An epidemiological forecast model and software assessing interventions on the COVID-19 epidemic in China
We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is buil...
Saved in:
Published in | Journal of Data Science Vol. 18; no. 3; pp. 409 - 432 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
中華資料採礦協會
17.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1683-8602 1680-743X 1683-8602 |
DOI | 10.6339/JDS.202007_18(3).0003 |
Cover
Loading…
Abstract | We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level 'macro' isolation policies and community-level 'micro' social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed. |
---|---|
AbstractList | We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level 'macro' isolation policies and community-level 'micro' social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed. |
Author | Yiwang Zhou Daniel Barker Lu Tang Bin Zhu Fei Wang Jie He Marisa C. Eisenberg Michael Kleinsasser Peter X.K. Song Lili Wang |
Author_xml | – sequence: 1 givenname: Lili surname: Wang fullname: Wang, Lili – sequence: 2 givenname: Yiwang surname: Zhou fullname: Zhou, Yiwang – sequence: 3 givenname: Jie surname: He fullname: He, Jie – sequence: 4 givenname: Bin surname: Zhu fullname: Zhu, Bin – sequence: 5 givenname: Fei surname: Wang fullname: Wang, Fei – sequence: 6 givenname: Lu surname: Tang fullname: Tang, Lu – sequence: 7 givenname: Michael surname: Kleinsasser fullname: Kleinsasser, Michael – sequence: 8 givenname: Daniel surname: Barker fullname: Barker, Daniel – sequence: 9 givenname: Marisa C. surname: Eisenberg fullname: Eisenberg, Marisa C. – sequence: 10 givenname: Peter X.K. surname: Song fullname: Song, Peter X.K. |
BookMark | eNpVkE1PAjEQhhujiYD-BJMe9bA4bZelPRJQwZBw8OPadPsBJdCSdtX4711EjJ7emWSeN5Oni05DDBahKwL9ijFx-zh56lOgAENJ-DW76QMAO0EdUnFW8Aro6Z_5HHVzXgNQARw6aDUK2O68sVsfN3HptdpgF5PVKjd4G43dYBUMztE1HypZrHK2OfuwxD40Nr3b0PgYMo4BNyuLx4vX2aQg4tip2zM8XvmgLtCZU5tsL3-yh17u757H02K-eJiNR_NCUcFYYRQtNZQVB22BKDYEXTniuBk6QYwxlg_qui65U1VtamZ0VREmShgIpalxgvXQ4NCrU8w5WSd3yW9V-pQE5F6XbHXJX12SSbnX1XLTA6d88o2X6_iWQvuo3Jvbizsy38Fp2VL0_1KCkCWj7Avbi3Ty |
ContentType | Journal Article |
DBID | 188 AAYXX CITATION |
DOI | 10.6339/JDS.202007_18(3).0003 |
DatabaseName | 華藝電子期刊 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1683-8602 |
EndPage | 432 |
ExternalDocumentID | 10_6339_JDS_202007_18_3__0003 16838602_202007_202008240002_202008240002_409_432 |
GroupedDBID | 188 29K 2UF 2WC 5GY ABDBF ACGFO ACIPV AEGXH AIAGR AINHJ ALMA_UNASSIGNED_HOLDINGS ATFKH CNMHZ CVCKV D-I E3Z EAD EAP EBS EJD EMK EPL ESX GROUPED_DOAJ J9A M~E OK1 P2P RNS TR2 TUS TUXDW UY8 UZ4 XSB AAYXX ACUHS CITATION OVT |
ID | FETCH-LOGICAL-a2933-da24c04680ce01a370c6f1f8d7f91ddde85bbb48fa6bdb3dc661394059ac2df93 |
ISSN | 1683-8602 1680-743X |
IngestDate | Tue Jul 01 03:02:42 EDT 2025 Tue Oct 01 22:51:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Infectious disease under-reporting SIR model turning point MCMC prediction Runga-Kutta approximation coronavirus |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a2933-da24c04680ce01a370c6f1f8d7f91ddde85bbb48fa6bdb3dc661394059ac2df93 |
OpenAccessLink | https://jds-online.org/journal/JDS/article/28/file/pdf |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_6339_JDS_202007_18_3__0003 airiti_journals_16838602_202007_202008240002_202008240002_409_432 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-17 |
PublicationDateYYYYMMDD | 2021-01-17 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Data Science |
PublicationYear | 2021 |
Publisher | 中華資料採礦協會 |
Publisher_xml | – name: 中華資料採礦協會 |
SSID | ssj0029080 ssib006573294 ssib044743962 |
Score | 2.408071 |
Snippet | We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As... |
SourceID | crossref airiti |
SourceType | Index Database Publisher |
StartPage | 409 |
Title | An epidemiological forecast model and software assessing interventions on the COVID-19 epidemic in China |
URI | https://www.airitilibrary.com/Article/Detail/16838602-202007-202008240002-202008240002-409-432 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBIECML_nAAVR5OLHj2MeygcbEx4EN9WbZTiIiTSliqSb463m24ySrJsS4pK2VviZ5v74vvw-EXjY2a2idZ4QVlSJccEGkVYyUtiylo3WRc1_g_OmzOD7jJ-tivVj8mmUtbXt74H5fW1fyP1yFNeCrr5K9AWdHorAA74G_cAQOw_GfeLzqlvU04TUVI9bOXPRxxM0yhsWb_tIneJmwwRuLWKZMx7RfsDz88u3DEclUoulCRWCar32NBeuzS5eDCp0C81F4fGzP2ykovdkGUd9emkFRhuhrQFBbT6eFs94OvcCHUETu4xAkVl4O0lNISsAkWUflktYY8YOuZlKSUzVTuDwGOHdluWDMt0I9OfoKXryPqOpMgtHt48--6SSbFFjatN_Ra2O2Ifg5npgGUnokpZn2G-_sFrqdg4eRzbzxIIqKkuWTqOLcO25i7EyWKxqG8o13HIvD_M-8uXLFr9jrcLVg4JjWt6ma2T8zQ-b0Hro78A-vIpzuo0XdPUDfVx3egRJOUMIBShighBOU8AglfAVKeNNhgBJOUEo0HZyGA5QeorP3704Pj8kwhIMYsAQZqUzOHeVwn66mmWEldaLJGlmVjcoqUI6ysNZy2RhhK8sqBwYfU-AGKOPyqlHsEdrrNl39GGEnSpULZjmTjktLlbWVEso0jhWM2mIfreIz0sN_7EJ79HjwJL6FF-nzntNa-gCY0oCkfXSQHq_-Efu16L_y_8lNv_AU3Zmw_wzt9T-39XMwTHv7IkDoD6Kmfzs |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+epidemiological+forecast+model+and+software+assessing+interventions+on+the+COVID-19+epidemic+in+China&rft.jtitle=Journal+of+data+science&rft.au=Wang%2C+Lili&rft.au=Zhou%2C+Yiwang&rft.au=He%2C+Jie&rft.au=Zhu%2C+Bin&rft.date=2021-01-17&rft.issn=1680-743X&rft.eissn=1683-8602&rft.spage=409&rft.epage=432&rft_id=info:doi/10.6339%2FJDS.202007_18%283%29.0003&rft.externalDBID=n%2Fa&rft.externalDocID=10_6339_JDS_202007_18_3__0003 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F16838602-c.jpg |