74a428a5ca3
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Fri Aug 23 03:34:34 EDT 2024
Thu Aug 27 13:42:42 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a295t-b22a6eddc1c7f53fd9597e65ca4695b17c206639a799b7add8467b74a428a5ca3
ORCID 0000-0002-5500-8195
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_chemmater_8b02258
acs_journals_10_1021_acs_chemmater_8b02258
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20180911
2018-09-11
PublicationDateYYYYMMDD 2018-09-11
PublicationDate_xml – month: 09
  year: 2018
  text: 20180911
  day: 11
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
(ref21/cit21) 2012
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Jepsen O. (ref25/cit25) 2000
ref11/cit11
ref16/cit16
ref29/cit29
Kittel C. (ref37/cit37) 2005
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
Lynton E. A. (ref35/cit35) 1971
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref24/cit24
ref38/cit38
Larbalestier D. (ref1/cit1) 2010
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1088/0953-8984/21/39/395502
– volume-title: Bruker. Smart
  year: 2012
  ident: ref21/cit21
– ident: ref13/cit13
  doi: 10.1103/PhysRevLett.119.207001
– ident: ref16/cit16
  doi: 10.1016/S0925-8388(02)00235-9
– ident: ref11/cit11
  doi: 10.1038/332814a0
– ident: ref19/cit19
  doi: 10.1021/ac60214a047
– ident: ref32/cit32
  doi: 10.1103/PhysRev.167.331
– ident: ref38/cit38
  doi: 10.1116/1.1247723
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.58.908
– ident: ref20/cit20
  doi: 10.1107/S2053229614024218
– ident: ref33/cit33
  doi: 10.1002/(SICI)1521-3749(199803)624:3<406::AID-ZAAC406>3.0.CO;2-E
– ident: ref36/cit36
  doi: 10.1039/C6CP02856J
– ident: ref18/cit18
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.58.1676
– ident: ref30/cit30
  doi: 10.1103/PhysRevA.52.1096
– ident: ref10/cit10
  doi: 10.1021/ja057307o
– ident: ref2/cit2
  doi: 10.1016/j.physc.2015.02.020
– ident: ref34/cit34
  doi: 10.1107/S0365110X65001081
– ident: ref24/cit24
  doi: 10.1103/PhysRevLett.53.2571
– ident: ref17/cit17
  doi: 10.1002/anie.199512041
– ident: ref12/cit12
  doi: 10.1021/cm503992d
– start-page: 311
  volume-title: Materials for Sustainable Energy
  year: 2010
  ident: ref1/cit1
  doi: 10.1142/9789814317665_0046
  contributor:
    fullname: Larbalestier D.
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.101.107006
– start-page: 487
  volume-title: Introduction to Solid State Physics
  year: 2005
  ident: ref37/cit37
  contributor:
    fullname: Kittel C.
– ident: ref22/cit22
  doi: 10.1107/S0108767383000252
– ident: ref31/cit31
  doi: 10.1103/PhysRevA.52.1086
– volume-title: The Stuttgart TB-LMTO-ASA Program 47
  year: 2000
  ident: ref25/cit25
  contributor:
    fullname: Jepsen O.
– ident: ref28/cit28
  doi: 10.1088/1361-648X/aa8f79
– ident: ref5/cit5
  doi: 10.1038/367252a0
– ident: ref6/cit6
  doi: 10.1021/ja800073m
– ident: ref26/cit26
  doi: 10.1021/j100135a014
– ident: ref9/cit9
  doi: 10.1038/372532a0
– ident: ref23/cit23
  doi: 10.1103/PhysRevB.58.7260
– ident: ref27/cit27
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref4/cit4
  doi: 10.1038/367146a0
– ident: ref14/cit14
  doi: 10.1021/ic50084a032
– volume-title: Superconductivity
  year: 1971
  ident: ref35/cit35
  contributor:
    fullname: Lynton E. A.
– ident: ref15/cit15
  doi: 10.1016/0022-5088(86)90233-X
SSID ssj0011028
Score 2.3929777
Snippet The large single crystals of SrSnP were prepared using Sn self-flux method. The superconductivity in the tetragonal SrSnP is observed with the critical...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 6005
Title Superconducting SrSnP with Strong Sn–P Antibonding Interaction: Is the Sn Atom Single or Mixed Valent?
URI http://dx.doi.org/10.1021/acs.chemmater.8b02258
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDj6r4Zg-ehFSyyW4SL1KKpQpKISrewr6CRZtImoJ48j_4D_0lzqYPClLR6zDZhNnNft_M7MwCnNDUD3WqqKMR-xxfMOZEhnqOh1shF25olG8LnG9ueefev35kjwtwNieDT90zodD4T6aPBM4UjVAi6LBwEZYoYqP1tpqteJo2sGhZ0cYI3xswPinZmTeMhSQ1mIGkGWxpr0N3UqEzOlLy3BiWsqHefzZs_Otnb8DamGeS5mhhbMKCyeqw3Jpc71aH1ZlOhFvwFA9fTYG-sW3_ihISF3HWJTZKS2IbLUdJ9vXx2SXNrOzJvKqFIVU4cVQZcU6uBgTJJKqRZpn3SYwKL4bkBbnpvRlNHoTFt4ttuG9f3rU6zvgSBkfQiJWOpFRwo7VyVZAyL9URuiCGMyXQsWbSDZRtCO9FIogiGeBuaQmNDHyBfo1ALW8HalmemV0gVKc85MpeQcZ9dFMk42lINXIgZVSqzR6cotWS8U80SKr8OHUTK5yaMhmbcg8ak0lLXkeNOX5_YP8_ox_ACjKj6mCI6x5CrSyG5gjZRymPqxX3DaIo2O8
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-LbHDwJXWnapK0XWRaX9bEi1Net5FUUtSttF8ST_8F_6C9x0n24CApehzSdTtJ832QyE4A9mvqhThV1NGKf4wvGnMhQz_FwKeTCDY3ybYJz54K3r_3TO3Y3AXyYC4NKFNhTUQXxv6sLuAdWhp_xjDzO5PVQIvawcBKmWICIZylRMx5FDyxoVuwxwtcHjA8zd37rxiKTKsaQaQxiWvNwO1KuOlnyWO-Vsq7eftRt_L_2CzA3YJ2k0Z8mizBhsiWYbg4ve1uC2bG6hMtwH_deTI6esi0GixIS53F2SeyeLYnt3jlKss_3j0vSyMoH2a0yY0i1udjPkzgkJwVBaonNSKPsPpMYGzwZ0s1J5-HVaHIjLNodrcB16_iq2XYGVzI4gkasdCSlghutlauClHmpjtAhMZwpgW42k26gbHl4LxJBFMkA105Lb2TgC_RyBLbyVqGWdTOzBoTqlIdc2QvJuI9Oi2Q8DalGRqSMSrVZh320WjL4pYqkipZTN7HCkSmTgSnXoT4cu-SlX6bj7wc2_tP7Lky3rzrnyfnJxdkmzCBnqo6MuO4W1Mq8Z7aRl5Ryp5qEXyez4Vo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xkAo9lDalKlDoHjhVcpDX3rXNBUVpI8JLkdygSBysfVlEBSeyHQlx4j_wD_klzDpOFCGBVK6j9Wh2vbvfN7s7MwD7NPVDnSrqaMQ-xxeMOZGhnuPhVsiFGxrl2wDn8wt-3PdPBmxQv6q0sTBoRIGaiuoS367qsU7rDAPugZVjV26Ry5m8GUrEHxYuwyoLXN8uylY7nt8gWOCsGGSEJgSMz6J3XlNj0UkVC-i0ADOdDbiaG1i9LvnXnJSyqe5f5G58Xw8-w6eafZLWdLp8gSWTNWCtPSv61oCPC_kJv8J1PBmbHD1mmxQWJSTO46xH7Nktie0ZOkqyp4fHHmll5VCOqggZUh0yTuMlDkm3IEgxsRlplaNbEmODG0NGOTkf3hlNLoVFvaNN6Hf-_G0fO3VpBkfQiJWOpFRwo7VyVZAyL9UROiaGMyXQ3WbSDZRNE-9FIogiGeAeammODHyB3o7AVt43WMlGmfkOhOqUh1zZwmTcR-dFMp6GVCMzUkal2mzBLxy1pF5aRVLdmlM3scL5UCb1UG5Bc_b_kvE0XcfbH2z_j_af8KH3u5OcdS9Od2AdqVP1csR1f8BKmU_MLtKTUu5V8_AZVSfj1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superconducting+SrSnP+with+Strong+Sn%E2%80%93P+Antibonding+Interaction%3A+Is+the+Sn+Atom+Single+or+Mixed+Valent%3F&rft.jtitle=Chemistry+of+materials&rft.au=Gui%2C+Xin&rft.au=Sobczak%2C+Zuzanna&rft.au=Chang%2C+Tay-Rong&rft.au=Xu%2C+Xitong&rft.date=2018-09-11&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=30&rft.issue=17&rft.spage=6005&rft.epage=6013&rft_id=info:doi/10.1021%2Facs.chemmater.8b02258&rft.externalDocID=b75247546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon