Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites
The formability of antiperovskite [MX4]XA3-type (A(I) = alkali metals; M(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis theory. To validate the prediction model, a series of cesium–manganese antiperovskite single crystals with different halogen mixing ratios wer...
Saved in:
Published in | ACS energy letters Vol. 6; no. 5; pp. 1901 - 1911 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
14.05.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | The formability of antiperovskite [MX4]XA3-type (A(I) = alkali metals; M(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis theory. To validate the prediction model, a series of cesium–manganese antiperovskite single crystals with different halogen mixing ratios were synthesized, which not only have [MX4]XA3-type structures but also are ideal luminescent materials. As the most pure green emission fluorescent antiperovskite, [MnCl2Br2]BrCs3 shows 520 nm emission with the high photoluminescence quantum yield (93.5%) at room temperature and ultrastable luminescent color from 77 to 523 K due to the strict confinement of high-density luminescent centers. By fabricating the perovskite film with the double-source thermal evaporation method, the first all-inorganic cesium–manganese halide antiperovskite light-emitting diode is reported, with maximum external quantum efficiency up to 12.5%, maximum luminance up to 3990 cd m–2, and half-life of 756 min operated at 5.0 V. |
---|---|
AbstractList | The formability of antiperovskite [MX4]XA3-type (A(I) = alkali metals; M(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis theory. To validate the prediction model, a series of cesium–manganese antiperovskite single crystals with different halogen mixing ratios were synthesized, which not only have [MX4]XA3-type structures but also are ideal luminescent materials. As the most pure green emission fluorescent antiperovskite, [MnCl2Br2]BrCs3 shows 520 nm emission with the high photoluminescence quantum yield (93.5%) at room temperature and ultrastable luminescent color from 77 to 523 K due to the strict confinement of high-density luminescent centers. By fabricating the perovskite film with the double-source thermal evaporation method, the first all-inorganic cesium–manganese halide antiperovskite light-emitting diode is reported, with maximum external quantum efficiency up to 12.5%, maximum luminance up to 3990 cd m–2, and half-life of 756 min operated at 5.0 V. |
Author | Lin, Yuejian Yan, Siyu Tian, Wanli Wang, Weizhi Chen, Hua Pan, Xiaoyong Tang, Kaixin Ren, Yuanhang Lin, Tingting Qiu, Longzhen |
AuthorAffiliation | National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology Fudan University ASTAR (Agency for Science, Technology and Research) Advanced Materials Laboratory, Department of Chemistry School of Material & Science Engineering Institute of Materials Research and Engineering State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science |
AuthorAffiliation_xml | – name: Advanced Materials Laboratory, Department of Chemistry – name: ASTAR (Agency for Science, Technology and Research) – name: National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology – name: Fudan University – name: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science – name: School of Material & Science Engineering – name: Institute of Materials Research and Engineering |
Author_xml | – sequence: 1 givenname: Siyu surname: Yan fullname: Yan, Siyu organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science – sequence: 2 givenname: Kaixin surname: Tang fullname: Tang, Kaixin organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science – sequence: 3 givenname: Yuejian surname: Lin fullname: Lin, Yuejian organization: Fudan University – sequence: 4 givenname: Yuanhang surname: Ren fullname: Ren, Yuanhang organization: Fudan University – sequence: 5 givenname: Wanli surname: Tian fullname: Tian, Wanli organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science – sequence: 6 givenname: Hua surname: Chen fullname: Chen, Hua organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science – sequence: 7 givenname: Tingting surname: Lin fullname: Lin, Tingting organization: ASTAR (Agency for Science, Technology and Research) – sequence: 8 givenname: Longzhen orcidid: 0000-0002-8356-6303 surname: Qiu fullname: Qiu, Longzhen organization: National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology – sequence: 9 givenname: Xiaoyong surname: Pan fullname: Pan, Xiaoyong organization: School of Material & Science Engineering – sequence: 10 givenname: Weizhi orcidid: 0000-0003-1567-2371 surname: Wang fullname: Wang, Weizhi email: weizhiwang@fudan.edu.cn organization: State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science |
BookMark | eNqFkMFOwzAMhiM0JMbYIyDlBTqctmlXcZrGYEhDcBjnyk3cLqNLURJAe3uKtgNwmXywpV-fZX-XbGA7S4xdC5gIiMUNKk-WXLNvKYSJUACxhDM2jJMpRFNRyMGv-YKNvd8CgMimsq8hW69MswnRYmdCMLbhd6bT5PmXCRv-hLZBS574Elujia8pONyQdp3li11FWpPmxvKZDSZ6Idd9-jcTyF-x8xpbT-NjH7HX-8V6voxWzw-P89kqwriQISp0XGeVFnmaQiEgk4BxIlKsK0wVoExUmtc5EgqRVzpWmU40gkyglroolEhG7PawV7nOe0d1qUzAYDrb32naUkD546j846g8Oupp-Y9-d2aHbn-SEweuj8tt9-Fs_-MJ5hudCoT5 |
CitedBy_id | crossref_primary_10_1021_acsaom_3c00377 crossref_primary_10_1021_acs_chemmater_3c03267 crossref_primary_10_1002_smll_202205981 crossref_primary_10_1039_D3DT03874B crossref_primary_10_71267_mencom_7577 crossref_primary_10_1021_acsami_4c18047 crossref_primary_10_3390_ma17020491 crossref_primary_10_1021_acsami_3c09518 crossref_primary_10_1039_D2MH01216B crossref_primary_10_1002_ange_202423185 crossref_primary_10_1002_adom_202302854 crossref_primary_10_1002_anie_202423185 crossref_primary_10_1002_cssc_202301268 crossref_primary_10_1002_adfm_202211191 crossref_primary_10_1002_smll_202409528 crossref_primary_10_1021_acs_cgd_4c01187 crossref_primary_10_1021_acs_chemmater_4c00305 crossref_primary_10_59717_j_xinn_mater_2023_100015 crossref_primary_10_1039_D4SC04748F crossref_primary_10_1080_10408436_2025_2455675 crossref_primary_10_3390_nano11123310 crossref_primary_10_1063_5_0086599 crossref_primary_10_1007_s00604_023_05874_0 crossref_primary_10_1021_acsanm_2c00782 crossref_primary_10_1117_1_AP_5_4_046002 crossref_primary_10_1007_s11426_024_2345_0 crossref_primary_10_1021_acs_inorgchem_2c04173 crossref_primary_10_1016_j_optmat_2024_115549 crossref_primary_10_1002_adom_202402650 crossref_primary_10_1007_s12274_022_4607_9 |
Cites_doi | 10.1021/acsenergylett.8b02239 10.1021/acs.nanolett.9b01666 10.1002/adma.201605739 10.1002/adom.201801160 10.1038/nature13829 10.1038/s41586-019-1036-3 10.1002/adma.201907786 10.1038/s41586-020-2621-1 10.1002/lpor.202000334 10.1002/adma.201804137 10.1002/anie.201411005 10.1002/adma.202002176 10.1016/j.jallcom.2020.156324 10.1021/acs.chemmater.9b01650 10.1038/s41586-018-0691-0 10.1021/acsenergylett.9b02096 10.1038/ncomms4586 10.1002/adma.201601024 10.1038/nphys3357 10.1038/nnano.2014.149 10.1038/s41566-018-0260-y 10.1021/acs.jpclett.9b00910 10.1002/adom.201801419 10.1038/s41467-019-09794-7 10.1021/acs.jpclett.0c01933 10.1021/acs.nanolett.0c00692 10.1002/anie.202012383 10.1038/s41586-020-2219-7 10.1021/acsami.9b11665 10.1039/C7RA06026B 10.1016/j.optmat.2009.03.011 10.1002/ijch.197300074 10.1007/s40820-019-0244-6 10.1038/nphoton.2016.41 10.1021/jacs.8b07424 10.1002/adma.201970174 10.1038/s41566-019-0390-x 10.1002/smll.202002940 10.1002/adma.201600669 10.1021/acsami.8b15213 10.1038/s41563-020-0784-7 10.1016/j.matt.2020.05.018 10.1126/science.1243982 10.1107/S0108768108032734 10.1038/nature12509 10.1002/adom.202001073 10.1021/acs.chemmater.7b02415 10.1021/acsami.0c02575 10.1038/s41586-018-0575-3 10.1039/C9TC04127C 10.1038/nphoton.2015.151 10.1002/adma.201704587 10.1002/adom.202000985 10.1038/s41566-019-0364-z 10.1002/adfm.202001732 10.1126/science.aaa2725 10.1126/science.1243167 10.1038/nature12340 10.1021/acs.chemmater.9b03782 10.1038/nmat4572 |
ContentType | Journal Article |
Copyright | 2021 American
Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsenergylett.1c00250 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2380-8195 |
EndPage | 1911 |
ExternalDocumentID | 10_1021_acsenergylett_1c00250 c715155042 |
GroupedDBID | ABFRP ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a295t-9d2f6bd17440910650a2314afba4c0a53c47f7aea117bd2c6d3da0530f5d99c13 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Tue Jul 01 01:58:23 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Sun May 16 03:11:28 EDT 2021 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a295t-9d2f6bd17440910650a2314afba4c0a53c47f7aea117bd2c6d3da0530f5d99c13 |
ORCID | 0000-0003-1567-2371 0000-0002-8356-6303 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1021_acsenergylett_1c00250 crossref_primary_10_1021_acsenergylett_1c00250 acs_journals_10_1021_acsenergylett_1c00250 |
ProviderPackageCode | ABFRP ACS AFEFF VF5 VG9 ABUCX GGK CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210514 2021-05-14 |
PublicationDateYYYYMMDD | 2021-05-14 |
PublicationDate_xml | – month: 05 year: 2021 text: 20210514 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1021/acsenergylett.8b02239 – ident: ref56/cit56 doi: 10.1021/acs.nanolett.9b01666 – ident: ref39/cit39 doi: 10.1002/adma.201605739 – ident: ref40/cit40 doi: 10.1002/adom.201801160 – ident: ref59/cit59 doi: 10.1038/nature13829 – ident: ref3/cit3 doi: 10.1038/s41586-019-1036-3 – ident: ref21/cit21 doi: 10.1002/adma.201907786 – ident: ref8/cit8 doi: 10.1038/s41586-020-2621-1 – ident: ref42/cit42 doi: 10.1002/lpor.202000334 – ident: ref20/cit20 doi: 10.1002/adma.201804137 – ident: ref49/cit49 doi: 10.1002/anie.201411005 – ident: ref19/cit19 doi: 10.1002/adma.202002176 – ident: ref45/cit45 doi: 10.1016/j.jallcom.2020.156324 – ident: ref58/cit58 doi: 10.1021/acs.chemmater.9b01650 – ident: ref35/cit35 doi: 10.1038/s41586-018-0691-0 – ident: ref30/cit30 doi: 10.1021/acsenergylett.9b02096 – ident: ref47/cit47 doi: 10.1038/ncomms4586 – ident: ref33/cit33 doi: 10.1002/adma.201601024 – ident: ref11/cit11 doi: 10.1038/nphys3357 – ident: ref15/cit15 doi: 10.1038/nnano.2014.149 – ident: ref17/cit17 doi: 10.1038/s41566-018-0260-y – ident: ref25/cit25 doi: 10.1021/acs.jpclett.9b00910 – ident: ref55/cit55 doi: 10.1002/adom.201801419 – ident: ref4/cit4 doi: 10.1038/s41467-019-09794-7 – ident: ref38/cit38 doi: 10.1021/acs.jpclett.0c01933 – ident: ref32/cit32 doi: 10.1021/acs.nanolett.0c00692 – ident: ref51/cit51 doi: 10.1002/anie.202012383 – ident: ref36/cit36 doi: 10.1038/s41586-020-2219-7 – ident: ref28/cit28 doi: 10.1021/acsami.9b11665 – ident: ref52/cit52 doi: 10.1039/C7RA06026B – ident: ref53/cit53 doi: 10.1016/j.optmat.2009.03.011 – ident: ref41/cit41 doi: 10.1002/ijch.197300074 – ident: ref31/cit31 doi: 10.1007/s40820-019-0244-6 – ident: ref9/cit9 doi: 10.1038/nphoton.2016.41 – ident: ref29/cit29 doi: 10.1021/jacs.8b07424 – ident: ref16/cit16 doi: 10.1002/adma.201970174 – ident: ref18/cit18 doi: 10.1038/s41566-019-0390-x – ident: ref24/cit24 doi: 10.1002/smll.202002940 – ident: ref7/cit7 doi: 10.1002/adma.201600669 – ident: ref57/cit57 doi: 10.1021/acsami.8b15213 – ident: ref37/cit37 doi: 10.1038/s41563-020-0784-7 – ident: ref10/cit10 doi: 10.1016/j.matt.2020.05.018 – ident: ref13/cit13 doi: 10.1126/science.1243982 – ident: ref46/cit46 doi: 10.1107/S0108768108032734 – ident: ref1/cit1 doi: 10.1038/nature12509 – ident: ref23/cit23 doi: 10.1002/adom.202001073 – ident: ref54/cit54 doi: 10.1021/acs.chemmater.7b02415 – ident: ref27/cit27 doi: 10.1021/acsami.0c02575 – ident: ref6/cit6 doi: 10.1038/s41586-018-0575-3 – ident: ref44/cit44 doi: 10.1039/C9TC04127C – ident: ref48/cit48 doi: 10.1038/nphoton.2015.151 – ident: ref60/cit60 doi: 10.1002/adma.201704587 – ident: ref50/cit50 doi: 10.1002/adom.202000985 – ident: ref5/cit5 doi: 10.1038/s41566-019-0364-z – ident: ref22/cit22 doi: 10.1002/adfm.202001732 – ident: ref12/cit12 doi: 10.1126/science.aaa2725 – ident: ref14/cit14 doi: 10.1126/science.1243167 – ident: ref2/cit2 doi: 10.1038/nature12340 – ident: ref43/cit43 doi: 10.1021/acs.chemmater.9b03782 – ident: ref26/cit26 doi: 10.1038/nmat4572 |
SSID | ssj0001685858 |
Score | 2.3322845 |
Snippet | The formability of antiperovskite [MX4]XA3-type (A(I) = alkali metals; M(II) = transition metals; X = Cl, Br, I) can be predicted by building the analysis... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1901 |
Title | Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites |
URI | http://dx.doi.org/10.1021/acsenergylett.1c00250 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKWWDgjSgveWBCcogdJ8FjVVpViKJKtFK3yK-gCpqgJmXg12O7KRSh8liyXWSffb5P9_gOgAtMBePYZyjlMnItOUhgHiNsPn7M7ORp2yjcu4-6Q3o7Ckc1cLUig0_wFZeFdm1wZh-lh6Xz2mtgnUTGkC0Waj18BlUcm7qbQhdc-8jmiBZdO6v-ZL2SLJa80pJ76WyD_qJJZ15V8uTNSuHJt--cjX9d-Q7YqqAmbM7vxi6o6WwPbC4REO6DwZ3jEWlPxq78Gd6Mc6ULaIOzsMezR27nU8KuwepKw4Euzcuk1TTPYHsitHmyFBxnsJmVY9TX0_y1sKHg4gAMO-1Bq4uqOQuIExaWiCmSRkJhyxVo0IPBbNygPspTwan0eRhIGqcx1xzjWCgiIxUobozXT0PFmMTBIahneaaPADSejkhNfcpDRYXGLE2VssE7FkrBWdwAl0YrSWUnReJS4AQnX1SVVKpqALo4lERWjOV2cMbzb2Leh9jLnLLjZ4Hj_yzqBGwQW9ZiCVzpKaiX05k-M7ikFOfuLr4DxIPhpA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gHtSDbyM-9-DJpNgt29Y9EoSgAjERIrdmXzVEKYYWD_56d5ciaKKGSw9NZjM7-5gvMzvfAFxgwinDLnViJgJbkuNwzEIH648bUtN52hQKtztBs0fu-n6_AMGsFkYrkeqRUpvEn7ML4Cv9T9lqOD2drIyFdd4rsKoBiWd2drX2OI-tWFJ124yucu06JlU0K975bSTjnES64JwWvExjC56-9LOPS17Kk4yXxccP6sblJ7ANmznwRNXpTtmBgkp2YWOBjnAPui3LKlIfDuxjaHQzGEmVIhOqRW2WPDPTrRI1NXKXCnVVpu8pJcejBNWHXOkLTKJBgqpJNnAe1Hj0nprAcLoPvUa9W2s6edcFh3nUzxwqvTjgEhvmQI0lNIJjGgMSFnNGhMv8iiBhHDLFMA659EQgK5Lpo-zGvqRU4MoBFJNRog4Bab_nCUVcwnxJuMI0jqU0oTzqC85oWIJLbZUoPzVpZBPiHo6-mSrKTVUCMlubSOT85aaNxut_YuUvsbcpgcffAkfLKHUOa81uuxW1bjv3x7DumQcvhtqVnEAxG0_UqUYsGT-z2_MTIX3qBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gujBt1ife_AkJGaTTeMeSx9UbUvBFgoewr4iQZuUJvXgr3d3m9YqqOglh8Ass7szO8M8vgHgEmFGKHKIFVFeMS05FkM0sJD6OAHRk6d1o3CnW2kN8N3QHxZVlboXRjGRqZUyk8TXWj0WUYEwgK7Vf2k64tSWchtxY8BXwZpO3WnprtYePuIrBljdDKTzbhxLp4vmDTzfraQNFM-WDNSSpWlug8cFj6bA5Nme5szmb1_gG_-3iR2wVTigsDqTmF2wIpM9sLkES7gP-m2DLtIYxaYoGtbjVMgM6pAt7NDkieqplbClPHghYV_m6r2SYpImsDFiUj1kAsYJrCZ5bPXkJH3NdIA4OwCDZqNfa1nF9AWLusTPLSLcqMIE0giCyqdQnhxVviCmEaOYO9T3OA6igEqKUMCEyyvCE1SptBP5ghCOvENQStJEHgGo7J_LJXYw9QVmEpEoEkKH9IjPGSVBGVypUwkL7clCkxh3UfjpqMLiqMoAz-8n5AWOuR6n8fIbmb0gG8-APH4mOP4LUxdgvVdvhu3b7v0J2HB13YtGeMWnoJRPpvJMOS45OzcS-g6kzeyI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-Emitting+Diodes+with+Manganese+Halide+Tetrahedron+Embedded+in+Anti-Perovskites&rft.jtitle=ACS+energy+letters&rft.au=Yan%2C+Siyu&rft.au=Tang%2C+Kaixin&rft.au=Lin%2C+Yuejian&rft.au=Ren%2C+Yuanhang&rft.date=2021-05-14&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=6&rft.issue=5&rft.spage=1901&rft.epage=1911&rft_id=info:doi/10.1021%2Facsenergylett.1c00250&rft.externalDocID=c715155042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |