CEDG-GeoQA: Knowledge base question answering for the geoscience domain via Chinese entity description graph
Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or specialized databases. However, the quality of search engine results varies, and geoscience databases do not support natural language queries. To...
Saved in:
Published in | Earth science informatics Vol. 17; no. 3; pp. 2609 - 2621 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1865-0473 1865-0481 |
DOI | 10.1007/s12145-024-01304-8 |
Cover
Loading…
Abstract | Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or specialized databases. However, the quality of search engine results varies, and geoscience databases do not support natural language queries. To address these challenges, Geoscience Question Answering (GeoQA) systems have been developed to provide answers to natural language queries. Much of the existing research in geoscience QA primarily focuses on geography, with other domains remaining relatively unexplored. To bridge this gap, our study introduces a Chinese geoscience QA dataset that covers a wide range of topics, including geography, climate, and culture. Additionally, we propose the CEDG-GeoQA framework for Chinese geoscience QA. The model begins by utilizing syntactic parsing to convert unstructured queries into an entity description graph (EDG). Subsequently, it aligns the EDG with a comprehensive geoscience knowledge base, extracting a subgraph centered around the subject entity. This subgraph is used to assess candidate answers and determine the most likely response. Our comprehensive experiments, conducted using a Chinese geo-knowledge base, demonstrate the superior performance of our method, achieving a 5% improvement in the F1 measure compared to existing baselines, including WDAqua, gAnswer, and NSQA. |
---|---|
AbstractList | Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or specialized databases. However, the quality of search engine results varies, and geoscience databases do not support natural language queries. To address these challenges, Geoscience Question Answering (GeoQA) systems have been developed to provide answers to natural language queries. Much of the existing research in geoscience QA primarily focuses on geography, with other domains remaining relatively unexplored. To bridge this gap, our study introduces a Chinese geoscience QA dataset that covers a wide range of topics, including geography, climate, and culture. Additionally, we propose the CEDG-GeoQA framework for Chinese geoscience QA. The model begins by utilizing syntactic parsing to convert unstructured queries into an entity description graph (EDG). Subsequently, it aligns the EDG with a comprehensive geoscience knowledge base, extracting a subgraph centered around the subject entity. This subgraph is used to assess candidate answers and determine the most likely response. Our comprehensive experiments, conducted using a Chinese geo-knowledge base, demonstrate the superior performance of our method, achieving a 5% improvement in the F1 measure compared to existing baselines, including WDAqua, gAnswer, and NSQA. |
Author | Wei, Lai Yao, Hong Kang, Xiaojun Duan, Yilin Lu, Qinghua |
Author_xml | – sequence: 1 givenname: Lai surname: Wei fullname: Wei, Lai organization: School of Computer Science, China University of Geosciences – sequence: 2 givenname: Qinghua surname: Lu fullname: Lu, Qinghua organization: School of Computer Science, China University of Geosciences – sequence: 3 givenname: Yilin surname: Duan fullname: Duan, Yilin organization: School of Computer Science, China University of Geosciences – sequence: 4 givenname: Hong surname: Yao fullname: Yao, Hong organization: School of Computer Science, China University of Geosciences, Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences – sequence: 5 givenname: Xiaojun surname: Kang fullname: Kang, Xiaojun email: kangxj@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences |
BookMark | eNp9kFFLwzAQx4MoOOe-gE8Bn6tJrusS38acUxyIoM8hba9dZEtq0jn27e1W0Tef7jju9z_ud0FOnXdIyBVnN5yxyW3kgqfjhIk0YRxYmsgTMuAy60ap5Ke__QTOyShGmzPgIgMh5ICsZ_P7RbJA_zq9o8_O79ZY1khzE5F-bjG21jtqXNxhsK6mlQ-0XSGt0cfCoiuQln5jrKNf1tDZyjrsQHStbfe0xFgE2xwj6mCa1SU5q8w64uinDsn7w_xt9pgsXxZPs-kyMUJBmyAYVU2MBOSTYswyZACZQgMV8gLSXAqAMatkKfIqy3hWqDKVSuWlkTJnmMOQXPe5TfDHJ_SH3wbXndTAMlBCKRDdlui3iuBjDFjpJtiNCXvNmT6I1b1Y3YnVR7FadhD0UGwOQjD8Rf9DfQPANH1r |
Cites_doi | 10.1109/ICSC.2013.25 10.18653/v1/N19-1423 10.1609/aaai.v34i05.6426 10.1145/3281354.3281362 10.1007/978-3-319-69146-6_8 10.1145/3340531.3411888 10.18653/v1/2020.acl-main.91 10.1016/j.eswa.2023.120841 10.1109/TKDE.2017.2766634 10.1145/3616855.3635772 10.5194/agile-giss-1-23-2020 10.1145/2187836.2187923 10.1162/tacl_a_00190 10.18653/v1/2021.findings-acl.339 10.1007/978-3-642-33024-7_25 10.1007/978-3-319-46547-0_11 10.1007/978-3-540-76298-0_52 10.1007/978-3-030-88361-4_8 10.1007/978-3-030-88361-4_25 10.1007/978-3-319-60045-1_44 10.18653/v1/D18-1242 10.1007/978-3-030-14745-7_2 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7TG 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- KL. L7M L~C L~D M0N M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s12145-024-01304-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Geography |
EISSN | 1865-0481 |
EndPage | 2621 |
ExternalDocumentID | 10_1007_s12145_024_01304_8 |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: 61972365 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 1N0 203 2JN 2KG 2VQ 2~H 30V 3V. 4.4 406 408 40D 67M 67Z 6NX 88I 8FE 8FG 8FH 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD AYJHY AZQEC B-. BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXD IZQ J-C J0Z JBSCW JZLTJ K6V K7- KOV L8X LK5 LLZTM M0N M2P M4Y M7R MK~ NPVJJ NQJWS NU0 O9- O93 O9J P62 PCBAR PQQKQ PROAC PT4 Q2X QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TG 7XB 8AL 8FD 8FK ABRTQ JQ2 KL. L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-a293t-e3a9f7a83e17c506e03369ea3fe1c34b823350f8d2bf6616c9d4899bda88b0eb3 |
IEDL.DBID | BENPR |
ISSN | 1865-0473 |
IngestDate | Fri Jul 25 09:35:08 EDT 2025 Tue Jul 01 01:18:06 EDT 2025 Fri Feb 21 02:42:25 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Semantic parsing Geoscience domain Geoscience question answering Knowledge graph |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a293t-e3a9f7a83e17c506e03369ea3fe1c34b823350f8d2bf6616c9d4899bda88b0eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3063929932 |
PQPubID | 54345 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3063929932 crossref_primary_10_1007_s12145_024_01304_8 springer_journals_10_1007_s12145_024_01304_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationTitle | Earth science informatics |
PublicationTitleAbbrev | Earth Sci Inform |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Unger C, Bühmann L, Lehmann J, Ngonga Ngomo A-C, Gerber D, Cimiano P (2012) Template-based question answering over rdf data. In: Proceedings of the 21st international conference on world wide web, pp 639–648 Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo R, Chang M, Cornelio C, Dana S, Fokoue A et al (2020) Question answering over knowledge bases by leveraging semantic parsing and neuro-symbolic reasoning. arXiv:2012.01707 Thoppilan R, De Freitas D, Hall J, Shazeer N, Kulshreshtha A, Cheng H-T, Jin A, Bos T, Baker L, Du Y et al (2022) Lamda: language models for dialog applications. arXiv:2201.08239 Shen Y, Chen Z, Cheng G, Qu Y (2021) Ckgg: a chinese knowledge graph for high-school geography education and beyond. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, Proceedings 20. Springer, pp 429–445 Sun Y, Zhang L, Cheng G, Qu Y (2020) Sparqa: skeleton-based semantic parsing for complex questions over knowledge bases. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 8952–8959 Chen W, Fosler-Lussier E, Xiao N, Raje S, Ramnath R, Sui D (2013) A synergistic framework for geographic question answering. In: 2013 IEEE Seventh international conference on semantic computing. IEEE, pp 94–99 Deng C, Zhang T, He Z, Chen Q, Shi Y, Zhou L, Fu L, Zhang W, Wang X, Zhou C et al (2023) Learning a foundation language model for geoscience knowledge understanding and utilization. arXiv:2306.05064 OuyangLWuJJiangXAlmeidaDWainwrightCMishkinPZhangCAgarwalSSlamaKRayATraining language models to follow instructions with human feedbackAdv Neural Inf Process Syst2022352773027744 Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M-A, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F et al (2023) Llama: open and efficient foundation language models. arXiv:2302.13971 Xu B, Xu Y, Liang J, Xie C, Liang B, Cui W, Xiao Y (2017) Cn-dbpedia: a never-ending chinese knowledge extraction system. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp 428–438 Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 969–974 Hu X, Shu Y, Huang X, Qu Y (2021) Edg-based question decomposition for complex question answering over knowledge bases. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, proceedings 20. Springer, pp 128–145 Punjani D, Singh K, Both A, Koubarakis M, Angelidis I, Bereta K, Beris T, Bilidas D, Ioannidis T, Karalis N et al (2018) Template-based question answering over linked geospatial data. In: Proceedings of the 12th workshop on geographic information retrieval, pp 1–10 Hu W, Li H, Sun Z, Qian X, Xue L, Cao E, Qu Y (2016) Clinga: bringing chinese physical and human geography in linked open data. In: The semantic web–ISWC 2016: 15th international semantic web conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II 15. Springer, pp 104–112 Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423 Diefenbach D, Singh K, Maret P (2017) Wdaqua-core0: a question answering component for the research community. In: Semantic web challenges: 4th SemWebEval challenge at ESWC 2017, Portoroz, Slovenia, May 28-June 1, 2017, Revised Selected Papers. Springer, pp 84–89 Younis EM, Jones CB, Tanasescu V, Abdelmoty AI (2012) Hybrid geo-spatial query methods on the semantic web with a spatially-enhanced index of dbpedia. In: Geographic information science: 7th international conference, GIScience 2012, Columbus, OH, USA, September 18-21, 2012. proceedings 7. Springer, pp 340–353 Luo K, Lin F, Luo X, Zhu K (2018) Knowledge base question answering via encoding of complex query graphs. In: Proceedings of the 2018 conference on empirical methods in natural language processing, pp 2185–2194 HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201730582483710.1109/TKDE.2017.2766634 Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo RF, Chang M, Cornelio C, Dana S, Fokoue-Nkoutche A et al (2021) Leveraging abstract meaning representation for knowledge base question answering. In: Findings of the association for computational linguistics: ACL-IJCNLP 2021, pp 3884–3894 Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: International semantic web conference. Springer, pp 722–735 Berant J, Chou A, Frostig R, Liang P (2013) Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1533–1544 Mai G, Yan B, Janowicz K, Zhu R (2020) Relaxing unanswerable geographic questions using a spatially explicit knowledge graph embedding model. In: Geospatial technologies for local and regional development: proceedings of the 22nd AGILE conference on geographic information science 22. Springer, pp 21–39 Tunstall-PedoeWTrue knowledge: open-domain question answering using structured knowledge and inferenceAI Mag20103138092 ReddySLapataMSteedmanMLarge-scale semantic parsing without question-answer pairsTrans Assoc Comput Linguist2014237739210.1162/tacl_a_00190 Qiu Y, Zhang K, Wang Y, Jin X, Bai L, Guan S, Cheng X (2020) Hierarchical query graph generation for complex question answering over knowledge graph. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 1285–1294 Xu H, Hamzei E, Nyamsuren E, Kruiger H, Winter S, Tomko M, Scheider S (2020) Extracting interrogative intents and concepts from geo-analytic questions. AGILE: GIScience Series 1:23 HuberCRinnerCKyriakidisPHadjimitsisDSkarlatosDMansourianAGeospatial technologies for local and regional Development2020Springer Liu C, Ji X, Dong Y, He M, Yang M, Wang Y (2023) Chinese mineral question and answering system based on knowledge graph. Expert Syst Appl 120841 S Reddy (1304_CR20) 2014; 2 L Ouyang (1304_CR17) 2022; 35 1304_CR21 S Hu (1304_CR7) 2017; 30 1304_CR28 1304_CR29 1304_CR26 1304_CR27 1304_CR24 1304_CR22 1304_CR23 1304_CR1 1304_CR2 1304_CR3 1304_CR4 1304_CR5 1304_CR6 1304_CR19 1304_CR10 W Tunstall-Pedoe (1304_CR25) 2010; 31 C Huber (1304_CR8) 2020 1304_CR9 1304_CR18 1304_CR15 1304_CR16 1304_CR13 1304_CR14 1304_CR11 1304_CR12 |
References_xml | – reference: Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo R, Chang M, Cornelio C, Dana S, Fokoue A et al (2020) Question answering over knowledge bases by leveraging semantic parsing and neuro-symbolic reasoning. arXiv:2012.01707 – reference: Hu W, Li H, Sun Z, Qian X, Xue L, Cao E, Qu Y (2016) Clinga: bringing chinese physical and human geography in linked open data. In: The semantic web–ISWC 2016: 15th international semantic web conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II 15. Springer, pp 104–112 – reference: Chen W, Fosler-Lussier E, Xiao N, Raje S, Ramnath R, Sui D (2013) A synergistic framework for geographic question answering. In: 2013 IEEE Seventh international conference on semantic computing. IEEE, pp 94–99 – reference: Qiu Y, Zhang K, Wang Y, Jin X, Bai L, Guan S, Cheng X (2020) Hierarchical query graph generation for complex question answering over knowledge graph. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 1285–1294 – reference: HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201730582483710.1109/TKDE.2017.2766634 – reference: Hu X, Shu Y, Huang X, Qu Y (2021) Edg-based question decomposition for complex question answering over knowledge bases. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, proceedings 20. Springer, pp 128–145 – reference: Diefenbach D, Singh K, Maret P (2017) Wdaqua-core0: a question answering component for the research community. In: Semantic web challenges: 4th SemWebEval challenge at ESWC 2017, Portoroz, Slovenia, May 28-June 1, 2017, Revised Selected Papers. Springer, pp 84–89 – reference: ReddySLapataMSteedmanMLarge-scale semantic parsing without question-answer pairsTrans Assoc Comput Linguist2014237739210.1162/tacl_a_00190 – reference: Xu B, Xu Y, Liang J, Xie C, Liang B, Cui W, Xiao Y (2017) Cn-dbpedia: a never-ending chinese knowledge extraction system. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp 428–438 – reference: Liu C, Ji X, Dong Y, He M, Yang M, Wang Y (2023) Chinese mineral question and answering system based on knowledge graph. Expert Syst Appl 120841 – reference: Unger C, Bühmann L, Lehmann J, Ngonga Ngomo A-C, Gerber D, Cimiano P (2012) Template-based question answering over rdf data. In: Proceedings of the 21st international conference on world wide web, pp 639–648 – reference: Luo K, Lin F, Luo X, Zhu K (2018) Knowledge base question answering via encoding of complex query graphs. In: Proceedings of the 2018 conference on empirical methods in natural language processing, pp 2185–2194 – reference: Mai G, Yan B, Janowicz K, Zhu R (2020) Relaxing unanswerable geographic questions using a spatially explicit knowledge graph embedding model. In: Geospatial technologies for local and regional development: proceedings of the 22nd AGILE conference on geographic information science 22. Springer, pp 21–39 – reference: Berant J, Chou A, Frostig R, Liang P (2013) Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1533–1544 – reference: OuyangLWuJJiangXAlmeidaDWainwrightCMishkinPZhangCAgarwalSSlamaKRayATraining language models to follow instructions with human feedbackAdv Neural Inf Process Syst2022352773027744 – reference: Tunstall-PedoeWTrue knowledge: open-domain question answering using structured knowledge and inferenceAI Mag20103138092 – reference: Xu H, Hamzei E, Nyamsuren E, Kruiger H, Winter S, Tomko M, Scheider S (2020) Extracting interrogative intents and concepts from geo-analytic questions. AGILE: GIScience Series 1:23 – reference: Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 969–974 – reference: HuberCRinnerCKyriakidisPHadjimitsisDSkarlatosDMansourianAGeospatial technologies for local and regional Development2020Springer – reference: Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423 – reference: Punjani D, Singh K, Both A, Koubarakis M, Angelidis I, Bereta K, Beris T, Bilidas D, Ioannidis T, Karalis N et al (2018) Template-based question answering over linked geospatial data. In: Proceedings of the 12th workshop on geographic information retrieval, pp 1–10 – reference: Deng C, Zhang T, He Z, Chen Q, Shi Y, Zhou L, Fu L, Zhang W, Wang X, Zhou C et al (2023) Learning a foundation language model for geoscience knowledge understanding and utilization. arXiv:2306.05064 – reference: Thoppilan R, De Freitas D, Hall J, Shazeer N, Kulshreshtha A, Cheng H-T, Jin A, Bos T, Baker L, Du Y et al (2022) Lamda: language models for dialog applications. arXiv:2201.08239 – reference: Younis EM, Jones CB, Tanasescu V, Abdelmoty AI (2012) Hybrid geo-spatial query methods on the semantic web with a spatially-enhanced index of dbpedia. In: Geographic information science: 7th international conference, GIScience 2012, Columbus, OH, USA, September 18-21, 2012. proceedings 7. Springer, pp 340–353 – reference: Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M-A, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F et al (2023) Llama: open and efficient foundation language models. arXiv:2302.13971 – reference: Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: International semantic web conference. Springer, pp 722–735 – reference: Shen Y, Chen Z, Cheng G, Qu Y (2021) Ckgg: a chinese knowledge graph for high-school geography education and beyond. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, Proceedings 20. Springer, pp 429–445 – reference: Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo RF, Chang M, Cornelio C, Dana S, Fokoue-Nkoutche A et al (2021) Leveraging abstract meaning representation for knowledge base question answering. In: Findings of the association for computational linguistics: ACL-IJCNLP 2021, pp 3884–3894 – reference: Sun Y, Zhang L, Cheng G, Qu Y (2020) Sparqa: skeleton-based semantic parsing for complex questions over knowledge bases. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 8952–8959 – ident: 1304_CR2 – volume: 31 start-page: 80 issue: 3 year: 2010 ident: 1304_CR25 publication-title: AI Mag – ident: 1304_CR3 doi: 10.1109/ICSC.2013.25 – ident: 1304_CR12 – ident: 1304_CR5 doi: 10.18653/v1/N19-1423 – ident: 1304_CR22 doi: 10.1609/aaai.v34i05.6426 – ident: 1304_CR18 doi: 10.1145/3281354.3281362 – ident: 1304_CR6 doi: 10.1007/978-3-319-69146-6_8 – volume-title: Geospatial technologies for local and regional Development year: 2020 ident: 1304_CR8 – ident: 1304_CR19 doi: 10.1145/3340531.3411888 – ident: 1304_CR13 doi: 10.18653/v1/2020.acl-main.91 – ident: 1304_CR24 – ident: 1304_CR14 doi: 10.1016/j.eswa.2023.120841 – volume: 30 start-page: 824 issue: 5 year: 2017 ident: 1304_CR7 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2766634 – ident: 1304_CR4 doi: 10.1145/3616855.3635772 – volume: 35 start-page: 27730 year: 2022 ident: 1304_CR17 publication-title: Adv Neural Inf Process Syst – ident: 1304_CR27 doi: 10.5194/agile-giss-1-23-2020 – ident: 1304_CR26 doi: 10.1145/2187836.2187923 – volume: 2 start-page: 377 year: 2014 ident: 1304_CR20 publication-title: Trans Assoc Comput Linguist doi: 10.1162/tacl_a_00190 – ident: 1304_CR11 doi: 10.18653/v1/2021.findings-acl.339 – ident: 1304_CR29 doi: 10.1007/978-3-642-33024-7_25 – ident: 1304_CR9 doi: 10.1007/978-3-319-46547-0_11 – ident: 1304_CR1 doi: 10.1007/978-3-540-76298-0_52 – ident: 1304_CR10 doi: 10.1007/978-3-030-88361-4_8 – ident: 1304_CR21 doi: 10.1007/978-3-030-88361-4_25 – ident: 1304_CR28 doi: 10.1007/978-3-319-60045-1_44 – ident: 1304_CR15 doi: 10.18653/v1/D18-1242 – ident: 1304_CR23 – ident: 1304_CR16 doi: 10.1007/978-3-030-14745-7_2 |
SSID | ssib031263228 ssj0062140 |
Score | 2.2860768 |
Snippet | Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2609 |
SubjectTerms | Earth and Environmental Science Earth science Earth science research Earth Sciences Earth System Sciences Geography Graph theory Information Systems Applications (incl.Internet) Knowledge bases (artificial intelligence) Natural language Ontology Queries Questions Scientific research Search engines Simulation and Modeling Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aEbyIn1itkoM3DWwzu5ust1Jbi4IgWOhtyeZDCtqKrUr_vZN0t4uiB4_Lbubwks2bycy8EHIuXOwSYTkzvvcDGT9ishCWRVLpTAvttA4FsvfpYBjfjpJR2RQ2q6rdq5Rk2KnrZjcvqs2QU5jPtsVMrpONBGN3X8g35J1qFUHbS5DzVS4h5WVbpExxdCygbJ353eZ3eqp9zh9p0sA-_R2yXbqNtLOc512yZid7ZPMmXMu72CfP3d71DcPHh84VvauOyainKBpMI_oUSekzCA9SdFQpOn70yZZSlpaa6YsaT-jHWFF_pbbFgaGDd0GNXe0sNMhbH5Bhv_fYHbDyHgWmkMznzILKnFASbFvoJEptBJBmVoGzbQ1xITlAEjlpeOGQrlOdmRjDsMIoKYsIo-1D0phMJ_aIUCPi1CQQoy2EsjAyVQZAZDpLwKkCmuSigi9_Xcpl5LUwsgc7R7DzAHYum6RVIZyXv84sB-80IUkCb5LLCvX69d_Wjv_3-QnZ4mHi_YlKizTmb-_2FB2MeXEW1tMXtXTE5A priority: 102 providerName: Springer Nature |
Title | CEDG-GeoQA: Knowledge base question answering for the geoscience domain via Chinese entity description graph |
URI | https://link.springer.com/article/10.1007/s12145-024-01304-8 https://www.proquest.com/docview/3063929932 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT-MwDLdg0-l4QcDdifEx5eHejui6um1SXtCAbQgkBOgmcU9VmqR3SLDxMUD773GylAkkeGyrOJLt-ufYsQ3wU1RJlQobc-NqPwjxIy5LYXkklc610JXW_oLsaXY0TI4v08sQcHsI1yprm-gNtRlrFyP_jQ5LyXZivHd7x93UKJddDSM0FqFJJlimDWju907PLmqNwo5rRx6_5hWyOJRIyizlUSIwlNHMiulc025OmMVdNi_h8i1Uzf3PdylTj0T9FVgOLiTrzmS-Cgt2tAZfwzTz_9M1-DLw43qn3-D6oHc44PR43t1lJ3X4jDnoYn4bkgojsHr2DQkZObCMHEL2z4YWl5aZ8Y26GrGnK8XcqG1LC31l75QZ-2pxmN_5Owz7vT8HRzzMV-CKQH7CLaq8Ekqi7QidRpmNELPcKqxsR2NSyhgxjSpp4rIiGM90bhI6npVGSVlGdAr_AY3ReGTXgRmRZCbFhGgRW0sjM2UQRa7zFCtVYgt-1awsbmdtNIp5w2TH-IIYX3jGF7IFWzW3i_BLPRRzBWjBTi2B-eePqW18Tm0TlmIvdBdZ2YLG5P7RbpOjMSnbsCj7gzY0u4O_J7120C16O4y7Lygc0KA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEKKXqrzEtrT1AU5gkfUksYNUVRQWFhZWgEDiFhzbaZHaXVqWov1T_Y0dexNWIMGNY2RlLI0_zzf2eGYAVmUZl4l0gluf-0GMH3FVSMcjpU1mpCmNCQ9ku2n7Ij68TC4n4F-dC-OfVdY2MRhq2zf-jnwTPZeS7UTx9eY3912jfHS1bqExgkXHDe_pyHb75WCX1ndNiL3W-U6bV10FuCZqG3CHOiulVuia0iRR6iLENHMaS9c0GBdKICZRqawoSiKv1GQ2pkNJYbVSRURnT5I7CdPkZmS0i6a_tbonZzWCsenLn4uHOEYqqpRMlSY8iiVWaTuj5D1fJJwTR3IfPYy5ekyNY3_3SYg2MN_eO3hbuaxse4SxOZhwvXmYrbqn_xjOw8x-aA88XICfO63dfU6fp9tbrFNf1zFPlSxMQyhgRI73oQAiI4eZkQPKvruqpKZjtv9LX_fY32vNfGtvRz-GTOIhs-7BwrEw8yJcvIrml2Cq1--5ZWBWxqlNMCZZpNbCqlRbRJmZLMFSF9iA9VqV-c2obEc-LtDsFZ-T4vOg-Fw1YKXWdl5t4dt8DLgGbNQrMB5-Xtr7l6V9htn2-fFRfnTQ7XyANyIAwN_qrMDU4M-d-0hOzqD4VCGLwdVrg_k_fyMKfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVDwuCAqItAV8gBNY3Xh2114khEqTtCUoKohKvW29fkAlmpQ2UOWv8esYO95GIMGtx9Vqx9L42_nGnhfAc-lzX0gnuA21H8T4GVeNdDxT2lRGGm9MTJAdl3uH-fuj4mgFfrW1MCGtsrWJ0VDbqQl35FsYuJRsJ4otn9IiDvrDt2ffeZggFSKt7TiNBURGbn5Jx7eLN_t92usXQgwHn3f2eJowwDXR3Iw71JWXWqHrSVNkpcsQy8pp9K5nMG-UQCwyr6xoPBFZaSqb0wGlsVqpJqNzKMm9AauSWFF1YPXdYHzwqUUz9kIrdHEV0yhFKs9UZcGzXGIq4VkU8oWG4Zz4kodIYs7VnzS59H3_CtdGFhzeg7vJfWXbC7zdhxU3WYPbaZL61_ka3NyNo4LnD-DbzqC_y-nx4_ZrNmqv7ligTRaXIUQwIsrL2AyRkfPMyBllX1xqr-mYnZ7qkwn7eaJZGPPt6MNYVTxn1l1ZOxZXfgiH16L5R9CZTCfuMTAr89IWmJMsUmtjVaktoqxMVaDXDXbhZavK-mzRwqNeNmsOiq9J8XVUfK26sNlqu06_80W9BF8XXrU7sHz9b2nr_5f2DG4RiOsP--PRBtwRcf_DBc8mdGbnP9wT8ndmzdMELAbH143l39gYDqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEDG-GeoQA%3A+Knowledge+base+question+answering+for+the+geoscience+domain+via+Chinese+entity+description+graph&rft.jtitle=Earth+science+informatics&rft.au=Wei%2C+Lai&rft.au=Lu%2C+Qinghua&rft.au=Duan%2C+Yilin&rft.au=Yao%2C+Hong&rft.date=2024-06-01&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=17&rft.issue=3&rft.spage=2609&rft.epage=2621&rft_id=info:doi/10.1007%2Fs12145-024-01304-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12145_024_01304_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon |