Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites

The formability of antiperovskite [MX4]­XA3-type (A­(I) = alkali metals; M­(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis theory. To validate the prediction model, a series of cesium–manganese antiperovskite single crystals with different halogen mixing ratios wer...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 6; no. 5; pp. 1901 - 1911
Main Authors Yan, Siyu, Tang, Kaixin, Lin, Yuejian, Ren, Yuanhang, Tian, Wanli, Chen, Hua, Lin, Tingting, Qiu, Longzhen, Pan, Xiaoyong, Wang, Weizhi
Format Journal Article
LanguageEnglish
Published American Chemical Society 14.05.2021
Online AccessGet full text

Cover

Loading…
Abstract The formability of antiperovskite [MX4]­XA3-type (A­(I) = alkali metals; M­(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis theory. To validate the prediction model, a series of cesium–manganese antiperovskite single crystals with different halogen mixing ratios were synthesized, which not only have [MX4]­XA3-type structures but also are ideal luminescent materials. As the most pure green emission fluorescent antiperovskite, [MnCl2Br2]­BrCs3 shows 520 nm emission with the high photoluminescence quantum yield (93.5%) at room temperature and ultrastable luminescent color from 77 to 523 K due to the strict confinement of high-density luminescent centers. By fabricating the perovskite film with the double-source thermal evaporation method, the first all-inorganic cesium–manganese halide antiperovskite light-emitting diode is reported, with maximum external quantum efficiency up to 12.5%, maximum luminance up to 3990 cd m–2, and half-life of 756 min operated at 5.0 V.
AbstractList The formability of antiperovskite [MX4]­XA3-type (A­(I) = alkali metals; M­(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis theory. To validate the prediction model, a series of cesium–manganese antiperovskite single crystals with different halogen mixing ratios were synthesized, which not only have [MX4]­XA3-type structures but also are ideal luminescent materials. As the most pure green emission fluorescent antiperovskite, [MnCl2Br2]­BrCs3 shows 520 nm emission with the high photoluminescence quantum yield (93.5%) at room temperature and ultrastable luminescent color from 77 to 523 K due to the strict confinement of high-density luminescent centers. By fabricating the perovskite film with the double-source thermal evaporation method, the first all-inorganic cesium–manganese halide antiperovskite light-emitting diode is reported, with maximum external quantum efficiency up to 12.5%, maximum luminance up to 3990 cd m–2, and half-life of 756 min operated at 5.0 V.
Author Lin, Yuejian
Yan, Siyu
Tian, Wanli
Wang, Weizhi
Chen, Hua
Pan, Xiaoyong
Tang, Kaixin
Ren, Yuanhang
Lin, Tingting
Qiu, Longzhen
AuthorAffiliation National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology
Fudan University
ASTAR (Agency for Science, Technology and Research)
Advanced Materials Laboratory, Department of Chemistry
School of Material & Science Engineering
Institute of Materials Research and Engineering
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science
AuthorAffiliation_xml – name: Advanced Materials Laboratory, Department of Chemistry
– name: ASTAR (Agency for Science, Technology and Research)
– name: National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology
– name: Fudan University
– name: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science
– name: School of Material & Science Engineering
– name: Institute of Materials Research and Engineering
Author_xml – sequence: 1
  givenname: Siyu
  surname: Yan
  fullname: Yan, Siyu
  organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science
– sequence: 2
  givenname: Kaixin
  surname: Tang
  fullname: Tang, Kaixin
  organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science
– sequence: 3
  givenname: Yuejian
  surname: Lin
  fullname: Lin, Yuejian
  organization: Fudan University
– sequence: 4
  givenname: Yuanhang
  surname: Ren
  fullname: Ren, Yuanhang
  organization: Fudan University
– sequence: 5
  givenname: Wanli
  surname: Tian
  fullname: Tian, Wanli
  organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science
– sequence: 6
  givenname: Hua
  surname: Chen
  fullname: Chen, Hua
  organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science
– sequence: 7
  givenname: Tingting
  surname: Lin
  fullname: Lin, Tingting
  organization: ASTAR (Agency for Science, Technology and Research)
– sequence: 8
  givenname: Longzhen
  orcidid: 0000-0002-8356-6303
  surname: Qiu
  fullname: Qiu, Longzhen
  organization: National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology
– sequence: 9
  givenname: Xiaoyong
  surname: Pan
  fullname: Pan, Xiaoyong
  organization: School of Material & Science Engineering
– sequence: 10
  givenname: Weizhi
  orcidid: 0000-0003-1567-2371
  surname: Wang
  fullname: Wang, Weizhi
  email: weizhiwang@fudan.edu.cn
  organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science
BookMark eNqFkMFOwzAMhiM0JMbYIyDlBTqctmlXcZrGYEhDcBjnyk3cLqNLURJAe3uKtgNwmXywpV-fZX-XbGA7S4xdC5gIiMUNKk-WXLNvKYSJUACxhDM2jJMpRFNRyMGv-YKNvd8CgMimsq8hW69MswnRYmdCMLbhd6bT5PmXCRv-hLZBS574Elujia8pONyQdp3li11FWpPmxvKZDSZ6Idd9-jcTyF-x8xpbT-NjH7HX-8V6voxWzw-P89kqwriQISp0XGeVFnmaQiEgk4BxIlKsK0wVoExUmtc5EgqRVzpWmU40gkyglroolEhG7PawV7nOe0d1qUzAYDrb32naUkD546j846g8Oupp-Y9-d2aHbn-SEweuj8tt9-Fs_-MJ5hudCoT5
CitedBy_id crossref_primary_10_1021_acsaom_3c00377
crossref_primary_10_1021_acs_chemmater_3c03267
crossref_primary_10_1002_smll_202205981
crossref_primary_10_1039_D3DT03874B
crossref_primary_10_71267_mencom_7577
crossref_primary_10_1021_acsami_4c18047
crossref_primary_10_3390_ma17020491
crossref_primary_10_1021_acsami_3c09518
crossref_primary_10_1039_D2MH01216B
crossref_primary_10_1002_ange_202423185
crossref_primary_10_1002_adom_202302854
crossref_primary_10_1002_anie_202423185
crossref_primary_10_1002_cssc_202301268
crossref_primary_10_1002_adfm_202211191
crossref_primary_10_1002_smll_202409528
crossref_primary_10_1021_acs_cgd_4c01187
crossref_primary_10_1021_acs_chemmater_4c00305
crossref_primary_10_59717_j_xinn_mater_2023_100015
crossref_primary_10_1039_D4SC04748F
crossref_primary_10_1080_10408436_2025_2455675
crossref_primary_10_3390_nano11123310
crossref_primary_10_1063_5_0086599
crossref_primary_10_1007_s00604_023_05874_0
crossref_primary_10_1021_acsanm_2c00782
crossref_primary_10_1117_1_AP_5_4_046002
crossref_primary_10_1007_s11426_024_2345_0
crossref_primary_10_1021_acs_inorgchem_2c04173
crossref_primary_10_1016_j_optmat_2024_115549
crossref_primary_10_1002_adom_202402650
crossref_primary_10_1007_s12274_022_4607_9
Cites_doi 10.1021/acsenergylett.8b02239
10.1021/acs.nanolett.9b01666
10.1002/adma.201605739
10.1002/adom.201801160
10.1038/nature13829
10.1038/s41586-019-1036-3
10.1002/adma.201907786
10.1038/s41586-020-2621-1
10.1002/lpor.202000334
10.1002/adma.201804137
10.1002/anie.201411005
10.1002/adma.202002176
10.1016/j.jallcom.2020.156324
10.1021/acs.chemmater.9b01650
10.1038/s41586-018-0691-0
10.1021/acsenergylett.9b02096
10.1038/ncomms4586
10.1002/adma.201601024
10.1038/nphys3357
10.1038/nnano.2014.149
10.1038/s41566-018-0260-y
10.1021/acs.jpclett.9b00910
10.1002/adom.201801419
10.1038/s41467-019-09794-7
10.1021/acs.jpclett.0c01933
10.1021/acs.nanolett.0c00692
10.1002/anie.202012383
10.1038/s41586-020-2219-7
10.1021/acsami.9b11665
10.1039/C7RA06026B
10.1016/j.optmat.2009.03.011
10.1002/ijch.197300074
10.1007/s40820-019-0244-6
10.1038/nphoton.2016.41
10.1021/jacs.8b07424
10.1002/adma.201970174
10.1038/s41566-019-0390-x
10.1002/smll.202002940
10.1002/adma.201600669
10.1021/acsami.8b15213
10.1038/s41563-020-0784-7
10.1016/j.matt.2020.05.018
10.1126/science.1243982
10.1107/S0108768108032734
10.1038/nature12509
10.1002/adom.202001073
10.1021/acs.chemmater.7b02415
10.1021/acsami.0c02575
10.1038/s41586-018-0575-3
10.1039/C9TC04127C
10.1038/nphoton.2015.151
10.1002/adma.201704587
10.1002/adom.202000985
10.1038/s41566-019-0364-z
10.1002/adfm.202001732
10.1126/science.aaa2725
10.1126/science.1243167
10.1038/nature12340
10.1021/acs.chemmater.9b03782
10.1038/nmat4572
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsenergylett.1c00250
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2380-8195
EndPage 1911
ExternalDocumentID 10_1021_acsenergylett_1c00250
c715155042
GroupedDBID ABFRP
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a295t-9d2f6bd17440910650a2314afba4c0a53c47f7aea117bd2c6d3da0530f5d99c13
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Tue Jul 01 01:58:23 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Sun May 16 03:11:28 EDT 2021
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a295t-9d2f6bd17440910650a2314afba4c0a53c47f7aea117bd2c6d3da0530f5d99c13
ORCID 0000-0003-1567-2371
0000-0002-8356-6303
PageCount 11
ParticipantIDs crossref_citationtrail_10_1021_acsenergylett_1c00250
crossref_primary_10_1021_acsenergylett_1c00250
acs_journals_10_1021_acsenergylett_1c00250
ProviderPackageCode ABFRP
ACS
AFEFF
VF5
VG9
ABUCX
GGK
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210514
2021-05-14
PublicationDateYYYYMMDD 2021-05-14
PublicationDate_xml – month: 05
  year: 2021
  text: 20210514
  day: 14
PublicationDecade 2020
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1021/acsenergylett.8b02239
– ident: ref56/cit56
  doi: 10.1021/acs.nanolett.9b01666
– ident: ref39/cit39
  doi: 10.1002/adma.201605739
– ident: ref40/cit40
  doi: 10.1002/adom.201801160
– ident: ref59/cit59
  doi: 10.1038/nature13829
– ident: ref3/cit3
  doi: 10.1038/s41586-019-1036-3
– ident: ref21/cit21
  doi: 10.1002/adma.201907786
– ident: ref8/cit8
  doi: 10.1038/s41586-020-2621-1
– ident: ref42/cit42
  doi: 10.1002/lpor.202000334
– ident: ref20/cit20
  doi: 10.1002/adma.201804137
– ident: ref49/cit49
  doi: 10.1002/anie.201411005
– ident: ref19/cit19
  doi: 10.1002/adma.202002176
– ident: ref45/cit45
  doi: 10.1016/j.jallcom.2020.156324
– ident: ref58/cit58
  doi: 10.1021/acs.chemmater.9b01650
– ident: ref35/cit35
  doi: 10.1038/s41586-018-0691-0
– ident: ref30/cit30
  doi: 10.1021/acsenergylett.9b02096
– ident: ref47/cit47
  doi: 10.1038/ncomms4586
– ident: ref33/cit33
  doi: 10.1002/adma.201601024
– ident: ref11/cit11
  doi: 10.1038/nphys3357
– ident: ref15/cit15
  doi: 10.1038/nnano.2014.149
– ident: ref17/cit17
  doi: 10.1038/s41566-018-0260-y
– ident: ref25/cit25
  doi: 10.1021/acs.jpclett.9b00910
– ident: ref55/cit55
  doi: 10.1002/adom.201801419
– ident: ref4/cit4
  doi: 10.1038/s41467-019-09794-7
– ident: ref38/cit38
  doi: 10.1021/acs.jpclett.0c01933
– ident: ref32/cit32
  doi: 10.1021/acs.nanolett.0c00692
– ident: ref51/cit51
  doi: 10.1002/anie.202012383
– ident: ref36/cit36
  doi: 10.1038/s41586-020-2219-7
– ident: ref28/cit28
  doi: 10.1021/acsami.9b11665
– ident: ref52/cit52
  doi: 10.1039/C7RA06026B
– ident: ref53/cit53
  doi: 10.1016/j.optmat.2009.03.011
– ident: ref41/cit41
  doi: 10.1002/ijch.197300074
– ident: ref31/cit31
  doi: 10.1007/s40820-019-0244-6
– ident: ref9/cit9
  doi: 10.1038/nphoton.2016.41
– ident: ref29/cit29
  doi: 10.1021/jacs.8b07424
– ident: ref16/cit16
  doi: 10.1002/adma.201970174
– ident: ref18/cit18
  doi: 10.1038/s41566-019-0390-x
– ident: ref24/cit24
  doi: 10.1002/smll.202002940
– ident: ref7/cit7
  doi: 10.1002/adma.201600669
– ident: ref57/cit57
  doi: 10.1021/acsami.8b15213
– ident: ref37/cit37
  doi: 10.1038/s41563-020-0784-7
– ident: ref10/cit10
  doi: 10.1016/j.matt.2020.05.018
– ident: ref13/cit13
  doi: 10.1126/science.1243982
– ident: ref46/cit46
  doi: 10.1107/S0108768108032734
– ident: ref1/cit1
  doi: 10.1038/nature12509
– ident: ref23/cit23
  doi: 10.1002/adom.202001073
– ident: ref54/cit54
  doi: 10.1021/acs.chemmater.7b02415
– ident: ref27/cit27
  doi: 10.1021/acsami.0c02575
– ident: ref6/cit6
  doi: 10.1038/s41586-018-0575-3
– ident: ref44/cit44
  doi: 10.1039/C9TC04127C
– ident: ref48/cit48
  doi: 10.1038/nphoton.2015.151
– ident: ref60/cit60
  doi: 10.1002/adma.201704587
– ident: ref50/cit50
  doi: 10.1002/adom.202000985
– ident: ref5/cit5
  doi: 10.1038/s41566-019-0364-z
– ident: ref22/cit22
  doi: 10.1002/adfm.202001732
– ident: ref12/cit12
  doi: 10.1126/science.aaa2725
– ident: ref14/cit14
  doi: 10.1126/science.1243167
– ident: ref2/cit2
  doi: 10.1038/nature12340
– ident: ref43/cit43
  doi: 10.1021/acs.chemmater.9b03782
– ident: ref26/cit26
  doi: 10.1038/nmat4572
SSID ssj0001685858
Score 2.3322845
Snippet The formability of antiperovskite [MX4]­XA3-type (A­(I) = alkali metals; M­(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1901
Title Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites
URI http://dx.doi.org/10.1021/acsenergylett.1c00250
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKWWDgjSgveWBCcogdJ8FjVVpViKJKtFK3yK-gCpqgJmXg12O7KRSh8liyXWSffb5P9_gOgAtMBePYZyjlMnItOUhgHiNsPn7M7ORp2yjcu4-6Q3o7Ckc1cLUig0_wFZeFdm1wZh-lh6Xz2mtgnUTGkC0Waj18BlUcm7qbQhdc-8jmiBZdO6v-ZL2SLJa80pJ76WyD_qJJZ15V8uTNSuHJt--cjX9d-Q7YqqAmbM7vxi6o6WwPbC4REO6DwZ3jEWlPxq78Gd6Mc6ULaIOzsMezR27nU8KuwepKw4Euzcuk1TTPYHsitHmyFBxnsJmVY9TX0_y1sKHg4gAMO-1Bq4uqOQuIExaWiCmSRkJhyxVo0IPBbNygPspTwan0eRhIGqcx1xzjWCgiIxUobozXT0PFmMTBIahneaaPADSejkhNfcpDRYXGLE2VssE7FkrBWdwAl0YrSWUnReJS4AQnX1SVVKpqALo4lERWjOV2cMbzb2Leh9jLnLLjZ4Hj_yzqBGwQW9ZiCVzpKaiX05k-M7ikFOfuLr4DxIPhpA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gHtSDbyM-9-DJpNgt29Y9EoSgAjERIrdmXzVEKYYWD_56d5ciaKKGSw9NZjM7-5gvMzvfAFxgwinDLnViJgJbkuNwzEIH648bUtN52hQKtztBs0fu-n6_AMGsFkYrkeqRUpvEn7ML4Cv9T9lqOD2drIyFdd4rsKoBiWd2drX2OI-tWFJ124yucu06JlU0K975bSTjnES64JwWvExjC56-9LOPS17Kk4yXxccP6sblJ7ANmznwRNXpTtmBgkp2YWOBjnAPui3LKlIfDuxjaHQzGEmVIhOqRW2WPDPTrRI1NXKXCnVVpu8pJcejBNWHXOkLTKJBgqpJNnAe1Hj0nprAcLoPvUa9W2s6edcFh3nUzxwqvTjgEhvmQI0lNIJjGgMSFnNGhMv8iiBhHDLFMA659EQgK5Lpo-zGvqRU4MoBFJNRog4Bab_nCUVcwnxJuMI0jqU0oTzqC85oWIJLbZUoPzVpZBPiHo6-mSrKTVUCMlubSOT85aaNxut_YuUvsbcpgcffAkfLKHUOa81uuxW1bjv3x7DumQcvhtqVnEAxG0_UqUYsGT-z2_MTIX3qBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gujBt1ife_AkJGaTTeMeSx9UbUvBFgoewr4iQZuUJvXgr3d3m9YqqOglh8Ass7szO8M8vgHgEmFGKHKIFVFeMS05FkM0sJD6OAHRk6d1o3CnW2kN8N3QHxZVlboXRjGRqZUyk8TXWj0WUYEwgK7Vf2k64tSWchtxY8BXwZpO3WnprtYePuIrBljdDKTzbhxLp4vmDTzfraQNFM-WDNSSpWlug8cFj6bA5Nme5szmb1_gG_-3iR2wVTigsDqTmF2wIpM9sLkES7gP-m2DLtIYxaYoGtbjVMgM6pAt7NDkieqplbClPHghYV_m6r2SYpImsDFiUj1kAsYJrCZ5bPXkJH3NdIA4OwCDZqNfa1nF9AWLusTPLSLcqMIE0giCyqdQnhxVviCmEaOYO9T3OA6igEqKUMCEyyvCE1SptBP5ghCOvENQStJEHgGo7J_LJXYw9QVmEpEoEkKH9IjPGSVBGVypUwkL7clCkxh3UfjpqMLiqMoAz-8n5AWOuR6n8fIbmb0gG8-APH4mOP4LUxdgvVdvhu3b7v0J2HB13YtGeMWnoJRPpvJMOS45OzcS-g6kzeyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-Emitting+Diodes+with+Manganese+Halide+Tetrahedron+Embedded+in+Anti-Perovskites&rft.jtitle=ACS+energy+letters&rft.au=Yan%2C+Siyu&rft.au=Tang%2C+Kaixin&rft.au=Lin%2C+Yuejian&rft.au=Ren%2C+Yuanhang&rft.date=2021-05-14&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=6&rft.issue=5&rft.spage=1901&rft.epage=1911&rft_id=info:doi/10.1021%2Facsenergylett.1c00250&rft.externalDocID=c715155042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon