An epidemiological forecast model and software assessing interventions on the COVID-19 epidemic in China

We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is buil...

Full description

Saved in:
Bibliographic Details
Published inJournal of Data Science Vol. 18; no. 3; pp. 409 - 432
Main Authors Wang, Lili, Zhou, Yiwang, He, Jie, Zhu, Bin, Wang, Fei, Tang, Lu, Kleinsasser, Michael, Barker, Daniel, Eisenberg, Marisa C., Song, Peter X.K.
Format Journal Article
LanguageEnglish
Published 中華資料採礦協會 17.01.2021
Subjects
Online AccessGet full text
ISSN1683-8602
1680-743X
1683-8602
DOI10.6339/JDS.202007_18(3).0003

Cover

Loading…
Abstract We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level 'macro' isolation policies and community-level 'micro' social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed.
AbstractList We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As a case study, we examine the novel coronavirus (COVID-19) epidemic using the publicly available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are generated from the underlying infection dynamics governed by a Markov Susceptible-Infectious-Removed (SIR) infectious disease process. We extend the SIR model to incorporate various types of time-varying quarantine protocols, including government-level 'macro' isolation policies and community-level 'micro' social distancing (e.g. self-isolation and self-quarantine) measures. We develop a calibration procedure for underreported infected cases. This toolbox provides forecasts, in both online and offline forms, as well as simulating the overall dynamics of the epidemic. An R software package is made available for the public, and examples on the use of this software are illustrated. Some possible extensions of our novel epidemiological models are discussed.
Author Yiwang Zhou
Daniel Barker
Lu Tang
Bin Zhu
Fei Wang
Jie He
Marisa C. Eisenberg
Michael Kleinsasser
Peter X.K. Song
Lili Wang
Author_xml – sequence: 1
  givenname: Lili
  surname: Wang
  fullname: Wang, Lili
– sequence: 2
  givenname: Yiwang
  surname: Zhou
  fullname: Zhou, Yiwang
– sequence: 3
  givenname: Jie
  surname: He
  fullname: He, Jie
– sequence: 4
  givenname: Bin
  surname: Zhu
  fullname: Zhu, Bin
– sequence: 5
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
– sequence: 6
  givenname: Lu
  surname: Tang
  fullname: Tang, Lu
– sequence: 7
  givenname: Michael
  surname: Kleinsasser
  fullname: Kleinsasser, Michael
– sequence: 8
  givenname: Daniel
  surname: Barker
  fullname: Barker, Daniel
– sequence: 9
  givenname: Marisa C.
  surname: Eisenberg
  fullname: Eisenberg, Marisa C.
– sequence: 10
  givenname: Peter X.K.
  surname: Song
  fullname: Song, Peter X.K.
BookMark eNpVkE1PAjEQhhujiYD-BJMe9bA4bZelPRJQwZBw8OPadPsBJdCSdtX4711EjJ7emWSeN5Oni05DDBahKwL9ijFx-zh56lOgAENJ-DW76QMAO0EdUnFW8Aro6Z_5HHVzXgNQARw6aDUK2O68sVsfN3HptdpgF5PVKjd4G43dYBUMztE1HypZrHK2OfuwxD40Nr3b0PgYMo4BNyuLx4vX2aQg4tip2zM8XvmgLtCZU5tsL3-yh17u757H02K-eJiNR_NCUcFYYRQtNZQVB22BKDYEXTniuBk6QYwxlg_qui65U1VtamZ0VREmShgIpalxgvXQ4NCrU8w5WSd3yW9V-pQE5F6XbHXJX12SSbnX1XLTA6d88o2X6_iWQvuo3Jvbizsy38Fp2VL0_1KCkCWj7Avbi3Ty
ContentType Journal Article
DBID 188
AAYXX
CITATION
DOI 10.6339/JDS.202007_18(3).0003
DatabaseName 華藝電子期刊
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1683-8602
EndPage 432
ExternalDocumentID 10_6339_JDS_202007_18_3__0003
16838602_202007_202008240002_202008240002_409_432
GroupedDBID 188
29K
2UF
2WC
5GY
ABDBF
ACGFO
ACIPV
AEGXH
AIAGR
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ATFKH
CNMHZ
CVCKV
D-I
E3Z
EAD
EAP
EBS
EJD
EMK
EPL
ESX
GROUPED_DOAJ
J9A
M~E
OK1
P2P
RNS
TR2
TUS
TUXDW
UY8
UZ4
XSB
AAYXX
ACUHS
CITATION
OVT
ID FETCH-LOGICAL-a2933-da24c04680ce01a370c6f1f8d7f91ddde85bbb48fa6bdb3dc661394059ac2df93
ISSN 1683-8602
1680-743X
IngestDate Tue Jul 01 03:02:42 EDT 2025
Tue Oct 01 22:51:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Infectious disease
under-reporting
SIR model
turning point
MCMC
prediction
Runga-Kutta approximation
coronavirus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2933-da24c04680ce01a370c6f1f8d7f91ddde85bbb48fa6bdb3dc661394059ac2df93
OpenAccessLink https://jds-online.org/journal/JDS/article/28/file/pdf
PageCount 24
ParticipantIDs crossref_primary_10_6339_JDS_202007_18_3__0003
airiti_journals_16838602_202007_202008240002_202008240002_409_432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-17
PublicationDateYYYYMMDD 2021-01-17
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-17
  day: 17
PublicationDecade 2020
PublicationTitle Journal of Data Science
PublicationYear 2021
Publisher 中華資料採礦協會
Publisher_xml – name: 中華資料採礦協會
SSID ssj0029080
ssib006573294
ssib044743962
Score 2.408071
Snippet We develop a health informatics toolbox that enables timely analysis and evaluation of the time-course dynamics of a range of infectious disease epidemics. As...
SourceID crossref
airiti
SourceType Index Database
Publisher
StartPage 409
Title An epidemiological forecast model and software assessing interventions on the COVID-19 epidemic in China
URI https://www.airitilibrary.com/Article/Detail/16838602-202007-202008240002-202008240002-409-432
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBIECML_nAAVR5OLHj2MeygcbEx4EN9WbZTiIiTSliqSb463m24ySrJsS4pK2VviZ5v74vvw-EXjY2a2idZ4QVlSJccEGkVYyUtiylo3WRc1_g_OmzOD7jJ-tivVj8mmUtbXt74H5fW1fyP1yFNeCrr5K9AWdHorAA74G_cAQOw_GfeLzqlvU04TUVI9bOXPRxxM0yhsWb_tIneJmwwRuLWKZMx7RfsDz88u3DEclUoulCRWCar32NBeuzS5eDCp0C81F4fGzP2ykovdkGUd9emkFRhuhrQFBbT6eFs94OvcCHUETu4xAkVl4O0lNISsAkWUflktYY8YOuZlKSUzVTuDwGOHdluWDMt0I9OfoKXryPqOpMgtHt48--6SSbFFjatN_Ra2O2Ifg5npgGUnokpZn2G-_sFrqdg4eRzbzxIIqKkuWTqOLcO25i7EyWKxqG8o13HIvD_M-8uXLFr9jrcLVg4JjWt6ma2T8zQ-b0Hro78A-vIpzuo0XdPUDfVx3egRJOUMIBShighBOU8AglfAVKeNNhgBJOUEo0HZyGA5QeorP3704Pj8kwhIMYsAQZqUzOHeVwn66mmWEldaLJGlmVjcoqUI6ysNZy2RhhK8sqBwYfU-AGKOPyqlHsEdrrNl39GGEnSpULZjmTjktLlbWVEso0jhWM2mIfreIz0sN_7EJ79HjwJL6FF-nzntNa-gCY0oCkfXSQHq_-Efu16L_y_8lNv_AU3Zmw_wzt9T-39XMwTHv7IkDoD6Kmfzs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+epidemiological+forecast+model+and+software+assessing+interventions+on+the+COVID-19+epidemic+in+China&rft.jtitle=Journal+of+data+science&rft.au=Wang%2C+Lili&rft.au=Zhou%2C+Yiwang&rft.au=He%2C+Jie&rft.au=Zhu%2C+Bin&rft.date=2021-01-17&rft.issn=1680-743X&rft.eissn=1683-8602&rft.spage=409&rft.epage=432&rft_id=info:doi/10.6339%2FJDS.202007_18%283%29.0003&rft.externalDBID=n%2Fa&rft.externalDocID=10_6339_JDS_202007_18_3__0003
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F16838602-c.jpg