CEDG-GeoQA: Knowledge base question answering for the geoscience domain via Chinese entity description graph

Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or specialized databases. However, the quality of search engine results varies, and geoscience databases do not support natural language queries. To...

Full description

Saved in:
Bibliographic Details
Published inEarth science informatics Vol. 17; no. 3; pp. 2609 - 2621
Main Authors Wei, Lai, Lu, Qinghua, Duan, Yilin, Yao, Hong, Kang, Xiaojun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1865-0473
1865-0481
DOI10.1007/s12145-024-01304-8

Cover

Loading…
Abstract Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or specialized databases. However, the quality of search engine results varies, and geoscience databases do not support natural language queries. To address these challenges, Geoscience Question Answering (GeoQA) systems have been developed to provide answers to natural language queries. Much of the existing research in geoscience QA primarily focuses on geography, with other domains remaining relatively unexplored. To bridge this gap, our study introduces a Chinese geoscience QA dataset that covers a wide range of topics, including geography, climate, and culture. Additionally, we propose the CEDG-GeoQA framework for Chinese geoscience QA. The model begins by utilizing syntactic parsing to convert unstructured queries into an entity description graph (EDG). Subsequently, it aligns the EDG with a comprehensive geoscience knowledge base, extracting a subgraph centered around the subject entity. This subgraph is used to assess candidate answers and determine the most likely response. Our comprehensive experiments, conducted using a Chinese geo-knowledge base, demonstrate the superior performance of our method, achieving a 5% improvement in the F1 measure compared to existing baselines, including WDAqua, gAnswer, and NSQA.
AbstractList Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or specialized databases. However, the quality of search engine results varies, and geoscience databases do not support natural language queries. To address these challenges, Geoscience Question Answering (GeoQA) systems have been developed to provide answers to natural language queries. Much of the existing research in geoscience QA primarily focuses on geography, with other domains remaining relatively unexplored. To bridge this gap, our study introduces a Chinese geoscience QA dataset that covers a wide range of topics, including geography, climate, and culture. Additionally, we propose the CEDG-GeoQA framework for Chinese geoscience QA. The model begins by utilizing syntactic parsing to convert unstructured queries into an entity description graph (EDG). Subsequently, it aligns the EDG with a comprehensive geoscience knowledge base, extracting a subgraph centered around the subject entity. This subgraph is used to assess candidate answers and determine the most likely response. Our comprehensive experiments, conducted using a Chinese geo-knowledge base, demonstrate the superior performance of our method, achieving a 5% improvement in the F1 measure compared to existing baselines, including WDAqua, gAnswer, and NSQA.
Author Wei, Lai
Yao, Hong
Kang, Xiaojun
Duan, Yilin
Lu, Qinghua
Author_xml – sequence: 1
  givenname: Lai
  surname: Wei
  fullname: Wei, Lai
  organization: School of Computer Science, China University of Geosciences
– sequence: 2
  givenname: Qinghua
  surname: Lu
  fullname: Lu, Qinghua
  organization: School of Computer Science, China University of Geosciences
– sequence: 3
  givenname: Yilin
  surname: Duan
  fullname: Duan, Yilin
  organization: School of Computer Science, China University of Geosciences
– sequence: 4
  givenname: Hong
  surname: Yao
  fullname: Yao, Hong
  organization: School of Computer Science, China University of Geosciences, Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences
– sequence: 5
  givenname: Xiaojun
  surname: Kang
  fullname: Kang, Xiaojun
  email: kangxj@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences
BookMark eNp9kFFLwzAQx4MoOOe-gE8Bn6tJrusS38acUxyIoM8hba9dZEtq0jn27e1W0Tef7jju9z_ud0FOnXdIyBVnN5yxyW3kgqfjhIk0YRxYmsgTMuAy60ap5Ke__QTOyShGmzPgIgMh5ICsZ_P7RbJA_zq9o8_O79ZY1khzE5F-bjG21jtqXNxhsK6mlQ-0XSGt0cfCoiuQln5jrKNf1tDZyjrsQHStbfe0xFgE2xwj6mCa1SU5q8w64uinDsn7w_xt9pgsXxZPs-kyMUJBmyAYVU2MBOSTYswyZACZQgMV8gLSXAqAMatkKfIqy3hWqDKVSuWlkTJnmMOQXPe5TfDHJ_SH3wbXndTAMlBCKRDdlui3iuBjDFjpJtiNCXvNmT6I1b1Y3YnVR7FadhD0UGwOQjD8Rf9DfQPANH1r
Cites_doi 10.1109/ICSC.2013.25
10.18653/v1/N19-1423
10.1609/aaai.v34i05.6426
10.1145/3281354.3281362
10.1007/978-3-319-69146-6_8
10.1145/3340531.3411888
10.18653/v1/2020.acl-main.91
10.1016/j.eswa.2023.120841
10.1109/TKDE.2017.2766634
10.1145/3616855.3635772
10.5194/agile-giss-1-23-2020
10.1145/2187836.2187923
10.1162/tacl_a_00190
10.18653/v1/2021.findings-acl.339
10.1007/978-3-642-33024-7_25
10.1007/978-3-319-46547-0_11
10.1007/978-3-540-76298-0_52
10.1007/978-3-030-88361-4_8
10.1007/978-3-030-88361-4_25
10.1007/978-3-319-60045-1_44
10.18653/v1/D18-1242
10.1007/978-3-030-14745-7_2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TG
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
KL.
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s12145-024-01304-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Geography
EISSN 1865-0481
EndPage 2621
ExternalDocumentID 10_1007_s12145_024_01304_8
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: 61972365
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
1N0
203
2JN
2KG
2VQ
2~H
30V
3V.
4.4
406
408
40D
67M
67Z
6NX
88I
8FE
8FG
8FH
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXD
IZQ
J-C
J0Z
JBSCW
JZLTJ
K6V
K7-
KOV
L8X
LK5
LLZTM
M0N
M2P
M4Y
M7R
MK~
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
PCBAR
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TG
7XB
8AL
8FD
8FK
ABRTQ
JQ2
KL.
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-a293t-e3a9f7a83e17c506e03369ea3fe1c34b823350f8d2bf6616c9d4899bda88b0eb3
IEDL.DBID BENPR
ISSN 1865-0473
IngestDate Fri Jul 25 09:35:08 EDT 2025
Tue Jul 01 01:18:06 EDT 2025
Fri Feb 21 02:42:25 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Semantic parsing
Geoscience domain
Geoscience question answering
Knowledge graph
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a293t-e3a9f7a83e17c506e03369ea3fe1c34b823350f8d2bf6616c9d4899bda88b0eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3063929932
PQPubID 54345
PageCount 13
ParticipantIDs proquest_journals_3063929932
crossref_primary_10_1007_s12145_024_01304_8
springer_journals_10_1007_s12145_024_01304_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Earth science informatics
PublicationTitleAbbrev Earth Sci Inform
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Unger C, Bühmann L, Lehmann J, Ngonga Ngomo A-C, Gerber D, Cimiano P (2012) Template-based question answering over rdf data. In: Proceedings of the 21st international conference on world wide web, pp 639–648
Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo R, Chang M, Cornelio C, Dana S, Fokoue A et al (2020) Question answering over knowledge bases by leveraging semantic parsing and neuro-symbolic reasoning. arXiv:2012.01707
Thoppilan R, De Freitas D, Hall J, Shazeer N, Kulshreshtha A, Cheng H-T, Jin A, Bos T, Baker L, Du Y et al (2022) Lamda: language models for dialog applications. arXiv:2201.08239
Shen Y, Chen Z, Cheng G, Qu Y (2021) Ckgg: a chinese knowledge graph for high-school geography education and beyond. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, Proceedings 20. Springer, pp 429–445
Sun Y, Zhang L, Cheng G, Qu Y (2020) Sparqa: skeleton-based semantic parsing for complex questions over knowledge bases. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 8952–8959
Chen W, Fosler-Lussier E, Xiao N, Raje S, Ramnath R, Sui D (2013) A synergistic framework for geographic question answering. In: 2013 IEEE Seventh international conference on semantic computing. IEEE, pp 94–99
Deng C, Zhang T, He Z, Chen Q, Shi Y, Zhou L, Fu L, Zhang W, Wang X, Zhou C et al (2023) Learning a foundation language model for geoscience knowledge understanding and utilization. arXiv:2306.05064
OuyangLWuJJiangXAlmeidaDWainwrightCMishkinPZhangCAgarwalSSlamaKRayATraining language models to follow instructions with human feedbackAdv Neural Inf Process Syst2022352773027744
Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M-A, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F et al (2023) Llama: open and efficient foundation language models. arXiv:2302.13971
Xu B, Xu Y, Liang J, Xie C, Liang B, Cui W, Xiao Y (2017) Cn-dbpedia: a never-ending chinese knowledge extraction system. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp 428–438
Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 969–974
Hu X, Shu Y, Huang X, Qu Y (2021) Edg-based question decomposition for complex question answering over knowledge bases. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, proceedings 20. Springer, pp 128–145
Punjani D, Singh K, Both A, Koubarakis M, Angelidis I, Bereta K, Beris T, Bilidas D, Ioannidis T, Karalis N et al (2018) Template-based question answering over linked geospatial data. In: Proceedings of the 12th workshop on geographic information retrieval, pp 1–10
Hu W, Li H, Sun Z, Qian X, Xue L, Cao E, Qu Y (2016) Clinga: bringing chinese physical and human geography in linked open data. In: The semantic web–ISWC 2016: 15th international semantic web conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II 15. Springer, pp 104–112
Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423
Diefenbach D, Singh K, Maret P (2017) Wdaqua-core0: a question answering component for the research community. In: Semantic web challenges: 4th SemWebEval challenge at ESWC 2017, Portoroz, Slovenia, May 28-June 1, 2017, Revised Selected Papers. Springer, pp 84–89
Younis EM, Jones CB, Tanasescu V, Abdelmoty AI (2012) Hybrid geo-spatial query methods on the semantic web with a spatially-enhanced index of dbpedia. In: Geographic information science: 7th international conference, GIScience 2012, Columbus, OH, USA, September 18-21, 2012. proceedings 7. Springer, pp 340–353
Luo K, Lin F, Luo X, Zhu K (2018) Knowledge base question answering via encoding of complex query graphs. In: Proceedings of the 2018 conference on empirical methods in natural language processing, pp 2185–2194
HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201730582483710.1109/TKDE.2017.2766634
Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo RF, Chang M, Cornelio C, Dana S, Fokoue-Nkoutche A et al (2021) Leveraging abstract meaning representation for knowledge base question answering. In: Findings of the association for computational linguistics: ACL-IJCNLP 2021, pp 3884–3894
Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: International semantic web conference. Springer, pp 722–735
Berant J, Chou A, Frostig R, Liang P (2013) Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1533–1544
Mai G, Yan B, Janowicz K, Zhu R (2020) Relaxing unanswerable geographic questions using a spatially explicit knowledge graph embedding model. In: Geospatial technologies for local and regional development: proceedings of the 22nd AGILE conference on geographic information science 22. Springer, pp 21–39
Tunstall-PedoeWTrue knowledge: open-domain question answering using structured knowledge and inferenceAI Mag20103138092
ReddySLapataMSteedmanMLarge-scale semantic parsing without question-answer pairsTrans Assoc Comput Linguist2014237739210.1162/tacl_a_00190
Qiu Y, Zhang K, Wang Y, Jin X, Bai L, Guan S, Cheng X (2020) Hierarchical query graph generation for complex question answering over knowledge graph. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 1285–1294
Xu H, Hamzei E, Nyamsuren E, Kruiger H, Winter S, Tomko M, Scheider S (2020) Extracting interrogative intents and concepts from geo-analytic questions. AGILE: GIScience Series 1:23
HuberCRinnerCKyriakidisPHadjimitsisDSkarlatosDMansourianAGeospatial technologies for local and regional Development2020Springer
Liu C, Ji X, Dong Y, He M, Yang M, Wang Y (2023) Chinese mineral question and answering system based on knowledge graph. Expert Syst Appl 120841
S Reddy (1304_CR20) 2014; 2
L Ouyang (1304_CR17) 2022; 35
1304_CR21
S Hu (1304_CR7) 2017; 30
1304_CR28
1304_CR29
1304_CR26
1304_CR27
1304_CR24
1304_CR22
1304_CR23
1304_CR1
1304_CR2
1304_CR3
1304_CR4
1304_CR5
1304_CR6
1304_CR19
1304_CR10
W Tunstall-Pedoe (1304_CR25) 2010; 31
C Huber (1304_CR8) 2020
1304_CR9
1304_CR18
1304_CR15
1304_CR16
1304_CR13
1304_CR14
1304_CR11
1304_CR12
References_xml – reference: Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo R, Chang M, Cornelio C, Dana S, Fokoue A et al (2020) Question answering over knowledge bases by leveraging semantic parsing and neuro-symbolic reasoning. arXiv:2012.01707
– reference: Hu W, Li H, Sun Z, Qian X, Xue L, Cao E, Qu Y (2016) Clinga: bringing chinese physical and human geography in linked open data. In: The semantic web–ISWC 2016: 15th international semantic web conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II 15. Springer, pp 104–112
– reference: Chen W, Fosler-Lussier E, Xiao N, Raje S, Ramnath R, Sui D (2013) A synergistic framework for geographic question answering. In: 2013 IEEE Seventh international conference on semantic computing. IEEE, pp 94–99
– reference: Qiu Y, Zhang K, Wang Y, Jin X, Bai L, Guan S, Cheng X (2020) Hierarchical query graph generation for complex question answering over knowledge graph. In: Proceedings of the 29th ACM international conference on information & knowledge management, pp 1285–1294
– reference: HuSZouLYuJXWangHZhaoDAnswering natural language questions by subgraph matching over knowledge graphsIEEE Trans Knowl Data Eng201730582483710.1109/TKDE.2017.2766634
– reference: Hu X, Shu Y, Huang X, Qu Y (2021) Edg-based question decomposition for complex question answering over knowledge bases. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, proceedings 20. Springer, pp 128–145
– reference: Diefenbach D, Singh K, Maret P (2017) Wdaqua-core0: a question answering component for the research community. In: Semantic web challenges: 4th SemWebEval challenge at ESWC 2017, Portoroz, Slovenia, May 28-June 1, 2017, Revised Selected Papers. Springer, pp 84–89
– reference: ReddySLapataMSteedmanMLarge-scale semantic parsing without question-answer pairsTrans Assoc Comput Linguist2014237739210.1162/tacl_a_00190
– reference: Xu B, Xu Y, Liang J, Xie C, Liang B, Cui W, Xiao Y (2017) Cn-dbpedia: a never-ending chinese knowledge extraction system. In: International conference on industrial, engineering and other applications of applied intelligent systems. Springer, pp 428–438
– reference: Liu C, Ji X, Dong Y, He M, Yang M, Wang Y (2023) Chinese mineral question and answering system based on knowledge graph. Expert Syst Appl 120841
– reference: Unger C, Bühmann L, Lehmann J, Ngonga Ngomo A-C, Gerber D, Cimiano P (2012) Template-based question answering over rdf data. In: Proceedings of the 21st international conference on world wide web, pp 639–648
– reference: Luo K, Lin F, Luo X, Zhu K (2018) Knowledge base question answering via encoding of complex query graphs. In: Proceedings of the 2018 conference on empirical methods in natural language processing, pp 2185–2194
– reference: Mai G, Yan B, Janowicz K, Zhu R (2020) Relaxing unanswerable geographic questions using a spatially explicit knowledge graph embedding model. In: Geospatial technologies for local and regional development: proceedings of the 22nd AGILE conference on geographic information science 22. Springer, pp 21–39
– reference: Berant J, Chou A, Frostig R, Liang P (2013) Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1533–1544
– reference: OuyangLWuJJiangXAlmeidaDWainwrightCMishkinPZhangCAgarwalSSlamaKRayATraining language models to follow instructions with human feedbackAdv Neural Inf Process Syst2022352773027744
– reference: Tunstall-PedoeWTrue knowledge: open-domain question answering using structured knowledge and inferenceAI Mag20103138092
– reference: Xu H, Hamzei E, Nyamsuren E, Kruiger H, Winter S, Tomko M, Scheider S (2020) Extracting interrogative intents and concepts from geo-analytic questions. AGILE: GIScience Series 1:23
– reference: Lan Y, Jiang J (2020) Query graph generation for answering multi-hop complex questions from knowledge bases. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 969–974
– reference: HuberCRinnerCKyriakidisPHadjimitsisDSkarlatosDMansourianAGeospatial technologies for local and regional Development2020Springer
– reference: Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423
– reference: Punjani D, Singh K, Both A, Koubarakis M, Angelidis I, Bereta K, Beris T, Bilidas D, Ioannidis T, Karalis N et al (2018) Template-based question answering over linked geospatial data. In: Proceedings of the 12th workshop on geographic information retrieval, pp 1–10
– reference: Deng C, Zhang T, He Z, Chen Q, Shi Y, Zhou L, Fu L, Zhang W, Wang X, Zhou C et al (2023) Learning a foundation language model for geoscience knowledge understanding and utilization. arXiv:2306.05064
– reference: Thoppilan R, De Freitas D, Hall J, Shazeer N, Kulshreshtha A, Cheng H-T, Jin A, Bos T, Baker L, Du Y et al (2022) Lamda: language models for dialog applications. arXiv:2201.08239
– reference: Younis EM, Jones CB, Tanasescu V, Abdelmoty AI (2012) Hybrid geo-spatial query methods on the semantic web with a spatially-enhanced index of dbpedia. In: Geographic information science: 7th international conference, GIScience 2012, Columbus, OH, USA, September 18-21, 2012. proceedings 7. Springer, pp 340–353
– reference: Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M-A, Lacroix T, Rozière B, Goyal N, Hambro E, Azhar F et al (2023) Llama: open and efficient foundation language models. arXiv:2302.13971
– reference: Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: International semantic web conference. Springer, pp 722–735
– reference: Shen Y, Chen Z, Cheng G, Qu Y (2021) Ckgg: a chinese knowledge graph for high-school geography education and beyond. In: The semantic web–ISWC 2021: 20th international semantic web conference, ISWC 2021, Virtual Event, October 24–28, 2021, Proceedings 20. Springer, pp 429–445
– reference: Kapanipathi P, Abdelaziz I, Ravishankar S, Roukos S, Gray A, Astudillo RF, Chang M, Cornelio C, Dana S, Fokoue-Nkoutche A et al (2021) Leveraging abstract meaning representation for knowledge base question answering. In: Findings of the association for computational linguistics: ACL-IJCNLP 2021, pp 3884–3894
– reference: Sun Y, Zhang L, Cheng G, Qu Y (2020) Sparqa: skeleton-based semantic parsing for complex questions over knowledge bases. In: Proceedings of the AAAI conference on artificial intelligence, vol 34, pp 8952–8959
– ident: 1304_CR2
– volume: 31
  start-page: 80
  issue: 3
  year: 2010
  ident: 1304_CR25
  publication-title: AI Mag
– ident: 1304_CR3
  doi: 10.1109/ICSC.2013.25
– ident: 1304_CR12
– ident: 1304_CR5
  doi: 10.18653/v1/N19-1423
– ident: 1304_CR22
  doi: 10.1609/aaai.v34i05.6426
– ident: 1304_CR18
  doi: 10.1145/3281354.3281362
– ident: 1304_CR6
  doi: 10.1007/978-3-319-69146-6_8
– volume-title: Geospatial technologies for local and regional Development
  year: 2020
  ident: 1304_CR8
– ident: 1304_CR19
  doi: 10.1145/3340531.3411888
– ident: 1304_CR13
  doi: 10.18653/v1/2020.acl-main.91
– ident: 1304_CR24
– ident: 1304_CR14
  doi: 10.1016/j.eswa.2023.120841
– volume: 30
  start-page: 824
  issue: 5
  year: 2017
  ident: 1304_CR7
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2766634
– ident: 1304_CR4
  doi: 10.1145/3616855.3635772
– volume: 35
  start-page: 27730
  year: 2022
  ident: 1304_CR17
  publication-title: Adv Neural Inf Process Syst
– ident: 1304_CR27
  doi: 10.5194/agile-giss-1-23-2020
– ident: 1304_CR26
  doi: 10.1145/2187836.2187923
– volume: 2
  start-page: 377
  year: 2014
  ident: 1304_CR20
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00190
– ident: 1304_CR11
  doi: 10.18653/v1/2021.findings-acl.339
– ident: 1304_CR29
  doi: 10.1007/978-3-642-33024-7_25
– ident: 1304_CR9
  doi: 10.1007/978-3-319-46547-0_11
– ident: 1304_CR1
  doi: 10.1007/978-3-540-76298-0_52
– ident: 1304_CR10
  doi: 10.1007/978-3-030-88361-4_8
– ident: 1304_CR21
  doi: 10.1007/978-3-030-88361-4_25
– ident: 1304_CR28
  doi: 10.1007/978-3-319-60045-1_44
– ident: 1304_CR15
  doi: 10.18653/v1/D18-1242
– ident: 1304_CR23
– ident: 1304_CR16
  doi: 10.1007/978-3-030-14745-7_2
SSID ssib031263228
ssj0062140
Score 2.2860768
Snippet Acquiring geoscience knowledge is crucial for advancing earth science research. Currently, geoscience knowledge can be obtained through search engines or...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2609
SubjectTerms Earth and Environmental Science
Earth science
Earth science research
Earth Sciences
Earth System Sciences
Geography
Graph theory
Information Systems Applications (incl.Internet)
Knowledge bases (artificial intelligence)
Natural language
Ontology
Queries
Questions
Scientific research
Search engines
Simulation and Modeling
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aEbyIn1itkoM3DWwzu5ust1Jbi4IgWOhtyeZDCtqKrUr_vZN0t4uiB4_Lbubwks2bycy8EHIuXOwSYTkzvvcDGT9ishCWRVLpTAvttA4FsvfpYBjfjpJR2RQ2q6rdq5Rk2KnrZjcvqs2QU5jPtsVMrpONBGN3X8g35J1qFUHbS5DzVS4h5WVbpExxdCygbJ353eZ3eqp9zh9p0sA-_R2yXbqNtLOc512yZid7ZPMmXMu72CfP3d71DcPHh84VvauOyainKBpMI_oUSekzCA9SdFQpOn70yZZSlpaa6YsaT-jHWFF_pbbFgaGDd0GNXe0sNMhbH5Bhv_fYHbDyHgWmkMznzILKnFASbFvoJEptBJBmVoGzbQ1xITlAEjlpeOGQrlOdmRjDsMIoKYsIo-1D0phMJ_aIUCPi1CQQoy2EsjAyVQZAZDpLwKkCmuSigi9_Xcpl5LUwsgc7R7DzAHYum6RVIZyXv84sB-80IUkCb5LLCvX69d_Wjv_3-QnZ4mHi_YlKizTmb-_2FB2MeXEW1tMXtXTE5A
  priority: 102
  providerName: Springer Nature
Title CEDG-GeoQA: Knowledge base question answering for the geoscience domain via Chinese entity description graph
URI https://link.springer.com/article/10.1007/s12145-024-01304-8
https://www.proquest.com/docview/3063929932
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT-MwDLdg0-l4QcDdifEx5eHejui6um1SXtCAbQgkBOgmcU9VmqR3SLDxMUD773GylAkkeGyrOJLt-ufYsQ3wU1RJlQobc-NqPwjxIy5LYXkklc610JXW_oLsaXY0TI4v08sQcHsI1yprm-gNtRlrFyP_jQ5LyXZivHd7x93UKJddDSM0FqFJJlimDWju907PLmqNwo5rRx6_5hWyOJRIyizlUSIwlNHMiulc025OmMVdNi_h8i1Uzf3PdylTj0T9FVgOLiTrzmS-Cgt2tAZfwzTz_9M1-DLw43qn3-D6oHc44PR43t1lJ3X4jDnoYn4bkgojsHr2DQkZObCMHEL2z4YWl5aZ8Y26GrGnK8XcqG1LC31l75QZ-2pxmN_5Owz7vT8HRzzMV-CKQH7CLaq8Ekqi7QidRpmNELPcKqxsR2NSyhgxjSpp4rIiGM90bhI6npVGSVlGdAr_AY3ReGTXgRmRZCbFhGgRW0sjM2UQRa7zFCtVYgt-1awsbmdtNIp5w2TH-IIYX3jGF7IFWzW3i_BLPRRzBWjBTi2B-eePqW18Tm0TlmIvdBdZ2YLG5P7RbpOjMSnbsCj7gzY0u4O_J7120C16O4y7Lygc0KA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEKKXqrzEtrT1AU5gkfUksYNUVRQWFhZWgEDiFhzbaZHaXVqWov1T_Y0dexNWIMGNY2RlLI0_zzf2eGYAVmUZl4l0gluf-0GMH3FVSMcjpU1mpCmNCQ9ku2n7Ij68TC4n4F-dC-OfVdY2MRhq2zf-jnwTPZeS7UTx9eY3912jfHS1bqExgkXHDe_pyHb75WCX1ndNiL3W-U6bV10FuCZqG3CHOiulVuia0iRR6iLENHMaS9c0GBdKICZRqawoSiKv1GQ2pkNJYbVSRURnT5I7CdPkZmS0i6a_tbonZzWCsenLn4uHOEYqqpRMlSY8iiVWaTuj5D1fJJwTR3IfPYy5ekyNY3_3SYg2MN_eO3hbuaxse4SxOZhwvXmYrbqn_xjOw8x-aA88XICfO63dfU6fp9tbrFNf1zFPlSxMQyhgRI73oQAiI4eZkQPKvruqpKZjtv9LX_fY32vNfGtvRz-GTOIhs-7BwrEw8yJcvIrml2Cq1--5ZWBWxqlNMCZZpNbCqlRbRJmZLMFSF9iA9VqV-c2obEc-LtDsFZ-T4vOg-Fw1YKXWdl5t4dt8DLgGbNQrMB5-Xtr7l6V9htn2-fFRfnTQ7XyANyIAwN_qrMDU4M-d-0hOzqD4VCGLwdVrg_k_fyMKfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVDwuCAqItAV8gBNY3Xh2114khEqTtCUoKohKvW29fkAlmpQ2UOWv8esYO95GIMGtx9Vqx9L42_nGnhfAc-lzX0gnuA21H8T4GVeNdDxT2lRGGm9MTJAdl3uH-fuj4mgFfrW1MCGtsrWJ0VDbqQl35FsYuJRsJ4otn9IiDvrDt2ffeZggFSKt7TiNBURGbn5Jx7eLN_t92usXQgwHn3f2eJowwDXR3Iw71JWXWqHrSVNkpcsQy8pp9K5nMG-UQCwyr6xoPBFZaSqb0wGlsVqpJqNzKMm9AauSWFF1YPXdYHzwqUUz9kIrdHEV0yhFKs9UZcGzXGIq4VkU8oWG4Zz4kodIYs7VnzS59H3_CtdGFhzeg7vJfWXbC7zdhxU3WYPbaZL61_ka3NyNo4LnD-DbzqC_y-nx4_ZrNmqv7ligTRaXIUQwIsrL2AyRkfPMyBllX1xqr-mYnZ7qkwn7eaJZGPPt6MNYVTxn1l1ZOxZXfgiH16L5R9CZTCfuMTAr89IWmJMsUmtjVaktoqxMVaDXDXbhZavK-mzRwqNeNmsOiq9J8XVUfK26sNlqu06_80W9BF8XXrU7sHz9b2nr_5f2DG4RiOsP--PRBtwRcf_DBc8mdGbnP9wT8ndmzdMELAbH143l39gYDqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEDG-GeoQA%3A+Knowledge+base+question+answering+for+the+geoscience+domain+via+Chinese+entity+description+graph&rft.jtitle=Earth+science+informatics&rft.au=Wei%2C+Lai&rft.au=Lu%2C+Qinghua&rft.au=Duan%2C+Yilin&rft.au=Yao%2C+Hong&rft.date=2024-06-01&rft.issn=1865-0473&rft.eissn=1865-0481&rft.volume=17&rft.issue=3&rft.spage=2609&rft.epage=2621&rft_id=info:doi/10.1007%2Fs12145-024-01304-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12145_024_01304_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0473&client=summon