Intrinsically Low Thermal Conductivity in the Most Lithium-Rich Binary Stannide Crystalline Li5Sn

Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, te...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 14; no. 36; pp. 8139 - 8144
Main Authors Tong, Zhen, Dumitrică, Traian, Frauenheim, Thomas
Format Journal Article
LanguageEnglish
Published American Chemical Society 14.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κ L by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κ L values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κ L temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.
AbstractList Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κ L by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κ L values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κ L temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.
Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κL by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κL values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κL temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κL by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κL values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κL temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.
Author Tong, Zhen
Frauenheim, Thomas
Dumitrică, Traian
AuthorAffiliation Department of Mechanical Engineering
Bremen Center for Computational Materials Science
School of Advanced Energy
Sun Yat-Sen University
AuthorAffiliation_xml – name: Department of Mechanical Engineering
– name: School of Advanced Energy
– name: Sun Yat-Sen University
– name: Bremen Center for Computational Materials Science
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0002-3932-6687
  surname: Tong
  fullname: Tong, Zhen
  email: tongzh3@mail.sysu.edu.cn
  organization: Sun Yat-Sen University
– sequence: 2
  givenname: Traian
  orcidid: 0000-0001-6320-1625
  surname: Dumitrică
  fullname: Dumitrică, Traian
  email: dtraian@umn.edu
  organization: Department of Mechanical Engineering
– sequence: 3
  givenname: Thomas
  surname: Frauenheim
  fullname: Frauenheim, Thomas
  email: thomas.frauenheim@bccms.uni-bremen.de
  organization: Bremen Center for Computational Materials Science
BookMark eNpNkD1PwzAQhi1UJNrCL2DxyJLUdhzHGSHio1IQEi2z5Tq24iq1S-yA8u8JtAPTne6ee3V6FmDmvNMA3GKUYkTwSqqQ7o-q0zGmmUIkw_QCzHFJeVJgns_-9VdgEcIeIVYiXsyBXLvYWxeskl03wtp_w22r-4PsYOVdM6hov2wcoXUwthq--hBhbWNrh0PyblULH6yT_Qg3UTpnGw2rfgxxyrJOT2C-cdfg0sgu6JtzXYKPp8dt9ZLUb8_r6r5OJClpTHJFCtk0yFBTGky5LE2up1VucmbYrmScEGkI4gY3XGHeFAXeZUyWNDesUCpbgrtT7rH3n4MOURxsULrrpNN-CIJwhhml09mErk7o5E3s_dC76TGBkfiVKf6GJ5niLDP7AV3DbeA
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID 7X8
DOI 10.1021/acs.jpclett.3c02314
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 8144
ExternalDocumentID a390443952
GroupedDBID 53G
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED~
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ABBLG
ABJNI
ABLBI
BAANH
CUPRZ
ID FETCH-LOGICAL-a294t-5c27add0f4f9f148a9f5ea295f56f6b96822af208f1d8c18d771b36a945f67cc3
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Fri Jul 11 03:38:15 EDT 2025
Fri Sep 15 03:12:37 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a294t-5c27add0f4f9f148a9f5ea295f56f6b96822af208f1d8c18d771b36a945f67cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6320-1625
0000-0002-3932-6687
PQID 2861644771
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2861644771
acs_journals_10_1021_acs_jpclett_3c02314
PublicationCentury 2000
PublicationDate 2023-09-14
PublicationDateYYYYMMDD 2023-09-14
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-14
  day: 14
PublicationDecade 2020
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0069087
Score 2.4458797
Snippet Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized...
Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized...
SourceID proquest
acs
SourceType Aggregation Database
Publisher
StartPage 8139
SubjectTerms Physical Insights into Energy Science
Title Intrinsically Low Thermal Conductivity in the Most Lithium-Rich Binary Stannide Crystalline Li5Sn
URI http://dx.doi.org/10.1021/acs.jpclett.3c02314
https://www.proquest.com/docview/2861644771
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHODCR2lF-ZKROHBJGjuO4xwhoiqou5ftSnuLbMdW0xYHbRyh8usZexMJsRx6jSPLmhmP38ie9xD6yMqMVpboRAkVJMxMngiSGXCIFG1VamIiu_5iyc_X7Pum2PzVrP7PDT4lp1IP6fVPsKH3aa4DXRl7iB5RDts4IKF6NSdeqPOiHh6U5SKBlFvMJEP_nyQcR3rYS8HxXDl7hpZzd87uOclNOnqV6t_7ZI33W_Jz9HRCmPjzLiReoAfGHaLH9Szs9hLJb85vOxfdc3uHL_pfGIIFEvQtrnsX-F-joATuHAZ0iBf94PFF56-68UcS-vDxl9jDi4MAsetag-vtHWDMQO5t4Mdi5Y7Q-uzrZX2eTEoLiaQV80mhaQmJLrPMguOYkJUtDAwVtuCWq4oDjJCWZsKSVmgi2rIkKueyYoXlpdb5MTpwvTOvEJaQQnLBW55ZyygACKU1FGWqFK1SAAdP0CcwTzPtlKGJl-CUNPHjzmbNZLMT9GH2TQMmCjcZ0pl-HBoqOJR5DFbx-v7TvUFPglZ8eOxB2Ft04LejeQeIwqv3MY7-AEi7yG4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLagHMplDLYJxjaMtAOXdHHiOM6xRFQttFxopd6i2LG1DOZMjauJ_fo9uymTGIftmkTW03svz9-T_b4Poc80DaNMExkILpyEmYoDTkIFASl5laWSKM-uP7tl4wW9XibLbijMzcKAES2s1PpD_D_sAuSLe_btB7jS2kEsHWsZ3UV7AEcil9fD_G5bf6Hd87J40J3zACpvsuUaenkRtyvJ9q9K7LeX0QFaPBnmb5XcD9ZWDOSvZ5yN_2v5a_Sqw5t4uEmQQ7SjzBHq51uZtzeonBi7qo0P1sMjnjY_MaQOlOsHnDfGscF6eQlcGwxYEc-a1uJpbb_W6--Bm8rHl36iFzs5YlNXCuerR0CcjupbwYfJnXmLFqOreT4OOt2FoIwyaoNERimUvVBTDWGkvMx0ouBVohOmmcgYgIpSRyHXpOKS8CpNiYhZmdFEs1TK-B3qmcaoY4RLKCgxZxULtaYRwAkhJbRoIuWVEAAOT9AFuKfo_pu28EfiESn8w43Pis5nJ-h8G6ICXOTONUqjmnVbRJxB00fBivf_vtwZ6o_ns2kxndzenKJ9pyLvroEQ-gH17GqtPgLWsOKTT63f_IrQzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3RT9YwEL8gJuqLiEpAQUvigy_7XLeu6x5h8AXkg5AgCT4ta9fGCXbkW78Q-Ou9ls0H5YH42i3N5e56_V2u9zuATyyPk8JQFUkh_QgznUaCxhoNUoumyBXVgV3_-IQfnLOvF9nFEoixFwaF6HGnPhTx_am-bszAMEC_-PWf16hO5yap8sxl7Ak89YU779s75dkYgzHlC6PxMEMXEUbfbOQbengTfzOp_p9oHK6Y6Qp8_yNceFlyOVk4OVF3f_E2_o_0r-DlgDvJzr2jrMKStq_heTmOe3sD9aF189YGo13dkll3Q9CFMGxfkbKznhU2jJkgrSWIGclx1zsya92PdvEr8t35ZDd09hI_lti2jSbl_BaRp6f81vhjdmbfwvl0_1t5EA3zF6I6KZiLMpXkGP5iwwyak4m6MJnGT5nJuOGy4AguapPEwtBGKCqaPKcy5XXBMsNzpdI1WLad1etAagwsqeANj41hCcIKqRSmajIXjZQIEjfgM6qnGs5PX4XSeEKrsHivs2rQ2QZsj2aqUEW-vlFb3S36KhEckz-GUrx7_HYf4dnp3rSaHZ4cvYcXfpi8fw1C2SYsu_lCbyHkcPJD8K7f0bXTUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsically+Low+Thermal+Conductivity+in+the+Most+Lithium-Rich+Binary+Stannide+Crystalline+Li5Sn&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Tong%2C+Zhen&rft.au=Dumitric%C4%83%2C+Traian&rft.au=Frauenheim%2C+Thomas&rft.date=2023-09-14&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=14&rft.issue=36&rft.spage=8139&rft_id=info:doi/10.1021%2Facs.jpclett.3c02314&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon