Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries

Sulfide-based all-solid-state batteries (ASSBs) offer enhanced safety and potentially high energy density. Particularly, an “anode-less” electrode containing metallic seeds that form a solid-solution with lithium was recently introduced to improve the cycle life of sulfide-based ASSB cells. However,...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 7; no. 4; pp. 1374 - 1382
Main Authors Oh, Jihoon, Choi, Seung Ho, Chang, Barsa, Lee, Jieun, Lee, Taegeun, Lee, Nohjoon, Kim, Hyuntae, Kim, Yunsung, Im, Gahyeon, Lee, Sangheon, Choi, Jang Wook
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.04.2022
Online AccessGet full text

Cover

Loading…
Abstract Sulfide-based all-solid-state batteries (ASSBs) offer enhanced safety and potentially high energy density. Particularly, an “anode-less” electrode containing metallic seeds that form a solid-solution with lithium was recently introduced to improve the cycle life of sulfide-based ASSB cells. However, this anode-less electrode is gradually destabilized because the metal particles undergo severe volume expansion during repeated cycling. Furthermore, the irreversibility of the electrode in early cycles impairs the energy density of the cell significantly. Herein, we introduce an elastic polymer known as “Spandex” as a binder for the silver–carbon composite. The soft and hard segments of this binder act synergistically in that the former engages in strong hydrogen bonding with the active material and the latter promotes elastic adjustment of the binder network. This binder design significantly improves the charge–discharge reversibility and long-term cyclability of the anode-less ASSB cell and provides insights into elastic binder systems for high-capacity ASSB anodes that undergo a large volume expansion.
AbstractList Sulfide-based all-solid-state batteries (ASSBs) offer enhanced safety and potentially high energy density. Particularly, an “anode-less” electrode containing metallic seeds that form a solid-solution with lithium was recently introduced to improve the cycle life of sulfide-based ASSB cells. However, this anode-less electrode is gradually destabilized because the metal particles undergo severe volume expansion during repeated cycling. Furthermore, the irreversibility of the electrode in early cycles impairs the energy density of the cell significantly. Herein, we introduce an elastic polymer known as “Spandex” as a binder for the silver–carbon composite. The soft and hard segments of this binder act synergistically in that the former engages in strong hydrogen bonding with the active material and the latter promotes elastic adjustment of the binder network. This binder design significantly improves the charge–discharge reversibility and long-term cyclability of the anode-less ASSB cell and provides insights into elastic binder systems for high-capacity ASSB anodes that undergo a large volume expansion.
Author Chang, Barsa
Lee, Sangheon
Oh, Jihoon
Lee, Taegeun
Kim, Yunsung
Im, Gahyeon
Choi, Jang Wook
Lee, Jieun
Choi, Seung Ho
Kim, Hyuntae
Lee, Nohjoon
AuthorAffiliation School of Chemical and Biological Engineering and Institute of Chemical Processes
Advanced Battery Development Team
AuthorAffiliation_xml – name: School of Chemical and Biological Engineering and Institute of Chemical Processes
– name: Advanced Battery Development Team
Author_xml – sequence: 1
  givenname: Jihoon
  orcidid: 0000-0002-3603-6975
  surname: Oh
  fullname: Oh, Jihoon
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes
– sequence: 2
  givenname: Seung Ho
  surname: Choi
  fullname: Choi, Seung Ho
  organization: Advanced Battery Development Team
– sequence: 3
  givenname: Barsa
  surname: Chang
  fullname: Chang, Barsa
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes
– sequence: 4
  givenname: Jieun
  surname: Lee
  fullname: Lee, Jieun
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes
– sequence: 5
  givenname: Taegeun
  surname: Lee
  fullname: Lee, Taegeun
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes
– sequence: 6
  givenname: Nohjoon
  surname: Lee
  fullname: Lee, Nohjoon
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes
– sequence: 7
  givenname: Hyuntae
  surname: Kim
  fullname: Kim, Hyuntae
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes
– sequence: 8
  givenname: Yunsung
  surname: Kim
  fullname: Kim, Yunsung
  organization: Advanced Battery Development Team
– sequence: 9
  givenname: Gahyeon
  surname: Im
  fullname: Im, Gahyeon
  organization: Advanced Battery Development Team
– sequence: 10
  givenname: Sangheon
  surname: Lee
  fullname: Lee, Sangheon
  email: sheonlee@hyundai.com
  organization: Advanced Battery Development Team
– sequence: 11
  givenname: Jang Wook
  orcidid: 0000-0001-8783-0901
  surname: Choi
  fullname: Choi, Jang Wook
  email: jangwookchoi@snu.ac.kr
  organization: School of Chemical and Biological Engineering and Institute of Chemical Processes
BookMark eNqFkMFKAzEQhoNUsNY-gpAXSE3STXZzbEu1YkFh9bxkk0lNSXclSQ99e1fag55kDvPDzzcM3y0adX0HCN0zOmOUswdtEnQQd6cAOc-4obSQ7AqN-byipGJKjH7lGzRNaU8pZbISw4zRyzrolL3BS99ZiNj1EW_87pO8QRzyQXcGcH0MzlsgS53A4kUIpO6Dt6TOOgNe6pwhekh36NrpkGB62RP08bh-X23I9vXpebXYEs2VyISZ0hopAFRZcg6u1dQWAEy1lQMuqVWyYEBtVYK0FZWFUkK2wjilpG0LOZ8gcb5rYp9SBNd8RX_Q8dQw2vxIaf5IaS5SBo6duaFu9v0xdsOX_zDf4tBsew
CitedBy_id crossref_primary_10_1007_s40684_023_00519_2
crossref_primary_10_1039_D3TA05307E
crossref_primary_10_1016_j_cclet_2023_108482
crossref_primary_10_1016_j_jiec_2023_02_034
crossref_primary_10_3390_polym16020254
crossref_primary_10_1039_D3IM00089C
crossref_primary_10_1016_j_cej_2024_151288
crossref_primary_10_1007_s41918_024_00212_1
crossref_primary_10_1002_aenm_202400802
crossref_primary_10_1002_adma_202208846
crossref_primary_10_1002_adfm_202310259
crossref_primary_10_1002_ange_202301241
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1002_smll_202304269
crossref_primary_10_31613_ceramist_2023_26_2_07
crossref_primary_10_1016_j_jpowsour_2024_234914
crossref_primary_10_1039_D3TA00121K
crossref_primary_10_1088_2752_5724_acb3e8
crossref_primary_10_1016_j_carbon_2023_118225
crossref_primary_10_1002_aenm_202301508
crossref_primary_10_1021_acsaem_4c00547
crossref_primary_10_1002_idm2_12041
crossref_primary_10_1016_j_jpowsour_2024_234328
crossref_primary_10_1002_aenm_202401568
crossref_primary_10_1021_acsenergylett_3c01395
crossref_primary_10_1021_acsenergylett_3c00085
crossref_primary_10_1016_j_ensm_2022_11_021
crossref_primary_10_3390_ma16227232
crossref_primary_10_1002_aenm_202201044
crossref_primary_10_1021_acs_nanolett_3c00720
crossref_primary_10_1039_D3QM00839H
crossref_primary_10_1002_adma_202303165
crossref_primary_10_1002_anie_202301241
Cites_doi 10.1038/s41560-020-0668-8
10.1002/aenm.201701482
10.1038/nenergy.2016.30
10.1039/C7CS00858A
10.1021/acsenergylett.1c00173
10.1038/nmat4821
10.1039/C8EE01053F
10.1016/j.jpowsour.2010.08.114
10.1038/s41560-017-0047-2
10.1002/adfm.202005699
10.1126/science.abg7217
10.1002/adma.201905048
10.1002/adma.202002850
10.1021/ja3091438
10.1038/natrevmats.2016.13
10.1103/PhysRevMaterials.3.063608
10.1038/451652a
10.1007/BF02868993
10.1149/2.053207jes
10.1038/s41560-019-0338-x
10.1021/acsenergylett.9b02599
10.1002/advs.202004290
10.1016/j.jpowsour.2017.10.093
10.1021/jacs.6b05341
10.1021/jp050337t
10.1038/nmat3066
10.1126/science.aal4373
10.1016/j.ssi.2012.06.008
10.1021/cm901452z
10.1002/anie.201909805
10.1021/acsami.0c10005
10.1021/acsami.9b09551
10.1002/aenm.201802365
10.1002/adfm.202007598
10.1002/adma.202007460
10.1021/jacs.0c01811
10.1038/s41560-020-0575-z
10.1016/j.jpowsour.2016.12.003
10.1038/s41586-021-03486-3
10.1039/C9EE02311A
10.1080/014423599230026
10.1038/s41560-019-0428-9
10.1002/adma.202002741
10.1021/jacs.7b06327
10.1002/aenm.201602147
10.1038/nnano.2012.35
10.1021/acsenergylett.1c02224
10.1002/celc.202100108
10.1038/s41467-020-19004-4
10.1021/acs.jpca.5b01561
10.1002/adfm.201303147
10.1063/1.4893666
10.1016/j.electacta.2013.11.002
10.1038/35087538
10.1002/adma.202001702
10.1038/35104644
10.1039/C6GC01096B
10.1002/anie.200703900
10.1002/aenm.202001069
10.1038/nenergy.2016.141
10.1038/natrevmats.2016.91
10.1021/acsenergylett.8b01726
10.1002/adfm.202104433
10.1002/anie.200701144
10.1002/inf2.12185
10.1016/0378-7753(92)80125-U
10.1038/28818
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsenergylett.2c00461
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2380-8195
EndPage 1382
ExternalDocumentID 10_1021_acsenergylett_2c00461
a972608602
GroupedDBID ABFRP
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABQRX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a295t-1c7dc65ee97722efba0d4ee19b8fe260d9641e0d87e6d80649956b5cf996db463
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Fri Aug 23 00:52:28 EDT 2024
Mon Apr 11 03:13:26 EDT 2022
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a295t-1c7dc65ee97722efba0d4ee19b8fe260d9641e0d87e6d80649956b5cf996db463
ORCID 0000-0001-8783-0901
0000-0002-3603-6975
PageCount 9
ParticipantIDs crossref_primary_10_1021_acsenergylett_2c00461
acs_journals_10_1021_acsenergylett_2c00461
PublicationCentury 2000
PublicationDate 20220408
2022-04-08
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 04
  year: 2022
  text: 20220408
  day: 08
PublicationDecade 2020
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1038/s41560-020-0668-8
– ident: ref46/cit46
  doi: 10.1002/aenm.201701482
– ident: ref8/cit8
  doi: 10.1038/nenergy.2016.30
– ident: ref47/cit47
  doi: 10.1039/C7CS00858A
– ident: ref62/cit62
  doi: 10.1021/acsenergylett.1c00173
– ident: ref11/cit11
  doi: 10.1038/nmat4821
– ident: ref5/cit5
  doi: 10.1039/C8EE01053F
– ident: ref36/cit36
  doi: 10.1016/j.jpowsour.2010.08.114
– ident: ref24/cit24
  doi: 10.1038/s41560-017-0047-2
– ident: ref38/cit38
  doi: 10.1002/adfm.202005699
– ident: ref67/cit67
  doi: 10.1126/science.abg7217
– ident: ref40/cit40
  doi: 10.1002/adma.201905048
– ident: ref31/cit31
  doi: 10.1002/adma.202002850
– ident: ref25/cit25
  doi: 10.1021/ja3091438
– ident: ref37/cit37
  doi: 10.1038/natrevmats.2016.13
– ident: ref54/cit54
  doi: 10.1103/PhysRevMaterials.3.063608
– ident: ref1/cit1
  doi: 10.1038/451652a
– ident: ref48/cit48
  doi: 10.1007/BF02868993
– ident: ref60/cit60
  doi: 10.1149/2.053207jes
– ident: ref26/cit26
  doi: 10.1038/s41560-019-0338-x
– ident: ref15/cit15
  doi: 10.1021/acsenergylett.9b02599
– ident: ref55/cit55
  doi: 10.1002/advs.202004290
– ident: ref10/cit10
  doi: 10.1016/j.jpowsour.2017.10.093
– ident: ref19/cit19
  doi: 10.1021/jacs.6b05341
– ident: ref52/cit52
  doi: 10.1021/jp050337t
– ident: ref7/cit7
  doi: 10.1038/nmat3066
– ident: ref43/cit43
  doi: 10.1126/science.aal4373
– ident: ref23/cit23
  doi: 10.1016/j.ssi.2012.06.008
– ident: ref2/cit2
  doi: 10.1021/cm901452z
– ident: ref13/cit13
  doi: 10.1002/anie.201909805
– ident: ref39/cit39
  doi: 10.1021/acsami.0c10005
– ident: ref30/cit30
  doi: 10.1021/acsami.9b09551
– ident: ref63/cit63
  doi: 10.1002/aenm.201802365
– ident: ref18/cit18
  doi: 10.1002/adfm.202007598
– ident: ref42/cit42
  doi: 10.1002/adma.202007460
– ident: ref61/cit61
  doi: 10.1021/jacs.0c01811
– ident: ref29/cit29
  doi: 10.1038/s41560-020-0575-z
– ident: ref44/cit44
  doi: 10.1016/j.jpowsour.2016.12.003
– ident: ref27/cit27
  doi: 10.1038/s41586-021-03486-3
– ident: ref14/cit14
  doi: 10.1039/C9EE02311A
– ident: ref51/cit51
  doi: 10.1080/014423599230026
– ident: ref32/cit32
  doi: 10.1038/s41560-019-0428-9
– ident: ref28/cit28
  doi: 10.1002/adma.202002741
– ident: ref9/cit9
  doi: 10.1021/jacs.7b06327
– ident: ref50/cit50
  doi: 10.1002/aenm.201602147
– ident: ref65/cit65
  doi: 10.1038/nnano.2012.35
– ident: ref45/cit45
  doi: 10.1021/acsenergylett.1c02224
– ident: ref66/cit66
  doi: 10.1002/celc.202100108
– ident: ref34/cit34
  doi: 10.1038/s41467-020-19004-4
– ident: ref53/cit53
  doi: 10.1021/acs.jpca.5b01561
– ident: ref20/cit20
  doi: 10.1002/adfm.201303147
– ident: ref21/cit21
  doi: 10.1063/1.4893666
– ident: ref64/cit64
  doi: 10.1016/j.electacta.2013.11.002
– ident: ref17/cit17
  doi: 10.1038/35087538
– ident: ref58/cit58
  doi: 10.1002/adma.202001702
– ident: ref4/cit4
  doi: 10.1038/35104644
– ident: ref56/cit56
  doi: 10.1039/C6GC01096B
– ident: ref6/cit6
  doi: 10.1002/anie.200703900
– ident: ref49/cit49
  doi: 10.1002/aenm.202001069
– ident: ref3/cit3
  doi: 10.1038/nenergy.2016.141
– ident: ref22/cit22
  doi: 10.1038/natrevmats.2016.91
– ident: ref57/cit57
  doi: 10.1021/acsenergylett.8b01726
– ident: ref41/cit41
  doi: 10.1002/adfm.202104433
– ident: ref12/cit12
  doi: 10.1002/anie.200701144
– ident: ref59/cit59
  doi: 10.1002/inf2.12185
– ident: ref35/cit35
  doi: 10.1016/0378-7753(92)80125-U
– ident: ref16/cit16
  doi: 10.1038/28818
SSID ssj0001685858
Score 2.3938544
Snippet Sulfide-based all-solid-state batteries (ASSBs) offer enhanced safety and potentially high energy density. Particularly, an “anode-less” electrode containing...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 1374
Title Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries
URI http://dx.doi.org/10.1021/acsenergylett.2c00461
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB7EXtpD36X2xR56KmxM1jw2RxVFWloEK3gL-5iANKhovPTXdzeJaCmW9hyybGZ3me_LzPctwCPn0g_dlqTopRH1mRtQHihuDx4XQnMRp1Y7_PoWDsb-8ySY1KC5p4LPvKZQKyxkcOY7cocpy-gM3TlgtovQYqHuaPtTpXBTL26ha3GX2hrRRrWzbySbldRqJyvtpJf-CQw3Ip2yq-TDWefSUZ8_PRv_OvNTOK6gJmmXe-MMajg7h6MdA8ILeOkZ8Gwek451TVwSg2CJ7fygw62egIzWWTrVSDsm4WnSzjI6mmdTTQucSkqDTsO3L2Hc7713B7S6XoEKFgc59VSkVRggGgjIGKZSuNpH9GLJUzQ0R8eh76GreYSh5ga6WBGsDFRqKJI2K9y6gvpsPsNrIFa6VZhRWV_RIIykYYEply5y5QomVAOeTDCS6niskqLyzbzkW4SSKkINcDZrkSxKy43fX7j5z-i3cMisgsE23_A7qOfLNd4bXJHLh2IvfQEl4cp0
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0QXKgL30Z8zsKVyWA7dNrpEggG5RETILJrOo8mxAYMLRu_3jtDETTRhG2bTuaZe07vPWcQuudceL5TE0S7SUA86jDCmeTm4PE4VjwOE6Md7vX99sh7GbNxCfkrLQx0IoOWMpvEX7sLuI_wTFs1HAwnr1JpiB2wnh0WACc3kKg5WP9bsabq9jK6GneISRWtxDt_tWSCk8w2gtNGlHk6RG_f_bPFJe_VRS6q8vOXdeP2AzhCBwXwxPXlTjlGJT09QfsbdoSnqNMCKA2vccN4KM4x4Fls6kDI61pdgAeLNJkoTRoQ_hSupykZzNKJIha14qVdJ7DvMzR6ag2bbVJctkBiGrKcuDJQ0mdaAyCkVCcidpSntRsKnmggPSr0PVc7igfaVxyAjJHECiYTIEwK1rt2jsrT2VRfIGyEXNaayriMMj8QwAkTLhzNpRPTWFbQA0xGVByWLLJ5cOpGP2YoKmaogqqrJYk-lgYc_39wuU3rd2i3Pex1o-5zv3OF9qjRNpiyHH6Nyvl8oW8AceTi1m6vLy3C0t8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgujBt1ife_AkbE22eWyObW2pVkuhFgoeQvYFxdCWJr34653dprYKCnpNyLBP5pvMfN8gdMMY9wKnyolydUg86viE-YKZi8eSRLIk0oY7_NwN2gPvcegPi6pKw4WBQWRgKbNJfHOrp1IXCgPuHTxXlhEHU8orVJjgDiKfTd808TawqNFf_V-xwuq2IV2VOcSki5YEnp8sGQclsjUHteZpWnvo9XOMtsDkrTLPeUW8f5Nv_N8k9tFuAUBxbXFiDtCGGh-inTVZwiPUaQKkhte4brQUZxhwLTb1IKS3Yhng_jzVI6lIHdygxLU0Jf1JOpLEole8kO2EKPwYDVrNl0abFE0XSEIjPyeuCKUIfKUAGFKqNE8c6SnlRpxpBcGPjALPVY5koQokA0BjqLHcFxoCJwn7Xj1BpfFkrE4RNoQuK1Fl1Eb9IOQQG2rGHcWEk9BElNEtLEZcXJostvlw6sZfViguVqiMKsttiacLIY7fPzj7i_VrtNW7b8VPD93OOdqmhuJgqnPYBSrls7m6BOCR8yt7wj4A_vPVWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic+Binder+for+High-Performance+Sulfide-Based+All-Solid-State+Batteries&rft.jtitle=ACS+energy+letters&rft.au=Oh%2C+Jihoon&rft.au=Choi%2C+Seung+Ho&rft.au=Chang%2C+Barsa&rft.au=Lee%2C+Jieun&rft.date=2022-04-08&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=7&rft.issue=4&rft.spage=1374&rft.epage=1382&rft_id=info:doi/10.1021%2Facsenergylett.2c00461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsenergylett_2c00461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon