Pyridine on Colloidal Silver. Polarization of Surface Studied by Surface-Enhanced Raman Scattering and Density Functional Theory Methods
Surface-enhanced Raman scattering (SERS) spectra of pyridine in various Ag colloids with different excitation wavelengths (514.5 and 1064 nm) were recorded and compared with the theoretical models computed with application of the static density functional theory method in order to simulate the chemi...
Saved in:
Published in | Journal of physical chemistry. C Vol. 114; no. 9; pp. 3909 - 3917 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.03.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface-enhanced Raman scattering (SERS) spectra of pyridine in various Ag colloids with different excitation wavelengths (514.5 and 1064 nm) were recorded and compared with the theoretical models computed with application of the static density functional theory method in order to simulate the chemical enhancement. Pyridine was chosen as a model compound to look at the surface enhancement since it is a well-known and extensively studied molecule by using SERS spectroscopy, and hence of great significance to the subject. Moreover, it was the first species for which a SERS spectrum obtained on electrochemically roughened silver surface was reported. The arrangement of pyridine on metal particles in the solution allows neglecting the solvent effects and placing the focus only on the interaction between adsorbent and metal surface to study the SERS mechanism. The intensity of bands in the fingerprint region of pyridine SERS spectra depends not only on the excitation wavelength but also on the applied colloid and the way in which it is activated or the potential of the electrode if such methodology is applied. With the help of theoretical calculations using various models of pyridine in the presence of silver nanoparticles, several parameters are predicted (e.g., the charge of the pyridine nitrogen, N−Agadatom distance). Good reproducibility of relative intensities of the Raman bands in the SERS spectra was achieved with the application of theoretical models and related to the polarization of the metal surface. The polarization of the surface, experimentally induced by increase of the negative potential of the electrode or adding chloride ion to the colloid, was reproduced computationally by varying of the size of cluster models (using systems with 5, 9, and 25 Ag atoms) and including chloride ions in the computed models (with negative charge set on Cl in the nine-silver-atom model). |
---|---|
AbstractList | Surface-enhanced Raman scattering (SERS) spectra of pyridine in various Ag colloids with different excitation wavelengths (514.5 and 1064 nm) were recorded and compared with the theoretical models computed with application of the static density functional theory method in order to simulate the chemical enhancement. Pyridine was chosen as a model compound to look at the surface enhancement since it is a well-known and extensively studied molecule by using SERS spectroscopy, and hence of great significance to the subject. Moreover, it was the first species for which a SERS spectrum obtained on electrochemically roughened silver surface was reported. The arrangement of pyridine on metal particles in the solution allows neglecting the solvent effects and placing the focus only on the interaction between adsorbent and metal surface to study the SERS mechanism. The intensity of bands in the fingerprint region of pyridine SERS spectra depends not only on the excitation wavelength but also on the applied colloid and the way in which it is activated or the potential of the electrode if such methodology is applied. With the help of theoretical calculations using various models of pyridine in the presence of silver nanoparticles, several parameters are predicted (e.g., the charge of the pyridine nitrogen, N−Agadatom distance). Good reproducibility of relative intensities of the Raman bands in the SERS spectra was achieved with the application of theoretical models and related to the polarization of the metal surface. The polarization of the surface, experimentally induced by increase of the negative potential of the electrode or adding chloride ion to the colloid, was reproduced computationally by varying of the size of cluster models (using systems with 5, 9, and 25 Ag atoms) and including chloride ions in the computed models (with negative charge set on Cl in the nine-silver-atom model). |
Author | Malek, Kamilla Baranska, Malgorzata Kaczor, Agnieszka |
Author_xml | – sequence: 1 givenname: Agnieszka surname: Kaczor fullname: Kaczor, Agnieszka email: kaczor@chemia.uj.edu.pl – sequence: 2 givenname: Kamilla surname: Malek fullname: Malek, Kamilla – sequence: 3 givenname: Malgorzata surname: Baranska fullname: Baranska, Malgorzata |
BookMark | eNptUE1PAjEUbAwmAnrwH_TiwcNC2_0-GgQ1wUhcPG_etl0pWVrSFpP1F_izXUQ5GE7vZd7MvMwMUE8bLRG6pmRECaPj9TanjKQUzlCf5iEL0iiOe8c9Si_QwLk1IXFIaNhHX4vWKqG0xEbjiWkaowQ0uFDNh7QjvDANWPUJXnVnU-NiZ2vgEhd-J5QUuGr_oGCqV6B5h73CBjQuOHgvrdLvGLTA91I75Vs822m-N-t-LFfS2BY_S78ywl2i8xoaJ69-5xC9zabLyWMwf3l4mtzNA2B55APB65jFMaF1KqqMMRFWSSVIxfJU5HmcUp7QOiNQZYSTJE0yBhXr2CKiCURxHg7R-ODLrXHOyrrkyv_k8xZUU1JS7ossj0V2itt_iq1VG7DtSe7NgQvclWuzs11Qd4L3DU6dg04 |
CitedBy_id | crossref_primary_10_1016_j_molcata_2014_09_032 crossref_primary_10_1039_D0AN00891E crossref_primary_10_1039_c0an00851f crossref_primary_10_1016_j_saa_2011_05_049 crossref_primary_10_1039_c0an00421a crossref_primary_10_1016_j_molcata_2016_03_011 crossref_primary_10_1016_j_saa_2014_03_104 crossref_primary_10_1038_ncomms10545 crossref_primary_10_1002_jcc_23464 crossref_primary_10_1016_j_saa_2014_07_051 crossref_primary_10_1016_j_jcis_2012_02_017 crossref_primary_10_1021_jp4104867 crossref_primary_10_1016_j_molstruc_2011_04_035 crossref_primary_10_1016_j_jcis_2014_12_071 crossref_primary_10_3390_nano9020256 crossref_primary_10_1021_la304855k crossref_primary_10_1021_jp203181c crossref_primary_10_1016_j_saa_2012_10_026 crossref_primary_10_1002_solr_202400066 crossref_primary_10_1016_j_cis_2014_07_001 crossref_primary_10_1016_j_jcis_2014_03_005 crossref_primary_10_1021_acs_analchem_1c00888 crossref_primary_10_1039_C6AY02293F crossref_primary_10_1016_j_vibspec_2012_09_004 crossref_primary_10_1007_s10854_020_03955_x crossref_primary_10_1016_j_saa_2015_04_092 crossref_primary_10_1021_jp505360b crossref_primary_10_1002_jrs_4152 crossref_primary_10_1039_c1ra00575h crossref_primary_10_1002_jrs_5444 crossref_primary_10_1002_slct_201601451 crossref_primary_10_3390_ma12203373 crossref_primary_10_1007_s11051_013_2076_5 crossref_primary_10_1016_j_snb_2021_130122 crossref_primary_10_1007_s11051_013_1460_5 crossref_primary_10_1021_ic400335y |
Cites_doi | 10.1021/ja00457a071 10.1021/jp073914h 10.1021/ja00152a024 10.1021/jp027460u 10.1016/0009-2614(74)85388-1 10.1007/s00214-006-0176-3 10.1021/jp067634y 10.1103/PhysRevA.38.3098 10.1021/j100214a025 10.1063/1.480484 10.1007/s00214-003-0516-5 10.1021/jp046661q 10.1016/0039-6028(86)90216-5 10.1016/j.jcis.2008.06.052 10.1039/b415535a 10.1021/j100195a022 10.1016/S1386-1425(03)00190-2 10.1021/j150668a038 10.1006/jcis.1995.1467 10.1016/S0022-0728(77)80224-6 10.1021/jp0257449 10.1021/jp025970i 10.1002/jrs.1353 10.1002/jcc.10189 10.1016/S0009-2614(99)00380-2 10.1103/PhysRevB.37.785 10.1039/f29797500790 10.1021/jp0760962 10.1016/j.cplett.2004.12.096 10.1021/jp027642o 10.1039/B509976E 10.1103/RevModPhys.57.783 10.1016/S0022-2860(84)87198-7 10.1021/ja00504a009 10.1021/ja0556326 10.1021/ja00204a001 10.1021/jp9716997 10.1021/jp953712y 10.1016/j.cplett.2007.01.020 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/jp912071a |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Pyridine on Colloidal Silver |
EISSN | 1932-7455 |
EndPage | 3917 |
ExternalDocumentID | 10_1021_jp912071a c483525422 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR VF5 VG9 VQA W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a294t-dcf525501f7db822d3b6bd0b297d99571c61f80ab80c067682ab201fd416a4593 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 03:35:34 EDT 2025 Thu Apr 24 23:04:42 EDT 2025 Thu Aug 27 13:43:20 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a294t-dcf525501f7db822d3b6bd0b297d99571c61f80ab80c067682ab201fd416a4593 |
OpenAccessLink | https://ruj.uj.edu.pl/xmlui/handle/item/71980 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1021_jp912071a crossref_primary_10_1021_jp912071a acs_journals_10_1021_jp912071a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100311 2010-03-11 |
PublicationDateYYYYMMDD | 2010-03-11 |
PublicationDate_xml | – month: 03 year: 2010 text: 20100311 day: 11 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Farkas O. (ref35/cit35) 1999; 111 Muniz-Miranda M. (ref10/cit10) 2004; 111 Campion A. (ref20/cit20) 1995; 117 Li W. H. (ref7/cit7) 1999; 305 Creighton J. A. (ref42/cit42) 1986; 173 Becke A. D. (ref31/cit31) 1988; 38 Lee C. T. (ref32/cit32) 1988; 37 Barone V. (ref36/cit36) 1998; 102 Jeanmaire D. L. (ref3/cit3) 1977; 84 Fleischmann M. (ref1/cit1) 1974; 26 Wu D. Y. (ref19/cit19) 2004; 60 Smith W. E. (ref23/cit23) 2002 Pagliai M. (ref12/cit12) 2006; 8 Otto A. (ref26/cit26) 1992; 4 Vivoni A. (ref17/cit17) 2003; 107 Canamares M. V. (ref44/cit44) 2008; 326 Michalska D. (ref39/cit39) 2005; 403 Hildebrand P. (ref21/cit21) 1984 Frisch M. J. (ref30/cit30) 2004 Jiang X. (ref22/cit22) 1987 Cioslowski J. (ref38/cit38) 1989; 111 Cardini G. (ref15/cit15) 2004; 108 Johansson P. (ref16/cit16) 2005; 7 Wu D. Y. (ref8/cit8) 2002; 106 Cardini G. (ref9/cit9) 2007; 117 Leopold N. (ref27/cit27) 2003; 107 Sosa C. (ref33/cit33) 1992; 96 Arenas J. F. (ref14/cit14) 1996; 100 Muniz-Miranda M. (ref11/cit11) 2008; 112 Tian Z. Q. (ref5/cit5) 2002; 106 Lee P. C. (ref29/cit29) 1982; 86 Wu D. Y. (ref6/cit6) 2008; 112 Moskovits M. (ref25/cit25) 1985; 57 Creighton J. A. (ref28/cit28) 1979; 75 Csaszar P. (ref34/cit34) 1984; 114 Albrecht M. G. (ref2/cit2) 1977; 99 ref41/cit41 Muniz-Miranda M. (ref13/cit13) 2007; 436 Wu D. Y. (ref18/cit18) 2005; 36 Pulay P. (ref40/cit40) 1979; 101 Cossi M. (ref37/cit37) 2003; 24 Zhao L. L. (ref4/cit4) 2006; 128 Jensen L. (ref24/cit24) 2007; 111 Sánchez-Cortés S. (ref43/cit43) 1995; 175 |
References_xml | – volume: 99 start-page: 5215 year: 1977 ident: ref2/cit2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume: 112 start-page: 762 year: 2008 ident: ref11/cit11 publication-title: J. Phys. Chem. C doi: 10.1021/jp073914h – volume: 117 start-page: 11807 year: 1995 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00152a024 – volume: 107 start-page: 5723 year: 2003 ident: ref27/cit27 publication-title: J. Phys. Chem. B doi: 10.1021/jp027460u – volume: 26 start-page: 163 year: 1974 ident: ref1/cit1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 117 start-page: 451 year: 2007 ident: ref9/cit9 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-006-0176-3 – start-page: 140 year: 1987 ident: ref22/cit22 publication-title: Chem. Phys. Lett. – volume: 111 start-page: 4756 year: 2007 ident: ref24/cit24 publication-title: J. Phys. Chem. C doi: 10.1021/jp067634y – volume: 38 start-page: 3098 year: 1988 ident: ref31/cit31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 86 start-page: 3391 year: 1982 ident: ref29/cit29 publication-title: J. Phys. Chem. doi: 10.1021/j100214a025 – volume: 4 start-page: 1143 year: 1992 ident: ref26/cit26 publication-title: J. Phys.: Condens. Matter – volume: 111 start-page: 10806 year: 1999 ident: ref35/cit35 publication-title: J. Chem. Phys. doi: 10.1063/1.480484 – volume: 111 start-page: 264 year: 2004 ident: ref10/cit10 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-003-0516-5 – volume: 108 start-page: 17007 year: 2004 ident: ref15/cit15 publication-title: J. Phys. Chem. B doi: 10.1021/jp046661q – volume: 173 start-page: 665 year: 1986 ident: ref42/cit42 publication-title: Surf. Sci. doi: 10.1016/0039-6028(86)90216-5 – volume: 326 start-page: 103 year: 2008 ident: ref44/cit44 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.06.052 – volume: 7 start-page: 475 year: 2005 ident: ref16/cit16 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b415535a – volume: 96 start-page: 6630 year: 1992 ident: ref33/cit33 publication-title: J. Phys. Chem. doi: 10.1021/j100195a022 – volume: 60 start-page: 137 year: 2004 ident: ref19/cit19 publication-title: Spectrochim. Acta, Part A doi: 10.1016/S1386-1425(03)00190-2 – start-page: 5935 year: 1984 ident: ref21/cit21 publication-title: J. Phys. Chem. doi: 10.1021/j150668a038 – volume: 175 start-page: 358 year: 1995 ident: ref43/cit43 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1995.1467 – volume: 84 start-page: 1 year: 1977 ident: ref3/cit3 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(77)80224-6 – volume: 106 start-page: 9463 year: 2002 ident: ref5/cit5 publication-title: J. Phys. Chem. B doi: 10.1021/jp0257449 – volume: 106 start-page: 9042 year: 2002 ident: ref8/cit8 publication-title: J. Phys. Chem. A doi: 10.1021/jp025970i – volume: 36 start-page: 533 year: 2005 ident: ref18/cit18 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1353 – volume: 24 start-page: 669 year: 2003 ident: ref37/cit37 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10189 – start-page: 775 volume-title: Handbook of Vibrational Spectroscopy year: 2002 ident: ref23/cit23 – volume: 305 start-page: 303 year: 1999 ident: ref7/cit7 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)00380-2 – volume: 37 start-page: 785 year: 1988 ident: ref32/cit32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 75 start-page: 790 year: 1979 ident: ref28/cit28 publication-title: J. Chem. Soc, Faraday Trans II doi: 10.1039/f29797500790 – volume: 112 start-page: 4195 year: 2008 ident: ref6/cit6 publication-title: J. Phys. Chem. C doi: 10.1021/jp0760962 – volume-title: GAUSSIAN 03 year: 2004 ident: ref30/cit30 – volume: 403 start-page: 211 year: 2005 ident: ref39/cit39 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.12.096 – volume: 107 start-page: 5547 year: 2003 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp027642o – volume: 8 start-page: 171 year: 2006 ident: ref12/cit12 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B509976E – volume: 57 start-page: 783 year: 1985 ident: ref25/cit25 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.783 – volume: 114 start-page: 31 year: 1984 ident: ref34/cit34 publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(84)87198-7 – volume: 101 start-page: 2550 year: 1979 ident: ref40/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00504a009 – volume: 128 start-page: 2911 year: 2006 ident: ref4/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0556326 – volume: 111 start-page: 8333 year: 1989 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00204a001 – volume: 102 start-page: 1995 year: 1998 ident: ref36/cit36 publication-title: J. Phys. Chem. A doi: 10.1021/jp9716997 – volume: 100 start-page: 9254 year: 1996 ident: ref14/cit14 publication-title: J. Phys. Chem. doi: 10.1021/jp953712y – ident: ref41/cit41 – volume: 436 start-page: 179 year: 2007 ident: ref13/cit13 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.01.020 |
SSID | ssj0053013 |
Score | 2.1571944 |
Snippet | Surface-enhanced Raman scattering (SERS) spectra of pyridine in various Ag colloids with different excitation wavelengths (514.5 and 1064 nm) were recorded and... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3909 |
SubjectTerms | C: Nanops and Nanostructures |
Title | Pyridine on Colloidal Silver. Polarization of Surface Studied by Surface-Enhanced Raman Scattering and Density Functional Theory Methods |
URI | http://dx.doi.org/10.1021/jp912071a |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JS8NAFB5KPejFXaxLGdSDl9RM9jmWLhShUqyF3sqsWJektOmh_gJ_tm-ySKEu1_CGCXkv831v3obQjXaBpYeCWrbi2vICoixOjUK4EzItwOcSJqLbfwh6I-9-7I8r6PqXCL5D7l5mlDgAhECCtpwgCo2H1WwNy-PWBwt189AxUEXYt2wftL7UQI9YrEHPGoZ091C7rMTJU0deG8uUN8THZmPGv15vH-0WHBI3c6UfoIqKD9F2qxzddoQ-B6v5FEBJ4STG5mogmUpYMJyaNOgGHhh3tqi_xInGw-VcM6FwnlMoMV-Vj6xO_JylCOBH9s5iPBRZO06AO8xiidsm-z1d4S6AY36niPNaf9zPBlMvjtGo23lq9axi5ILFHOqllhTaByfDJjqUHLiDdHnApc0dGkpK_ZCIgOjIZjyyBeBcEDmMA4XQEngd83zqnqBqnMTqFGFXeTQEOyUiEuCk-jzQPiziHhwCrqf8GqqDTibFL7OYZNFwB7yR8oPW0G2prokoGpabuRlvP4lefYvO8i4dm0Jn_214jnby3ADXIuQCVdP5Ul0C5Uh5PTO5L5KJ0NM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB4hOMClFCgqbaGjikq9OPWuX_GhBxSIQiEINSBxS_eppqUOih2h9BfwG_pX-ueY9YNGtBInJK7W2t7H7Mw3O7PfAOzagFB6olLPN9J6YcyMJ1O3IJInwiryuZSL6PZP4t55-PkiuliA381dGOpETl_KyyD-X3YB9vH7Vco42UNRJ1Aemdk1uWf5p8N9Wsv3nHcPzjo9r64g4AmehoWnlY0IM_vMJlqSKdSBjKX2JU8TnaZRwlTMbNsXsu0rUttxmwtJFtFqgikijBzREqn3JQI93Dl2e51Bo-Uj2hhBFbEmhErDbViL5rvqLJ7K5yzenOnqrsKfu0GXGSs_WtNCttSve3yQT3NWnsOzGjHjXiXia7BgsnVY7jSF6jbg5nQ2GZEJNjjO0B2EjEeaXhiMXNJ3C0-d817fNsWxxcF0YoUyWGVQapSz5pF3kH0rEyLwi_gpMhyoknyUjDuKTOO-y_UvZtglKFCdoGLFbID9sgx3_gLOH2UiNmExG2fmJWBgwjShXclUW5FLHsnYRvSSDEnlBaGJtmCH1m9YK4h8WMb-OflezQJuwYdGSoaqpmd3VUIu_9f03V3Tq4qT5N9Grx764VtY7p31j4fHhydHr2GlyooIPMbewGIxmZptAluF3CmlHuHrYwvULS3jMek |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB4hkIBLKVAELYURKhIXB6-f8aEHlBBBKSgiIHEL-xShrRPFjlD4BfyK_pX-tc76gSJaqSekXq21vY_Z-WZ2Zr8B-GR8stJjmTiuFsYJIqYdkdgFEV7MjSSfS9qI7vlFdHIdfLkJb-bgZ30XhjqR0ZeyIohvd_VImYphgB3ejxLmESbyKonyTE8fyEXLPp-2aT33Pa9zfNU6caoqAg73kiB3lDQh2c0uM7ESBIfKF5FQrvCSWCVJGDMZMdN0uWi6klR31PS4IFQ0ikwVHoSWbIlU_IIND1rn7qjVqzV9SJvDL6PWZKXSkGvmotmuWtST2QzqzcBXZwV-PQ-8yFr51pjkoiEfX3BC_r8z8xbeVJYzHpWivgpzOl2DpVZdsG4dnrrT8YCgWOMwRXsgMhwoeqE3sMnfDexaJ766dYpDg73J2HCpscykVCim9SPnOL0rEiPwkv_gKfZkQUJKII88Vdi2Of_5FDtkEpQnqVgyHOB5UY47ewfXrzIRGzCfDlO9CejrIIlpdzLZlOSahyIyIb0kAlJ9fqDDLdihNexXiiLrFzkAHvlg9QJuwUEtKX1Z0bTbaiHf_9Z077npqOQm-bPR-3_9cBcWu-1O_-vpxdkHWC6TI3yHsW2Yz8cT_ZFsrlzsFIKPcPva8vQbd3M0bA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyridine+on+Colloidal+Silver.+Polarization+of+Surface+Studied+by+Surface-Enhanced+Raman+Scattering+and+Density+Functional+Theory+Methods&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Kaczor%2C+Agnieszka&rft.au=Malek%2C+Kamilla&rft.au=Baranska%2C+Malgorzata&rft.date=2010-03-11&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=114&rft.issue=9&rft.spage=3909&rft.epage=3917&rft_id=info:doi/10.1021%2Fjp912071a&rft.externalDocID=c483525422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |