Characterization of the Ligand Capping of Hydrophobic CdSe–ZnS Quantum Dots Using NMR Spectroscopy

We have combined a few advanced solution phase NMR spectroscopy techniques, namely, 1H, 31P, heteronuclear single quantum coherence (HSQC), and diffusion ordered spectroscopy (DOSY), to probe the composition of the organic capping layer on colloidal CdSe–ZnS core–shell quantum dots grown via the “ho...

Full description

Saved in:
Bibliographic Details
Published inChemistry of materials Vol. 30; no. 1; pp. 225 - 238
Main Authors Zeng, Birong, Palui, Goutam, Zhang, Chengqi, Zhan, Naiqian, Wang, Wentao, Ji, Xin, Chen, Banghao, Mattoussi, Hedi
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.01.2018
Online AccessGet full text

Cover

Loading…
Abstract We have combined a few advanced solution phase NMR spectroscopy techniques, namely, 1H, 31P, heteronuclear single quantum coherence (HSQC), and diffusion ordered spectroscopy (DOSY), to probe the composition of the organic capping layer on colloidal CdSe–ZnS core–shell quantum dots grown via the “hot injection” route. Combining solution phase 31P and 1H NMR with DOSY, we are able to distinguish between free ligands and those coordinated on the QD surfaces. Furthermore, when those NMR measurements are complemented with matrix-assisted laser desorption ionization (MALDI) and FTIR data, we find that the organic shell of the as-prepared QDs consists of a mixture of tri-n-octylphosphine oxide (TOPO), tri-n-octylphosphine (TOP), alkyl amine, and alkyl phosphonic acid (L- and X-type ligands); the latter molecules are usually added during growth at a rather small concentration to improve the quality of the prepared nanocrystals. However, NMR data collected from QD dispersions subjected to two or three rounds of purification reveal that the organic shell composition (of purified QDs) is essentially dominated by monomeric or oligomeric n-hexylphosphonic acid, along with small fractions of surface-coordinated or hydrogen-bonded 1-hexadecyl amine and TOP/TOPO. This is true even though large excesses of TOP and TOPO surfactants are used during QD growth. This proves that n-hexylphosphonic acid (HPA) exhibits substantially higher coordinating affinity to the QD surfaces, compared to other phosphorus-containing surfactants such as TOP and TOPO. Finally, we test the utilitys of DOSY NMR to provide accurate data on the translational diffusion coefficient (and hydrodynamic radius) of QDs, as well as freely diffusing ligands in a sample. This proves that DOSY is a highly effective characterization technique for such small colloids and organic surfactants where DLS reaches its limit.
AbstractList We have combined a few advanced solution phase NMR spectroscopy techniques, namely, 1H, 31P, heteronuclear single quantum coherence (HSQC), and diffusion ordered spectroscopy (DOSY), to probe the composition of the organic capping layer on colloidal CdSe–ZnS core–shell quantum dots grown via the “hot injection” route. Combining solution phase 31P and 1H NMR with DOSY, we are able to distinguish between free ligands and those coordinated on the QD surfaces. Furthermore, when those NMR measurements are complemented with matrix-assisted laser desorption ionization (MALDI) and FTIR data, we find that the organic shell of the as-prepared QDs consists of a mixture of tri-n-octylphosphine oxide (TOPO), tri-n-octylphosphine (TOP), alkyl amine, and alkyl phosphonic acid (L- and X-type ligands); the latter molecules are usually added during growth at a rather small concentration to improve the quality of the prepared nanocrystals. However, NMR data collected from QD dispersions subjected to two or three rounds of purification reveal that the organic shell composition (of purified QDs) is essentially dominated by monomeric or oligomeric n-hexylphosphonic acid, along with small fractions of surface-coordinated or hydrogen-bonded 1-hexadecyl amine and TOP/TOPO. This is true even though large excesses of TOP and TOPO surfactants are used during QD growth. This proves that n-hexylphosphonic acid (HPA) exhibits substantially higher coordinating affinity to the QD surfaces, compared to other phosphorus-containing surfactants such as TOP and TOPO. Finally, we test the utilitys of DOSY NMR to provide accurate data on the translational diffusion coefficient (and hydrodynamic radius) of QDs, as well as freely diffusing ligands in a sample. This proves that DOSY is a highly effective characterization technique for such small colloids and organic surfactants where DLS reaches its limit.
Author Palui, Goutam
Zhang, Chengqi
Wang, Wentao
Zeng, Birong
Chen, Banghao
Mattoussi, Hedi
Zhan, Naiqian
Ji, Xin
AuthorAffiliation Department of Chemistry and Biochemistry
Xiamen University
Florida State University
Department of Materials Science and Engineering, Fujian Provincial Key Laboratory of Fire Retardant Materials
AuthorAffiliation_xml – name: Department of Materials Science and Engineering, Fujian Provincial Key Laboratory of Fire Retardant Materials
– name: Florida State University
– name: Xiamen University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Birong
  orcidid: 0000-0003-1582-4929
  surname: Zeng
  fullname: Zeng, Birong
  organization: Xiamen University
– sequence: 2
  givenname: Goutam
  surname: Palui
  fullname: Palui, Goutam
  organization: Florida State University
– sequence: 3
  givenname: Chengqi
  surname: Zhang
  fullname: Zhang, Chengqi
  organization: Florida State University
– sequence: 4
  givenname: Naiqian
  surname: Zhan
  fullname: Zhan, Naiqian
  organization: Florida State University
– sequence: 5
  givenname: Wentao
  orcidid: 0000-0003-2273-4171
  surname: Wang
  fullname: Wang, Wentao
  organization: Florida State University
– sequence: 6
  givenname: Xin
  surname: Ji
  fullname: Ji, Xin
  organization: Florida State University
– sequence: 7
  givenname: Banghao
  surname: Chen
  fullname: Chen, Banghao
  organization: Florida State University
– sequence: 8
  givenname: Hedi
  orcidid: 0000-0002-6511-9323
  surname: Mattoussi
  fullname: Mattoussi, Hedi
  email: mattoussi@chem.fsu.edu
  organization: Florida State University
BookMark eNqFkEtOwzAQhi1UJNrCEZB8gRQ7ieNkicKjSAUEpRs20fiRJhWxIztdhBV34IachESt2LIaaeb_ZkbfDE2MNRqhS0oWlIT0CqRfyEo3DXTaLbggcUjiEzSlLCQBIyScoClJMx7EnCVnaOb9jhA6oOkUqbwCB3IA60_oamuwLXFXabyqt2AUzqFta7Mdu8teOdtWVtQS52qtf76-380av-zBdPsG39jO440fw0-Pr3jdatk566Vt-3N0WsKH1xfHOkebu9u3fBmsnu8f8utVAGHGuoCmSaSpJBnNNEuEDssEpGAZSymUCrTSQJkshYiikmch4yyNhMpixglhkeDRHLHDXjkc9k6XRevqBlxfUFKMqopBVfGnqjiqGjh64Mbxzu6dGb78h_kF5tp1Uw
CitedBy_id crossref_primary_10_1039_C8NR00060C
crossref_primary_10_1021_jacs_0c10592
crossref_primary_10_1038_s41598_019_55097_8
crossref_primary_10_1039_C9NR05195C
crossref_primary_10_1021_acs_jpcb_0c02177
crossref_primary_10_1134_S0030400X18110255
crossref_primary_10_1021_acs_jpcc_8b09671
crossref_primary_10_1039_D2NR06681E
crossref_primary_10_1039_C8NJ05914D
crossref_primary_10_1557_s43580_023_00555_9
crossref_primary_10_1002_adfm_202400942
crossref_primary_10_1021_acsomega_8b02918
crossref_primary_10_1038_s41598_020_69185_7
crossref_primary_10_1021_acs_chemmater_9b03063
crossref_primary_10_1155_2019_2796746
crossref_primary_10_3390_nano13233072
crossref_primary_10_1021_acs_jpcc_4c02510
crossref_primary_10_1080_00032719_2018_1490311
crossref_primary_10_1016_j_jiec_2022_12_016
crossref_primary_10_6002_ect_2018_0118
crossref_primary_10_1016_j_molstruc_2021_132293
crossref_primary_10_1021_acs_langmuir_8b03856
crossref_primary_10_1021_jacsau_1c00339
crossref_primary_10_1039_D0CS00714E
crossref_primary_10_1002_adom_201901897
crossref_primary_10_1021_acs_chemmater_8b01033
crossref_primary_10_1039_D0NR04757K
crossref_primary_10_1021_acs_chemmater_8b03527
crossref_primary_10_1016_j_synthmet_2018_08_014
crossref_primary_10_1021_acs_bioconjchem_0c00169
crossref_primary_10_1021_acs_cgd_0c00582
crossref_primary_10_1002_adma_202003805
crossref_primary_10_1007_s00216_024_05225_9
crossref_primary_10_1016_j_jlumin_2022_119420
crossref_primary_10_3390_nano12142501
crossref_primary_10_1021_acs_jpcc_3c05901
crossref_primary_10_1021_acs_nanolett_2c02994
crossref_primary_10_1016_j_apsusc_2020_148263
crossref_primary_10_1021_jacs_0c04034
crossref_primary_10_1021_acs_chemmater_0c02482
crossref_primary_10_1021_acs_chemmater_0c00547
crossref_primary_10_1021_acs_jpcc_9b03682
crossref_primary_10_1002_smll_202001160
crossref_primary_10_1021_jacs_1c09948
crossref_primary_10_1039_D2DT01438F
crossref_primary_10_1021_jacsau_1c00349
Cites_doi 10.1039/c0cs00016g
10.1103/PhysRevB.58.7850
10.1021/j100066a034
10.1021/nl402192d
10.1021/jz1016729
10.1021/jp025698c
10.1002/smll.200500108
10.1021/ja2029415
10.1021/jp971091y
10.1039/b411629a
10.1146/annurev-physchem-040513-103649
10.1021/nn406109v
10.1021/nn500897c
10.1021/nl801692g
10.1021/ja9005749
10.1021/ja803994m
10.1038/nature01217
10.1038/nmat3816
10.1021/ja00072a025
10.1126/science.1117908
10.1021/nl0496724
10.1021/jp900300t
10.1021/ja066205a
10.1126/science.1170524
10.1016/j.addr.2011.09.011
10.1021/la051898e
10.1021/jp9820121
10.1021/ja800040c
10.1021/jp404031s
10.1021/jp909492w
10.1038/nmat1390
10.1021/jacs.7b05267
10.1021/nl0155532
10.1021/cm4012734
10.1021/ed400504f
10.1021/la302896x
10.1021/jp045352x
10.1021/cm302108j
10.1021/cm303361s
10.1021/am405196u
10.1038/ncomms3661
10.1038/nprot.2006.184
10.1021/ja00034a071
10.1021/jp9530562
10.1021/ja104673y
10.1039/C005320C
10.1021/jp068733e
10.1021/ja003633m
10.1063/1.1695690
10.1126/science.1083780
10.1039/C5NR07592K
10.1021/nl0485861
10.1021/jacs.6b13234
10.1021/cm303219a
10.1021/jp062065f
10.1021/jp109381r
10.1021/jp4008575
10.1126/science.281.5385.2013
10.1021/ja017002j
10.1002/mrc.4372
10.1021/ja900191n
10.1021/cr900137k
10.1038/nphoton.2012.328
10.1021/jacs.6b11328
10.1021/ja307124m
10.1038/370354a0
10.1038/nmeth.1248
10.1021/ac050035n
10.1021/ja4086758
10.1021/jp065041h
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.chemmater.7b04204
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5002
EndPage 238
ExternalDocumentID 10_1021_acs_chemmater_7b04204
g81737244
GroupedDBID 29B
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TN5
TWZ
UI2
UPT
VF5
VG9
W1F
X
YZZ
-~X
.K2
4.4
5VS
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a295t-1863e1c0919e56be2f6acb59581afdaedea15cfbb33f79257583bd94570053b73
IEDL.DBID ACS
ISSN 0897-4756
IngestDate Fri Aug 23 03:34:32 EDT 2024
Thu Aug 27 13:44:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a295t-1863e1c0919e56be2f6acb59581afdaedea15cfbb33f79257583bd94570053b73
ORCID 0000-0003-2273-4171
0000-0002-6511-9323
0000-0003-1582-4929
PageCount 14
ParticipantIDs crossref_primary_10_1021_acs_chemmater_7b04204
acs_journals_10_1021_acs_chemmater_7b04204
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20180109
2018-01-09
PublicationDateYYYYMMDD 2018-01-09
PublicationDate_xml – month: 01
  year: 2018
  text: 20180109
  day: 09
PublicationDecade 2010
PublicationTitle Chemistry of materials
PublicationTitleAlternate Chem. Mater
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
Wehrli F. W. (ref62/cit62) 1976
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1039/c0cs00016g
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.58.7850
– ident: ref32/cit32
  doi: 10.1021/j100066a034
– ident: ref41/cit41
  doi: 10.1021/nl402192d
– ident: ref51/cit51
  doi: 10.1021/jz1016729
– ident: ref59/cit59
  doi: 10.1021/jp025698c
– ident: ref66/cit66
– ident: ref68/cit68
  doi: 10.1002/smll.200500108
– ident: ref30/cit30
  doi: 10.1021/ja2029415
– ident: ref33/cit33
  doi: 10.1021/jp971091y
– ident: ref36/cit36
  doi: 10.1039/b411629a
– ident: ref60/cit60
  doi: 10.1146/annurev-physchem-040513-103649
– ident: ref29/cit29
  doi: 10.1021/nn406109v
– ident: ref25/cit25
  doi: 10.1021/nn500897c
– volume-title: Interpretation of Carbon-13 NMR Spectra
  year: 1976
  ident: ref62/cit62
  contributor:
    fullname: Wehrli F. W.
– ident: ref47/cit47
  doi: 10.1021/nl801692g
– ident: ref15/cit15
  doi: 10.1021/ja9005749
– ident: ref37/cit37
  doi: 10.1021/ja803994m
– ident: ref3/cit3
  doi: 10.1038/nature01217
– ident: ref7/cit7
  doi: 10.1038/nmat3816
– ident: ref1/cit1
  doi: 10.1021/ja00072a025
– ident: ref10/cit10
  doi: 10.1126/science.1117908
– ident: ref21/cit21
  doi: 10.1021/nl0496724
– ident: ref23/cit23
  doi: 10.1021/jp900300t
– ident: ref22/cit22
  doi: 10.1021/ja066205a
– ident: ref24/cit24
  doi: 10.1126/science.1170524
– ident: ref11/cit11
  doi: 10.1016/j.addr.2011.09.011
– ident: ref14/cit14
  doi: 10.1021/la051898e
– ident: ref35/cit35
  doi: 10.1021/jp9820121
– ident: ref31/cit31
  doi: 10.1021/ja800040c
– ident: ref27/cit27
  doi: 10.1021/jp404031s
– ident: ref43/cit43
  doi: 10.1021/jp909492w
– ident: ref9/cit9
  doi: 10.1038/nmat1390
– ident: ref46/cit46
  doi: 10.1021/jacs.7b05267
– ident: ref19/cit19
  doi: 10.1021/nl0155532
– ident: ref42/cit42
  doi: 10.1021/cm4012734
– ident: ref72/cit72
  doi: 10.1021/ed400504f
– ident: ref61/cit61
  doi: 10.1021/la302896x
– ident: ref17/cit17
  doi: 10.1021/jp045352x
– ident: ref40/cit40
  doi: 10.1021/cm302108j
– ident: ref52/cit52
  doi: 10.1021/cm303361s
– ident: ref26/cit26
  doi: 10.1021/am405196u
– ident: ref13/cit13
  doi: 10.1038/ncomms3661
– ident: ref56/cit56
  doi: 10.1038/nprot.2006.184
– ident: ref69/cit69
  doi: 10.1021/ja00034a071
– ident: ref57/cit57
  doi: 10.1021/jp9530562
– ident: ref39/cit39
  doi: 10.1021/ja104673y
– ident: ref70/cit70
  doi: 10.1039/C005320C
– ident: ref16/cit16
  doi: 10.1021/jp068733e
– ident: ref20/cit20
  doi: 10.1021/ja003633m
– ident: ref71/cit71
  doi: 10.1063/1.1695690
– ident: ref4/cit4
  doi: 10.1126/science.1083780
– ident: ref64/cit64
  doi: 10.1039/C5NR07592K
– ident: ref28/cit28
  doi: 10.1021/nl0485861
– ident: ref63/cit63
  doi: 10.1021/jacs.6b13234
– ident: ref45/cit45
  doi: 10.1021/cm303219a
– ident: ref18/cit18
  doi: 10.1021/jp062065f
– ident: ref44/cit44
  doi: 10.1021/jp109381r
– ident: ref49/cit49
  doi: 10.1021/jp4008575
– ident: ref2/cit2
  doi: 10.1126/science.281.5385.2013
– ident: ref54/cit54
  doi: 10.1021/ja017002j
– ident: ref55/cit55
  doi: 10.1002/mrc.4372
– ident: ref48/cit48
  doi: 10.1021/ja900191n
– ident: ref6/cit6
  doi: 10.1021/cr900137k
– ident: ref12/cit12
  doi: 10.1038/nphoton.2012.328
– ident: ref50/cit50
  doi: 10.1021/jacs.6b11328
– ident: ref38/cit38
  doi: 10.1021/ja307124m
– ident: ref8/cit8
  doi: 10.1038/370354a0
– ident: ref5/cit5
  doi: 10.1038/nmeth.1248
– ident: ref67/cit67
  doi: 10.1021/ac050035n
– ident: ref53/cit53
  doi: 10.1021/ja4086758
– ident: ref65/cit65
  doi: 10.1021/jp065041h
SSID ssj0011028
Score 2.495266
Snippet We have combined a few advanced solution phase NMR spectroscopy techniques, namely, 1H, 31P, heteronuclear single quantum coherence (HSQC), and diffusion...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 225
Title Characterization of the Ligand Capping of Hydrophobic CdSe–ZnS Quantum Dots Using NMR Spectroscopy
URI http://dx.doi.org/10.1021/acs.chemmater.7b04204
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMeXUg_qwUdVrC_24ElIS5LdbPYo0VJEi1oLxUvYZ1ukSWnTQz35HfyGfhJ3k7YUpKLXhSxhdob5JbPzHwAutYFiTVzhSI8iB4WKOjSUJtyV1Ewgrnk-vu2hFTQ76K6LuyVQX1PB99w6E8b4fTU0AKfGNcKNl1n9zw3P3iK0LBS1l2UDmy1zbKTEQQQHi5adddvYlCQmKylpJbc0dsHjokOnuFLyVptmvCbefwo2_vW198DOnDPhdeEY-6CkkgrYjBbj3Spge0WJ8ADIaCncXPRlwlRDw4bwftBjiYQRszoOPbvanMlxOuqnfCBgJNvq6-PzNWnDp6k5o-kQ3qTZBOYXEWDr4Rna-faZVcxMR7ND0GncvkRNZz6AwWEexZnjhoGvXGGQgioccOXpgAmOKQ5dpiVTUjEXC82572tCTfDj0OeSIquZj31O_CNQTtJEHQNoOIoIpKjWzEOKI6bMpxsjxBfCN65CquDKWCyeB9AkzmvjnhvbxaUZ47kZq6C2OLB4VIhy_P7AyX92PwVbhorC_D8LPQPlbDxV54Y8Mn6Re9s3XVfX1Q
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hOEAPQIGKZ7uHnpAcZHvX6z0iF5S2SaQ2IBAXa58BIewodg5w4j_wD_klnXUejZBaietIHo1nZz3fena-AfjqEBQ7HurARIIGNLUiEKnB7W6Nk5oqp5rxbd1e0r6kP67Z9RIks14YNKJCTVVTxP_LLhCeeBm-xgPiODtqcYXB5mlAVxjHM7mHRFl_Xj3wSbNBj4IHlLNk1rnzLzU-M-lqITMtpJjzDbiaG9fcLLlvjWvV0k9veBvfb_0mrE9RJzmdhMlHWLLFFqxms2FvW_BhgZdwG0w2p3GedGmS0hFEiqRzN5CFIZn0rA4DL20_mlE5vC3VnSaZ6dvX55ebok9-jXHFxg_kW1lXpLmWQHrd38RPu689f2Y5fNyBy_Ozi6wdTMcxBDISrA7CNIltqBFgCMsSZSOXSK2YYGkonZHWWBky7ZSKY8cFfgpYGisjqGfQZ7Hi8SdYLsrC7gJBVMU1tcI5GVGrqLR4kJOcx1rHGDh8D47RY_l0O1V5UymPwtwL527Mp27cg9Zs3fLhhKLj_w_sv0f7F1htX3Q7eed77-cBrCFeSps_MOIQluvR2B4hJqnV5yYA_wDHdeBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuxAEG1EQa8Ln1d82wtXQkaSdKfTS4kO42tQR0G8i9BPFTEZJpmFrvwH_9AvsTqTGQbBC7otSNFdXZU6SXWdQmjXAii2zFeeDjjxSGy4x2MN4W60FYpIK6vxbeftqHVDTm7pbX2r0vXCwCIK0FRURXwX1V1ta4YBf9_JYSvPgOVMr8EkOJyjAp2iboi3g0VJZ1RBcImzQpCceYTRaNi9850al51UMZadxtJMcx79Gy2wul3y1OiXsqFev3A3_m4HC2iuRp_4YOAui2jCZEtoJhkOfVtCs2P8hMtIJyM650G3Js4tBsSIzx7vRaZxIhy7w72Ttl50L-8-5PJR4UR3zMfb-13WwZd9OLn-Mz7MywJX1xNw-_wKu6n3pePRzLsvf9FN8-g6aXn1WAZPBJyWnh9HofEVAA1uaCRNYCOhJOU09oXVwmgjfKqslGFoGYdXAo1DqTlxTPo0lCxcQZNZnplVhAFdMUUMt1YExEgiDHzQCcZCpUJwILaG9sBiaR1WRVpVzAM_dcKRGdPajGuoMTy7tDug6vj_A-s_0b6Dpi8Om-nZcft0A_0B2BRXP2L4Jpose32zBdCklNuVD34C7yLiug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+the+Ligand+Capping+of+Hydrophobic+CdSe%E2%80%93ZnS+Quantum+Dots+Using+NMR+Spectroscopy&rft.jtitle=Chemistry+of+materials&rft.au=Zeng%2C+Birong&rft.au=Palui%2C+Goutam&rft.au=Zhang%2C+Chengqi&rft.au=Zhan%2C+Naiqian&rft.date=2018-01-09&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=30&rft.issue=1&rft.spage=225&rft.epage=238&rft_id=info:doi/10.1021%2Facs.chemmater.7b04204&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_chemmater_7b04204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon