Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from...
Saved in:
Published in | IEEE/ACM transactions on computational biology and bioinformatics |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
02.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) to compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach. |
---|---|
AbstractList | Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) to compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach. |
Author | Bouchard, Kristofer Weber, Gunther H. Murugesan, Sugeerth Dougherty, Max Hamann, Bernd Chang, Edward |
Author_xml | – sequence: 1 fullname: Murugesan, Sugeerth organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) – sequence: 2 fullname: Bouchard, Kristofer organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) – sequence: 3 fullname: Chang, Edward organization: Univ. of California, San Francisco, CA (United States) – sequence: 4 fullname: Dougherty, Max organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) – sequence: 5 fullname: Hamann, Bernd organization: Univ. of California, Davis, CA (United States) – sequence: 6 fullname: Weber, Gunther H. organization: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
BackLink | https://www.osti.gov/servlets/purl/1377525$$D View this record in Osti.gov |
BookMark | eNotjktLAzEUhYNUsK2u3Qb3U_O6k8my1GqFggsfS8udNGMjY1KSjNB_74iuvnPg43BmZBJicIRcc7bgXMGtMBp4rRfCNFA3zRmZcgBdGVOryW9WUIGp5QWZ5fzJmFCGqSl533iXMNmDt9jT5yMWH6vivo4xjf3N52HEMmB_yj7T2NFVP-TiEl1_x34Y5UB9oOve2ZKijal4Gz8SHg8neocFL8l5h312V_-ck9f79ctqU22fHh5Xy22FwkCpGq07Bm3bgMOOC814jSg6LfaM1WovtGIKRGudQGkZR45OWgktSq5M44yck5u_3ZiL32Xri7MHG0MYf-241BoEyB_hHlgv |
ContentType | Journal Article |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | OIOZB OTOTI |
DOI | 10.1145/2975167.2985688 |
DatabaseName | OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1557-9964 |
ExternalDocumentID | 1377525 |
GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AASAJ AAWTV AAYFX ABGDV ABQDU ACATF ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADHRN ADL AENEX AFJFK AFRAH AFWIH AIKLT ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IFIPE IPLJI JAVBF LAI M43 O9- OCL OIOZB OTOTI P1C P2P PQEST PQQKQ RIA RIC RIE RIG RNS ROL TN5 W7O |
ID | FETCH-LOGICAL-a295t-877f05bb85eaf127016aa2f72d0064d2740452bce2a3c01a1ae3c35ba31498e93 |
ISSN | 1545-5963 |
IngestDate | Fri May 19 01:42:39 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a295t-877f05bb85eaf127016aa2f72d0064d2740452bce2a3c01a1ae3c35ba31498e93 |
Notes | USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21) AC02-05CH11231 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1377525 |
ParticipantIDs | osti_scitechconnect_1377525 |
PublicationCentury | 2000 |
PublicationDate | 2016-10-02 |
PublicationDateYYYYMMDD | 2016-10-02 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0024904 |
Score | 2.189897 |
Snippet | Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system... |
SourceID | osti |
SourceType | Open Access Repository |
SubjectTerms | 60 APPLIED LIFE SCIENCES Brain Imaging Electrocorticography Graph Visualization Linked Views MATHEMATICS AND COMPUTING Neuroinformatics |
Title | Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data |
URI | https://www.osti.gov/servlets/purl/1377525 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELyIT3yTg7cluk3zaI-6rCyCXnzgSUnbVBaWLWhX1F_vTJpty7KIemlDFtIl85HOTGe-j5ATlYETCthgOlMJE5HgLDFGsCwTaHAeZxH2O1_fqMG9uHqUj00yx3WXlMlp-jW3r-Q_VoU5sCt2yf7BsvWiMAFjsC9cwcJw_ZWNB0NsH3ZqJqPOrauNZp5ratR5GL5ha0ibdaQ3miAvQqf_7v8WZjv6lRAORKGwviewBjCUpu23YkyI1Au9axSVmCqMu08NqdOFmOYU26ROMPa8rGWrph5MO3mxbz7xCkP7WtY56Yti4vrA6vOnyJvy4d40uV0pTdc-OAoNIUVw1Xv00U5kBMqVxDVhbyu4dQexkEzG_vCzfk5qBvGZmH_0C2TJwEbhQOlTHkdSVYKBM3zaSLEouVwky1zHUlYtfw09Y-wUJ-vHezYoWPxsZml4hxdwCre8kbt1subDCHpeYWKDLNjxJlmphEU_t8hTGxl0Bhm0QgadIoMWOfXIoDUy6HBM5yGDIjK2yf1l_643YF5JgxkeyxJeeTrvyiSJpDU51hoEyhiea56hS5pxLZBZP0FxuDDtBiYwNkxDmZgQAujIxuEOWRoXY7tLaBDkqptrpTKhRS6VURHcQ2thV2SounvkALflGRw4ZCFOsVwrLZ_9ru__-OsBWW2AcUiWyteJPQKfr0yOnZW-Aeu8W1o |
link.rule.ids | 230,315,786,790,891,27955,27956 |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Spatio-temporal+Visual+Analysis+of+Cluster+Evolution+in+Electrocorticography+Data&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Murugesan%2C+Sugeerth&rft.au=Bouchard%2C+Kristofer&rft.au=Chang%2C+Edward&rft.au=Dougherty%2C+Max&rft.date=2016-10-02&rft.pub=IEEE&rft.issn=1545-5963&rft.eissn=1557-9964&rft_id=info:doi/10.1145%2F2975167.2985688&rft.externalDocID=1377525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |