Intrinsically Low Thermal Conductivity in the Most Lithium-Rich Binary Stannide Crystalline Li5Sn
Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, te...
Saved in:
Published in | The journal of physical chemistry letters Vol. 14; no. 36; pp. 8139 - 8144 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
14.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κ L by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κ L values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κ L temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries. |
---|---|
AbstractList | Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κ L by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κ L values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κ L temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries. Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κL by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κL values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κL temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries.Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized crystalline material for Li-ion batteries. The weak bonding in the Li-rich environment leads to significant softening of the optical phonon modes, temperature-induced hardening, and strong anharmonicity. This complexity is captured in the particle-like and glass-like components of κL by accounting for the temperature-dependent interatomic force constants acting on the renormalized phonon frequencies and three- and four-phonon scatterings contributing to the phonon lifetime. We predict very low room-temperature κL values of 0.857, 0.599, and 0.961 W/mK for the experimental Cmcm phase and 0.996, 0.908, and 1.385 W/mK for the theoretically predicted Immm phase along the main crystallographic directions. Both phases display complex crystal behavior with glass-like transport exceeding 20% above room-temperature and an unusual κL temperature dependence. Our results can be used to inform system-level thermal models of Li-ion batteries. |
Author | Tong, Zhen Frauenheim, Thomas Dumitrică, Traian |
AuthorAffiliation | Department of Mechanical Engineering Bremen Center for Computational Materials Science School of Advanced Energy Sun Yat-Sen University |
AuthorAffiliation_xml | – name: Department of Mechanical Engineering – name: School of Advanced Energy – name: Sun Yat-Sen University – name: Bremen Center for Computational Materials Science |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0002-3932-6687 surname: Tong fullname: Tong, Zhen email: tongzh3@mail.sysu.edu.cn organization: Sun Yat-Sen University – sequence: 2 givenname: Traian orcidid: 0000-0001-6320-1625 surname: Dumitrică fullname: Dumitrică, Traian email: dtraian@umn.edu organization: Department of Mechanical Engineering – sequence: 3 givenname: Thomas surname: Frauenheim fullname: Frauenheim, Thomas email: thomas.frauenheim@bccms.uni-bremen.de organization: Bremen Center for Computational Materials Science |
BookMark | eNpNkD1PwzAQhi1UJNrCL2DxyJLUdhzHGSHio1IQEi2z5Tq24iq1S-yA8u8JtAPTne6ee3V6FmDmvNMA3GKUYkTwSqqQ7o-q0zGmmUIkw_QCzHFJeVJgns_-9VdgEcIeIVYiXsyBXLvYWxeskl03wtp_w22r-4PsYOVdM6hov2wcoXUwthq--hBhbWNrh0PyblULH6yT_Qg3UTpnGw2rfgxxyrJOT2C-cdfg0sgu6JtzXYKPp8dt9ZLUb8_r6r5OJClpTHJFCtk0yFBTGky5LE2up1VucmbYrmScEGkI4gY3XGHeFAXeZUyWNDesUCpbgrtT7rH3n4MOURxsULrrpNN-CIJwhhml09mErk7o5E3s_dC76TGBkfiVKf6GJ5niLDP7AV3DbeA |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | 7X8 |
DOI | 10.1021/acs.jpclett.3c02314 |
DatabaseName | MEDLINE - Academic |
DatabaseTitle | MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 8144 |
ExternalDocumentID | a390443952 |
GroupedDBID | 53G 55A 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ DU5 EBS ED~ GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ 7X8 ABBLG ABJNI ABLBI BAANH CUPRZ |
ID | FETCH-LOGICAL-a294t-5c27add0f4f9f148a9f5ea295f56f6b96822af208f1d8c18d771b36a945f67cc3 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Fri Jul 11 03:38:15 EDT 2025 Fri Sep 15 03:12:37 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a294t-5c27add0f4f9f148a9f5ea295f56f6b96822af208f1d8c18d771b36a945f67cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6320-1625 0000-0002-3932-6687 |
PQID | 2861644771 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2861644771 acs_journals_10_1021_acs_jpclett_3c02314 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-14 |
PublicationDateYYYYMMDD | 2023-09-14 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0069087 |
Score | 2.4458797 |
Snippet | Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κ L ) of Li5Sn, a newly synthesized... Using ab initio lattice dynamics and a unified heat transport theory, we compute the lattice thermal conductivity (κL) of Li5Sn, a newly synthesized... |
SourceID | proquest acs |
SourceType | Aggregation Database Publisher |
StartPage | 8139 |
SubjectTerms | Physical Insights into Energy Science |
Title | Intrinsically Low Thermal Conductivity in the Most Lithium-Rich Binary Stannide Crystalline Li5Sn |
URI | http://dx.doi.org/10.1021/acs.jpclett.3c02314 https://www.proquest.com/docview/2861644771 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHODCR2lF-ZKROHBJGjuO4xwhoiqou5ftSnuLbMdW0xYHbRyh8usZexMJsRx6jSPLmhmP38ie9xD6yMqMVpboRAkVJMxMngiSGXCIFG1VamIiu_5iyc_X7Pum2PzVrP7PDT4lp1IP6fVPsKH3aa4DXRl7iB5RDts4IKF6NSdeqPOiHh6U5SKBlFvMJEP_nyQcR3rYS8HxXDl7hpZzd87uOclNOnqV6t_7ZI33W_Jz9HRCmPjzLiReoAfGHaLH9Szs9hLJb85vOxfdc3uHL_pfGIIFEvQtrnsX-F-joATuHAZ0iBf94PFF56-68UcS-vDxl9jDi4MAsetag-vtHWDMQO5t4Mdi5Y7Q-uzrZX2eTEoLiaQV80mhaQmJLrPMguOYkJUtDAwVtuCWq4oDjJCWZsKSVmgi2rIkKueyYoXlpdb5MTpwvTOvEJaQQnLBW55ZyygACKU1FGWqFK1SAAdP0CcwTzPtlKGJl-CUNPHjzmbNZLMT9GH2TQMmCjcZ0pl-HBoqOJR5DFbx-v7TvUFPglZ8eOxB2Ft04LejeQeIwqv3MY7-AEi7yG4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFLagHMplDLYJxjaMtAOXdHHiOM6xRFQttFxopd6i2LG1DOZMjauJ_fo9uymTGIftmkTW03svz9-T_b4Poc80DaNMExkILpyEmYoDTkIFASl5laWSKM-uP7tl4wW9XibLbijMzcKAES2s1PpD_D_sAuSLe_btB7jS2kEsHWsZ3UV7AEcil9fD_G5bf6Hd87J40J3zACpvsuUaenkRtyvJ9q9K7LeX0QFaPBnmb5XcD9ZWDOSvZ5yN_2v5a_Sqw5t4uEmQQ7SjzBHq51uZtzeonBi7qo0P1sMjnjY_MaQOlOsHnDfGscF6eQlcGwxYEc-a1uJpbb_W6--Bm8rHl36iFzs5YlNXCuerR0CcjupbwYfJnXmLFqOreT4OOt2FoIwyaoNERimUvVBTDWGkvMx0ouBVohOmmcgYgIpSRyHXpOKS8CpNiYhZmdFEs1TK-B3qmcaoY4RLKCgxZxULtaYRwAkhJbRoIuWVEAAOT9AFuKfo_pu28EfiESn8w43Pis5nJ-h8G6ICXOTONUqjmnVbRJxB00fBivf_vtwZ6o_ns2kxndzenKJ9pyLvroEQ-gH17GqtPgLWsOKTT63f_IrQzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3RT9YwEL8gJuqLiEpAQUvigy_7XLeu6x5h8AXkg5AgCT4ta9fGCXbkW78Q-Ou9ls0H5YH42i3N5e56_V2u9zuATyyPk8JQFUkh_QgznUaCxhoNUoumyBXVgV3_-IQfnLOvF9nFEoixFwaF6HGnPhTx_am-bszAMEC_-PWf16hO5yap8sxl7Ak89YU779s75dkYgzHlC6PxMEMXEUbfbOQbengTfzOp_p9oHK6Y6Qp8_yNceFlyOVk4OVF3f_E2_o_0r-DlgDvJzr2jrMKStq_heTmOe3sD9aF189YGo13dkll3Q9CFMGxfkbKznhU2jJkgrSWIGclx1zsya92PdvEr8t35ZDd09hI_lti2jSbl_BaRp6f81vhjdmbfwvl0_1t5EA3zF6I6KZiLMpXkGP5iwwyak4m6MJnGT5nJuOGy4AguapPEwtBGKCqaPKcy5XXBMsNzpdI1WLad1etAagwsqeANj41hCcIKqRSmajIXjZQIEjfgM6qnGs5PX4XSeEKrsHivs2rQ2QZsj2aqUEW-vlFb3S36KhEckz-GUrx7_HYf4dnp3rSaHZ4cvYcXfpi8fw1C2SYsu_lCbyHkcPJD8K7f0bXTUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsically+Low+Thermal+Conductivity+in+the+Most+Lithium-Rich+Binary+Stannide+Crystalline+Li5Sn&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Tong%2C+Zhen&rft.au=Dumitric%C4%83%2C+Traian&rft.au=Frauenheim%2C+Thomas&rft.date=2023-09-14&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=14&rft.issue=36&rft.spage=8139&rft_id=info:doi/10.1021%2Facs.jpclett.3c02314&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |