Greenhouse Gas (CHF3) Separation by Gas Hydrate Formation
In this study, the feasibility of gas hydrate-based greenhouse gas (CHF3) separation was investigated with a primary focus on thermodynamic, structural, and cage-filling characteristics of CHF3 + N2 hydrates. The three-phase (hydrate (H)–liquid water (LW)–vapor (V)) equilibria of CHF3 (10%, 20%, 40%...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 5; no. 6; pp. 5485 - 5492 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
05.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the feasibility of gas hydrate-based greenhouse gas (CHF3) separation was investigated with a primary focus on thermodynamic, structural, and cage-filling characteristics of CHF3 + N2 hydrates. The three-phase (hydrate (H)–liquid water (LW)–vapor (V)) equilibria of CHF3 (10%, 20%, 40%, 60%, and 80%) + N2 + water systems provided the thermodynamic stability conditions of CHF3 + N2 hydrates. Powder X-ray diffraction revealed that the structure of the CHF3 + N2 hydrates was identified as sI (Pm3n) for all the CHF3 concentration ranges considered in this study. A pressure–composition diagram obtained at two different temperature conditions (279.15 and 283.15 K) demonstrated that 40% CHF3 could be enriched to 88% CHF3 by only one step of hydrate formation and that separation efficiency was higher at the lower temperature. Furthermore, Raman spectroscopy revealed that CHF3 molecules preferentially occupy large (51262) cages of the structure I (sI) hydrate during CHF3 + N2 hydrate formation. The overall experimental results clearly demonstrated that the hydrate-based separation process can offer highly concentrated CHF3 and would be more effective for recovering CHF3 from exhaust gas when it constitutes a hybrid system with existing separation methods. |
---|---|
AbstractList | In this study, the feasibility of gas hydrate-based greenhouse gas (CHF3) separation was investigated with a primary focus on thermodynamic, structural, and cage-filling characteristics of CHF3 + N2 hydrates. The three-phase (hydrate (H)–liquid water (LW)–vapor (V)) equilibria of CHF3 (10%, 20%, 40%, 60%, and 80%) + N2 + water systems provided the thermodynamic stability conditions of CHF3 + N2 hydrates. Powder X-ray diffraction revealed that the structure of the CHF3 + N2 hydrates was identified as sI (Pm3n) for all the CHF3 concentration ranges considered in this study. A pressure–composition diagram obtained at two different temperature conditions (279.15 and 283.15 K) demonstrated that 40% CHF3 could be enriched to 88% CHF3 by only one step of hydrate formation and that separation efficiency was higher at the lower temperature. Furthermore, Raman spectroscopy revealed that CHF3 molecules preferentially occupy large (51262) cages of the structure I (sI) hydrate during CHF3 + N2 hydrate formation. The overall experimental results clearly demonstrated that the hydrate-based separation process can offer highly concentrated CHF3 and would be more effective for recovering CHF3 from exhaust gas when it constitutes a hybrid system with existing separation methods. |
Author | Seo, Yongwon Ko, Gyeol Kim, Eunae |
AuthorAffiliation | School of Urban and Environmental Engineering Ulsan National Institute of Science and Technology |
AuthorAffiliation_xml | – name: Ulsan National Institute of Science and Technology – name: School of Urban and Environmental Engineering |
Author_xml | – sequence: 1 givenname: Eunae surname: Kim fullname: Kim, Eunae – sequence: 2 givenname: Gyeol surname: Ko fullname: Ko, Gyeol – sequence: 3 givenname: Yongwon orcidid: 0000-0002-7249-5052 surname: Seo fullname: Seo, Yongwon email: ywseo@unist.ac.kr |
BookMark | eNqFkLFOwzAQhi1UJErpIyBlhCHF58SxPaKIJEiVGIDZspMLbUXiym6GvD2h7VAmbrnTffpPp--WzHrXIyH3QFdAGTyZOoQh1BvssP9aCUupZHBF5gwyGdNU8tnFfEOWIezoVEolTMKcqNIj9hs3BIxKE6KHvCqSx-gd98abw9b1kR2PoBqbaYFR4Xx3BHfkujXfAZfnviCfxctHXsXrt_I1f17Hhil-iIVpkLOWKZZJy2mDVFIjoAVswQLWEpUR1qbcilqZ2iiRiobKDCxXSSpYsiD8dLf2LgSPrd77bWf8qIHqXwX6jwJ9VjDl4JSbsN65wffTl_9kfgCM7WTZ |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_125973 crossref_primary_10_1021_acs_energyfuels_4c00487 crossref_primary_10_1021_acssuschemeng_8b00712 crossref_primary_10_1016_j_molliq_2023_123230 crossref_primary_10_1002_ghg_1769 crossref_primary_10_1038_s41598_019_46274_w crossref_primary_10_3390_en16124681 crossref_primary_10_1016_j_molliq_2021_116855 crossref_primary_10_1021_acs_jpcc_7b08945 crossref_primary_10_1016_j_cej_2018_10_032 crossref_primary_10_1021_acssuschemeng_8b06374 crossref_primary_10_1016_j_rser_2020_110150 crossref_primary_10_1016_j_rser_2021_110928 crossref_primary_10_1016_j_fluid_2018_04_013 crossref_primary_10_1021_acs_energyfuels_8b02934 crossref_primary_10_1021_acssuschemeng_1c04376 crossref_primary_10_1016_j_cej_2023_143512 crossref_primary_10_1016_j_molliq_2023_123825 crossref_primary_10_1016_j_apenergy_2019_113352 crossref_primary_10_1021_acssuschemeng_8b02187 crossref_primary_10_3390_w15122227 crossref_primary_10_1021_acs_cgd_0c01638 crossref_primary_10_1021_acs_jpcc_0c03009 crossref_primary_10_1021_acs_est_9b04902 crossref_primary_10_1039_C8CY02376J crossref_primary_10_1016_j_fuel_2020_119020 crossref_primary_10_1007_s11814_023_1385_3 crossref_primary_10_1021_acs_iecr_1c01423 crossref_primary_10_1016_j_energy_2023_128917 crossref_primary_10_1016_j_fuel_2023_130265 crossref_primary_10_1016_j_jct_2019_105979 crossref_primary_10_1002_cjce_24493 crossref_primary_10_1016_j_molliq_2022_119553 crossref_primary_10_1016_j_cej_2024_149409 crossref_primary_10_1021_acssuschemeng_1c06000 crossref_primary_10_1016_j_cej_2018_11_170 crossref_primary_10_1016_j_molstruc_2018_12_084 crossref_primary_10_1016_j_cej_2022_134591 crossref_primary_10_1016_j_jece_2022_108976 crossref_primary_10_1021_acs_jced_8b00401 crossref_primary_10_1016_j_molliq_2019_111608 crossref_primary_10_1016_j_jiec_2022_03_051 crossref_primary_10_1016_j_jngse_2019_103128 crossref_primary_10_1021_acssuschemeng_3c02837 crossref_primary_10_1016_j_jcrysgro_2020_125865 crossref_primary_10_1021_acssuschemeng_0c02661 crossref_primary_10_1021_acs_energyfuels_1c02786 crossref_primary_10_1016_j_cej_2020_126956 crossref_primary_10_1021_acs_jced_8b01129 crossref_primary_10_1021_acs_cgd_8b01625 crossref_primary_10_1016_j_pecs_2022_101026 crossref_primary_10_1039_C8CS00989A crossref_primary_10_1016_j_commatsci_2020_110174 |
Cites_doi | 10.1016/j.desal.2011.01.084 10.1016/0376-7388(95)00058-K 10.1021/je5007955 10.1252/jcej.17.423 10.1016/j.enconman.2006.09.024 10.1021/acssuschemeng.5b01557 10.1021/es010528j 10.1029/GM124p0003 10.1016/j.cej.2016.07.067 10.1021/acssuschemeng.5b00171 10.1016/S0378-3812(98)00338-0 10.1016/S0196-8904(03)00048-7 10.1016/j.jhazmat.2007.06.086 10.1063/1.1563600 10.1021/la9708039 10.1016/j.jfluchem.2010.03.002 10.1038/nature02135 10.1021/acssuschemeng.6b02832 10.1016/j.enconman.2005.03.018 10.1002/jrs.1250241205 10.1021/jp908263s 10.1126/science.259.5092.194 10.1016/0920-4105(91)90051-N 10.1021/es071306+ 10.1021/es001148l 10.1016/j.cej.2015.01.023 10.2118/24924-PA 10.1002/recl.19600790606 10.1021/es1004818 10.1002/chem.201600122 10.1016/j.proeng.2013.08.073 10.1021/sc400160u 10.1029/97GL03483 10.1016/j.memsci.2006.06.003 10.1021/es400966x 10.1016/S1001-0742(11)60935-2 10.1021/jp7114274 10.1016/j.apenergy.2015.05.107 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acssuschemeng.7b00821 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 5492 |
ExternalDocumentID | 10_1021_acssuschemeng_7b00821 a63327262 |
GroupedDBID | 53G 55A AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a295t-7ade52f29268b50de080a71f1ef1b1ec8e9a7bb45b7c9aca9747d0861b5934723 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Fri Aug 23 03:04:33 EDT 2024 Thu Aug 27 13:50:17 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | F-gas separation Gas hydrate CHF3 Greenhouse gas |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a295t-7ade52f29268b50de080a71f1ef1b1ec8e9a7bb45b7c9aca9747d0861b5934723 |
ORCID | 0000-0002-7249-5052 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1021_acssuschemeng_7b00821 acs_journals_10_1021_acssuschemeng_7b00821 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2017-06-05 |
PublicationDateYYYYMMDD | 2017-06-05 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Sloan E. D. (ref1/cit1) 2008 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 Koh C. A. (ref3/cit3) 2011 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 Kvenvolden K. A. (ref4/cit4) 2001 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref30/cit30 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1016/j.desal.2011.01.084 – ident: ref38/cit38 doi: 10.1016/0376-7388(95)00058-K – ident: ref29/cit29 doi: 10.1021/je5007955 – ident: ref28/cit28 doi: 10.1252/jcej.17.423 – ident: ref12/cit12 doi: 10.1016/j.enconman.2006.09.024 – ident: ref9/cit9 doi: 10.1021/acssuschemeng.5b01557 – ident: ref17/cit17 doi: 10.1021/es010528j – volume-title: The Global Occurrence of Natural Gas Hydrate year: 2001 ident: ref4/cit4 doi: 10.1029/GM124p0003 contributor: fullname: Kvenvolden K. A. – ident: ref32/cit32 doi: 10.1016/j.cej.2016.07.067 – ident: ref14/cit14 doi: 10.1021/acssuschemeng.5b00171 – ident: ref7/cit7 doi: 10.1016/S0378-3812(98)00338-0 – ident: ref8/cit8 doi: 10.1016/S0196-8904(03)00048-7 – ident: ref11/cit11 doi: 10.1016/j.jhazmat.2007.06.086 – ident: ref37/cit37 doi: 10.1063/1.1563600 – ident: ref39/cit39 doi: 10.1021/la9708039 – ident: ref24/cit24 doi: 10.1016/j.jfluchem.2010.03.002 – ident: ref5/cit5 doi: 10.1038/nature02135 – ident: ref16/cit16 doi: 10.1021/acssuschemeng.6b02832 – ident: ref18/cit18 doi: 10.1016/j.enconman.2005.03.018 – ident: ref36/cit36 doi: 10.1002/jrs.1250241205 – ident: ref31/cit31 doi: 10.1021/jp908263s – ident: ref21/cit21 doi: 10.1126/science.259.5092.194 – ident: ref2/cit2 doi: 10.1016/0920-4105(91)90051-N – volume-title: Natural Gas Hydrates in Flow Assurance year: 2011 ident: ref3/cit3 contributor: fullname: Koh C. A. – ident: ref23/cit23 doi: 10.1021/es071306+ – ident: ref10/cit10 doi: 10.1021/es001148l – ident: ref34/cit34 doi: 10.1016/j.cej.2015.01.023 – ident: ref6/cit6 doi: 10.2118/24924-PA – ident: ref27/cit27 doi: 10.1002/recl.19600790606 – ident: ref33/cit33 doi: 10.1021/es1004818 – ident: ref35/cit35 doi: 10.1002/chem.201600122 – ident: ref26/cit26 doi: 10.1016/j.proeng.2013.08.073 – ident: ref20/cit20 doi: 10.1021/sc400160u – ident: ref22/cit22 doi: 10.1029/97GL03483 – ident: ref40/cit40 doi: 10.1016/j.memsci.2006.06.003 – ident: ref13/cit13 doi: 10.1021/es400966x – ident: ref25/cit25 doi: 10.1016/S1001-0742(11)60935-2 – ident: ref30/cit30 doi: 10.1021/jp7114274 – volume-title: Clathrate Hydrates of Natural Gases year: 2008 ident: ref1/cit1 contributor: fullname: Sloan E. D. – ident: ref15/cit15 doi: 10.1016/j.apenergy.2015.05.107 |
SSID | ssj0000993281 |
Score | 2.397039 |
Snippet | In this study, the feasibility of gas hydrate-based greenhouse gas (CHF3) separation was investigated with a primary focus on thermodynamic, structural, and... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 5485 |
Title | Greenhouse Gas (CHF3) Separation by Gas Hydrate Formation |
URI | http://dx.doi.org/10.1021/acssuschemeng.7b00821 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lXvTgW6wv9uBBhWyb7CbZHKW4LoIi1EJvS5LNKghbsdtD_fVO9iEVqeg5JCSTCd_3TTIThM51wLkW1uIstBoDHguszSDDIc8AXAY51cIlJ98_8GQc3k3YpIP6K27wKekrAxMApeeiZc--0A60QO6sUQEHxHGh4egrqAJ0J6DVx6SU8AiDd7I2a2fVSA6VzGwJlZbgJd5Cj22STv2q5NWfl9o3Hz9rNv515ttos6Ga3nXtGzuoY4tdtLFUgHAPyerZzQuof-vdqpl3MUzi4NIb2boi-LTw9KJqSBaZqynhxW2u4z4axzdPwwQ3nylgRSUrsVCZZTSnkvJIs0FmgSoqQXJic6KJNZGVSmgdMtgcqYxyOiMDvUM0k0EoaHCAusW0sIfIk1bK0BjYftByEfArIjjQOhUqo7PA8B66gqWnzWGYpdU9NyXpN3ukjT16yG8tn77VBTZ-73D0n9GP0Tp1OOzCJuwEdcv3uT0FFlHqs8pzPgHxisP8 |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYqGICBN6I8MzAAkkvtxHY9oooSoO3SVnSLbMcBCSlFJB3Kr-ecpqUggdTVkU9-XPR9d_Z9RuhC-5xrYS2OA6sx4LHA2tRjHPAYwKWeUC1ccXKny8NB8Dhkwwris1oYGEQGlrLiEP9bXYDcQFs2hoDPJc1eakI77IKoZ5UJAE1HiZq9eW4FWI9Pi_dJKeENDE7KZsU7f1ly4GSyBXBaQJnWFnqej6-4XPJWG-e6Zj5_STcuP4FttFkST-926ik7qGLTXbSxIEe4h2RxCed1NM6sd68y77IZtvwrr2en-uCj1NOT4kM4iZ3ChNeaVT7uo0Hrrt8Mcfm0AlZUshwLFVtGEyopb2hWjy0QRyVIQmxCNLGmYaUSWgcMtkoqo1zUEUP0QzSTfiCof4BW0lFqD5EnrZSBMeAMENk1gG0RwYHkqUAZHfuGV9E1TD0qf40sKk69KYl-rEdUrkcV1WYbEL1P5Tb-73C0jPVztBb2O-2o_dB9Okbr1CG0S6iwE7SSf4ztKfCLXJ8VzvQFQIPMYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB6kgujBXaxrDh5USO1MMpnOsVRj3YpQCwUPYbYoCGkxzaH-et9M01IFBb1myGOWN3zfWwehExlEkWTG-Do00gc8Zr5Ude2HkQZwqadEMluc_NCJ2r3wtk_7ZValrYWBSeQgKXdBfHurhzotOwzgC_ieF2D0WcfZS41Ji19g-SxShl2IttnqzvwrwHwC4t4oJThq-KCodFrA85MkC1AqnwOoOaSJ19DzbI4uweStVoxkTX18a9_4v0Wso9WSgHrNicZsoAWTbaKVubaEW4i7ZJzXQZEb71rk3mmrHQdnXtdM-oQPMk-O3UB7rG2nCS-eVkBuo1589dRq--UTC74gnI58JrShJCWcRA1J69oAgRQMp9ikWGKjGoYLJmVI4ci4UMJaHxqsICwpD0JGgh1UyQaZ2UUeN5yHSoFSgIXXANaFWQRkT4RCSR2oqIrOYelJeUXyxEW_CU6-7EdS7kcV1aaHkAwnbTd-_2HvL9KP0dLjZZzc33Tu9tEysUBt_Sr0AFVG74U5BJoxkkdOnz4B6HXO2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greenhouse+Gas+%28CHF+3+%29+Separation+by+Gas+Hydrate+Formation&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Kim%2C+Eunae&rft.au=Ko%2C+Gyeol&rft.au=Seo%2C+Yongwon&rft.date=2017-06-05&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=5&rft.issue=6&rft.spage=5485&rft.epage=5492&rft_id=info:doi/10.1021%2Facssuschemeng.7b00821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssuschemeng_7b00821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |