Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data

Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics
Main Authors Murugesan, Sugeerth, Bouchard, Kristofer, Chang, Edward, Dougherty, Max, Hamann, Bernd, Weber, Gunther H.
Format Journal Article
LanguageEnglish
Published United States IEEE 02.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) to compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.
AbstractList Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) to compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.
Author Bouchard, Kristofer
Weber, Gunther H.
Murugesan, Sugeerth
Dougherty, Max
Hamann, Bernd
Chang, Edward
Author_xml – sequence: 1
  fullname: Murugesan, Sugeerth
  organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
– sequence: 2
  fullname: Bouchard, Kristofer
  organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
– sequence: 3
  fullname: Chang, Edward
  organization: Univ. of California, San Francisco, CA (United States)
– sequence: 4
  fullname: Dougherty, Max
  organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
– sequence: 5
  fullname: Hamann, Bernd
  organization: Univ. of California, Davis, CA (United States)
– sequence: 6
  fullname: Weber, Gunther H.
  organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
BackLink https://www.osti.gov/servlets/purl/1377525$$D View this record in Osti.gov
BookMark eNotjktLAzEUhYNUsK2u3Qb3U_O6k8my1GqFggsfS8udNGMjY1KSjNB_74iuvnPg43BmZBJicIRcc7bgXMGtMBp4rRfCNFA3zRmZcgBdGVOryW9WUIGp5QWZ5fzJmFCGqSl533iXMNmDt9jT5yMWH6vivo4xjf3N52HEMmB_yj7T2NFVP-TiEl1_x34Y5UB9oOve2ZKijal4Gz8SHg8neocFL8l5h312V_-ck9f79ctqU22fHh5Xy22FwkCpGq07Bm3bgMOOC814jSg6LfaM1WovtGIKRGudQGkZR45OWgktSq5M44yck5u_3ZiL32Xri7MHG0MYf-241BoEyB_hHlgv
ContentType Journal Article
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID OIOZB
OTOTI
DOI 10.1145/2975167.2985688
DatabaseName OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
ExternalDocumentID 1377525
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AASAJ
AAWTV
AAYFX
ABGDV
ABQDU
ACATF
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADHRN
ADL
AENEX
AFJFK
AFRAH
AFWIH
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OIOZB
OTOTI
P1C
P2P
PQEST
PQQKQ
RIA
RIC
RIE
RIG
RNS
ROL
TN5
W7O
ID FETCH-LOGICAL-a295t-877f05bb85eaf127016aa2f72d0064d2740452bce2a3c01a1ae3c35ba31498e93
ISSN 1545-5963
IngestDate Fri May 19 01:42:39 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a295t-877f05bb85eaf127016aa2f72d0064d2740452bce2a3c01a1ae3c35ba31498e93
Notes USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
AC02-05CH11231
OpenAccessLink https://www.osti.gov/servlets/purl/1377525
ParticipantIDs osti_scitechconnect_1377525
PublicationCentury 2000
PublicationDate 2016-10-02
PublicationDateYYYYMMDD 2016-10-02
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0024904
Score 2.189897
Snippet Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system...
SourceID osti
SourceType Open Access Repository
SubjectTerms 60 APPLIED LIFE SCIENCES
Brain Imaging
Electrocorticography
Graph Visualization
Linked Views
MATHEMATICS AND COMPUTING
Neuroinformatics
Title Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
URI https://www.osti.gov/servlets/purl/1377525
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELyIT3yTg7cluk3zaI-6rCyCXnzgSUnbVBaWLWhX1F_vTJpty7KIemlDFtIl85HOTGe-j5ATlYETCthgOlMJE5HgLDFGsCwTaHAeZxH2O1_fqMG9uHqUj00yx3WXlMlp-jW3r-Q_VoU5sCt2yf7BsvWiMAFjsC9cwcJw_ZWNB0NsH3ZqJqPOrauNZp5ratR5GL5ha0ibdaQ3miAvQqf_7v8WZjv6lRAORKGwviewBjCUpu23YkyI1Au9axSVmCqMu08NqdOFmOYU26ROMPa8rGWrph5MO3mxbz7xCkP7WtY56Yti4vrA6vOnyJvy4d40uV0pTdc-OAoNIUVw1Xv00U5kBMqVxDVhbyu4dQexkEzG_vCzfk5qBvGZmH_0C2TJwEbhQOlTHkdSVYKBM3zaSLEouVwky1zHUlYtfw09Y-wUJ-vHezYoWPxsZml4hxdwCre8kbt1subDCHpeYWKDLNjxJlmphEU_t8hTGxl0Bhm0QgadIoMWOfXIoDUy6HBM5yGDIjK2yf1l_643YF5JgxkeyxJeeTrvyiSJpDU51hoEyhiea56hS5pxLZBZP0FxuDDtBiYwNkxDmZgQAujIxuEOWRoXY7tLaBDkqptrpTKhRS6VURHcQ2thV2SounvkALflGRw4ZCFOsVwrLZ_9ru__-OsBWW2AcUiWyteJPQKfr0yOnZW-Aeu8W1o
link.rule.ids 230,315,786,790,891,27955,27956
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Spatio-temporal+Visual+Analysis+of+Cluster+Evolution+in+Electrocorticography+Data&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Murugesan%2C+Sugeerth&rft.au=Bouchard%2C+Kristofer&rft.au=Chang%2C+Edward&rft.au=Dougherty%2C+Max&rft.date=2016-10-02&rft.pub=IEEE&rft.issn=1545-5963&rft.eissn=1557-9964&rft_id=info:doi/10.1145%2F2975167.2985688&rft.externalDocID=1377525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon