PFOA Cooperative Adsorption to DPPC Monolayers and Ordering of Interfacial Water
Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air–water interface. Studies were performed as a fu...
Saved in:
Published in | The journal of physical chemistry. B Vol. 129; no. 29; pp. 7528 - 7538 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air–water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the –OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA–DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer. |
---|---|
AbstractList | Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air-water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å
/monomer and 55 Å
/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the -OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA-DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å
/monomer rather than ∼90 Å
/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer. Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air-water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the -OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA-DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer.Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air-water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the -OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA-DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer. Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air–water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the –OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA–DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer. |
Author | Walker, Robert A. Sobolewski, Tess N. |
AuthorAffiliation | Department of Chemistry and Biochemistry Montana State University Montana Materials Science and Engineering |
AuthorAffiliation_xml | – name: Montana Materials Science and Engineering – name: Montana State University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Tess N. surname: Sobolewski fullname: Sobolewski, Tess N. organization: Department of Chemistry and Biochemistry – sequence: 2 givenname: Robert A. orcidid: 0000-0002-0754-6298 surname: Walker fullname: Walker, Robert A. email: rawalker@montana.edu organization: Montana State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40642923$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kLtPwzAQhy1URB-wMyGPDKT4kVfHKlCoVNQMIEbLdi4oVWoHO0Hqf09KAxvD6U667076fVM0MtYAQteUzClh9F5qP981Ws0jTVhIyRma0IiRoK9kNMwxJfEYTb3fEcIilsYXaBySOGQLxicoz1fbJc6sbcDJtvoCvCy8dU1bWYNbix_yPMMv1thaHsB5LE2Bt64AV5kPbEu8Ni24UupK1vhd9vMlOi9l7eFq6DP0tnp8zZ6DzfZpnS03gWQL2gaaSBYmPEkgikEp0IVO05JKRbVmRZFqGfI0KbmmoVYxiSINnMlYaV4wUCHnM3R7-ts4-9mBb8W-8hrqWhqwnRec9QHpIk7DHr0Z0E7toRCNq_bSHcSvhR4gJ0A7672D8g-hRBxFi160OIoWg-j-5O508rOxnTN92P_xb-8EgH4 |
Cites_doi | 10.1063/1.1318199 10.1021/acs.estlett.6b00260 10.1529/biophysj.107.106765 10.1021/la203439u 10.1021/acs.jpcc.9b01300 10.1021/la060816z 10.1021/ja962277y 10.1021/acs.jpca.9b02255 10.1021/acs.jpcb.5c01380 10.1021/la0535227 10.1039/D2EM00358A 10.1021/acs.jpcc.3c07235 10.1021/ja972570d 10.1021/la504252s 10.1016/j.ecoenv.2023.115663 10.1021/ja980736k 10.1063/1.4895561 10.3390/molecules24030516 10.1016/j.tiv.2019.104656 10.1002/etc.4890 10.1021/acs.jpcb.9b07770 10.1021/acs.jpcc.5b04416 10.1021/la970497z 10.3389/fendo.2020.612320 10.1016/j.scitotenv.2024.176247 10.1063/1.2179794 10.1080/10962247.2023.2192009 10.2478/v10063-009-0009-z 10.1016/j.scitotenv.2021.146399 10.1021/ac202414w 10.1021/cr040377d 10.1021/acs.langmuir.7b01077 10.1016/S0927-7757(00)00706-8 10.3390/toxics8040112 10.1021/acs.jpcb.9b01246 10.1039/C7CP01978E 10.3389/fcell.2020.581016 10.1021/acs.langmuir.4c02566 10.1021/jp068874g 10.3390/molecules24162911 10.1103/PhysRevLett.72.238 10.1021/acs.jpcc.3c04844 10.1016/j.chemphys.2018.02.011 10.1021/acs.jpcb.2c02526 10.1080/014423500229882 10.1007/s10973-006-8061-9 10.1021/acs.estlett.2c00019 10.1513/AnnalsATS.201411-507FR 10.1021/la7006974 10.1002/cphc.202300062 10.1021/acs.jpcb.8b02138 10.1007/s00134-001-1121-5 10.1007/s13758-012-0020-3 10.1021/acs.jpcc.1c07173 10.1016/j.bbamem.2008.06.002 10.1016/j.envres.2021.111712 10.1002/anie.201411188 10.1117/12.306122 10.1529/biophysj.107.114215 10.1021/acs.estlett.1c00481 10.1021/jp9806011 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.jpcb.5c02410 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 7538 |
ExternalDocumentID | 40642923 10_1021_acs_jpcb_5c02410 c902419839 |
Genre | Journal Article |
GroupedDBID | --- -~X .DC .K2 123 29L 4.4 55A 5VS 7~N 85S AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 W1F WH7 XSW YQT YZZ ZGI ~02 AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a291t-c0a247377e56ebbecdc88f1ab1cc2dd8ca4387f3c14cb6055ce32a6bc3d2eb433 |
IEDL.DBID | ACS |
ISSN | 1520-6106 1520-5207 |
IngestDate | Sat Jul 12 03:29:11 EDT 2025 Fri Jul 25 01:50:13 EDT 2025 Thu Jul 31 00:23:59 EDT 2025 Fri Jul 25 03:23:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a291t-c0a247377e56ebbecdc88f1ab1cc2dd8ca4387f3c14cb6055ce32a6bc3d2eb433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0754-6298 |
PMID | 40642923 |
PQID | 3229219684 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3229219684 pubmed_primary_40642923 crossref_primary_10_1021_acs_jpcb_5c02410 acs_journals_10_1021_acs_jpcb_5c02410 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-24 |
PublicationDateYYYYMMDD | 2025-07-24 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref12/cit12 Smiley B. L. (ref46/cit46) 1998; 3273 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1063/1.1318199 – ident: ref12/cit12 doi: 10.1021/acs.estlett.6b00260 – ident: ref19/cit19 doi: 10.1529/biophysj.107.106765 – ident: ref9/cit9 – ident: ref41/cit41 doi: 10.1021/la203439u – ident: ref62/cit62 doi: 10.1021/acs.jpcc.9b01300 – ident: ref43/cit43 doi: 10.1021/la060816z – ident: ref33/cit33 doi: 10.1021/ja962277y – ident: ref35/cit35 doi: 10.1021/acs.jpca.9b02255 – ident: ref68/cit68 doi: 10.1021/acs.jpcb.5c01380 – ident: ref25/cit25 doi: 10.1021/la0535227 – ident: ref7/cit7 doi: 10.1039/D2EM00358A – ident: ref42/cit42 doi: 10.1021/acs.jpcc.3c07235 – ident: ref45/cit45 doi: 10.1021/ja972570d – ident: ref53/cit53 doi: 10.1021/la504252s – ident: ref3/cit3 doi: 10.1016/j.ecoenv.2023.115663 – ident: ref44/cit44 doi: 10.1021/ja980736k – ident: ref59/cit59 doi: 10.1063/1.4895561 – ident: ref40/cit40 doi: 10.3390/molecules24030516 – ident: ref17/cit17 doi: 10.1016/j.tiv.2019.104656 – ident: ref1/cit1 doi: 10.1002/etc.4890 – ident: ref8/cit8 – ident: ref37/cit37 doi: 10.1021/acs.jpcb.9b07770 – ident: ref50/cit50 doi: 10.1021/acs.jpcc.5b04416 – ident: ref52/cit52 doi: 10.1021/la970497z – ident: ref5/cit5 doi: 10.3389/fendo.2020.612320 – ident: ref10/cit10 doi: 10.1016/j.scitotenv.2024.176247 – ident: ref58/cit58 doi: 10.1063/1.2179794 – ident: ref11/cit11 doi: 10.1080/10962247.2023.2192009 – ident: ref66/cit66 doi: 10.2478/v10063-009-0009-z – ident: ref6/cit6 doi: 10.1016/j.scitotenv.2021.146399 – ident: ref14/cit14 doi: 10.1021/ac202414w – ident: ref48/cit48 doi: 10.1021/cr040377d – ident: ref63/cit63 doi: 10.1021/acs.langmuir.7b01077 – ident: ref29/cit29 doi: 10.1016/S0927-7757(00)00706-8 – ident: ref18/cit18 doi: 10.3390/toxics8040112 – ident: ref56/cit56 doi: 10.1021/acs.jpcb.9b01246 – ident: ref60/cit60 doi: 10.1039/C7CP01978E – ident: ref64/cit64 doi: 10.3389/fcell.2020.581016 – ident: ref28/cit28 doi: 10.1021/acs.langmuir.4c02566 – ident: ref65/cit65 doi: 10.1021/jp068874g – ident: ref30/cit30 doi: 10.3390/molecules24162911 – ident: ref2/cit2 – ident: ref47/cit47 doi: 10.1103/PhysRevLett.72.238 – ident: ref36/cit36 doi: 10.1021/acs.jpcc.3c04844 – ident: ref13/cit13 – ident: ref24/cit24 doi: 10.1016/j.chemphys.2018.02.011 – ident: ref38/cit38 doi: 10.1021/acs.jpcb.2c02526 – ident: ref51/cit51 doi: 10.1080/014423500229882 – ident: ref23/cit23 doi: 10.1007/s10973-006-8061-9 – ident: ref16/cit16 doi: 10.1021/acs.estlett.2c00019 – ident: ref22/cit22 doi: 10.1513/AnnalsATS.201411-507FR – ident: ref27/cit27 doi: 10.1021/la7006974 – ident: ref67/cit67 doi: 10.1513/AnnalsATS.201411-507FR – ident: ref55/cit55 doi: 10.1002/cphc.202300062 – ident: ref57/cit57 doi: 10.1021/acs.jpcb.8b02138 – ident: ref20/cit20 doi: 10.1007/s00134-001-1121-5 – ident: ref26/cit26 doi: 10.1021/ja972570d – ident: ref54/cit54 doi: 10.1007/s13758-012-0020-3 – ident: ref61/cit61 doi: 10.1021/acs.jpcc.1c07173 – ident: ref21/cit21 doi: 10.1016/j.bbamem.2008.06.002 – ident: ref4/cit4 doi: 10.1016/j.envres.2021.111712 – ident: ref49/cit49 doi: 10.1002/anie.201411188 – volume: 3273 start-page: 134 volume-title: Laser Techniques for Condensed-Phase and Biological Systems year: 1998 ident: ref46/cit46 doi: 10.1117/12.306122 – ident: ref39/cit39 doi: 10.1529/biophysj.107.114215 – ident: ref15/cit15 doi: 10.1021/acs.estlett.1c00481 – ident: ref32/cit32 doi: 10.1021/jp9806011 – ident: ref34/cit34 doi: 10.1016/j.chemphys.2018.02.011 |
SSID | ssj0025286 |
Score | 2.483305 |
Snippet | Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7528 |
SubjectTerms | B: Biomaterials and Membranes |
Title | PFOA Cooperative Adsorption to DPPC Monolayers and Ordering of Interfacial Water |
URI | http://dx.doi.org/10.1021/acs.jpcb.5c02410 https://www.ncbi.nlm.nih.gov/pubmed/40642923 https://www.proquest.com/docview/3229219684 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDh5TEcZYeo0BVIUEjQUVvke04B5CSqkkvfD0zTlrEql6jyEpmbL_3PJ4ZQi5toQNYNtJCeLC48DMLQMGzbOkKmA4Y7MTk5IdHfzDi92Nv_Fkm53sEnzk3QlXd14mSXU8BnmA21RrzwwCFVhQ_LcSVx0xXR4AjlEP2PCT52wgIRKr6CkR_sEuDMv2tpl1RZYoT4uWSt-6sll31_rN04xI_sE02W7JJo2Z27JAVXeyS9Xje422PJEl_GNG4LCe6qQBOo6wqp2YboXVJb5MkprDsQf8iNaeiyOgQi3UC4NEyp-Y8MRd47E5fgLVO98mof_ccD6y2x4IlWM-pLWULxgM3CLTnawkOzVQY5o6QjlIsy0IluBsGuascriRIH09plwlfKjdjWnLXPSCrRVnoI0JzyTCtV6Pk4gpoV54ZMMx9hj1-dIdcgSnSdo1UqQl_Myc1D8E-aWufDrmeOyadNCU3_nn3Yu65FEyHwQ5R6HJWpbBR9WA39kPeIYeNSxejcVRdwGyPl_yiE7LBsO2vHViMn5LVejrTZ8BFanluJuEHmwnXdw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4hONALFNrCtlBcqRx6yJI4zg8HDqvQ1VL-VioIbsF2nANIyWqTVQVvw6vwZMx4k61atYgLElcrsibj8XzzeewZgK-uNBFuG-UQPDhChpmDoBA4rvIlmgMlO-lx8vFJODgXPy6Dyzm4b9_CoBAVzlTZJP7v6gLeDo1dj7TqBhphxXObe5SH5vYXsrRq72Afl3Sb8_73s2TgNI0EHMl3vdrRruQi8qPIBKFRKHWm4zj3pPK05lkWayn8OMp97QmtML4PtPG5DJX2M26UoDNP9PILGPtw4ne95OeM0wXcNpNEFCQW5raZ0H9JTPinqz_x7z9BrQW3_jI8zNRi77TcdCe16uq7vypGvmq9vYWlJrRmveleWIE5U6zCYtJ2tHsHw2H_tMeSshyZab1z1suqcmydJqtLtj8cJgydHLJ9IiJMFhk7pdKkCO-szJk9Pc0lJRnYBcbo4_dw_iI_9AHmi7Iw68ByxekRsyGCKTQGmXlmoT8POXU0Mh3YRtWnjUeoUpvs515qB3E90mY9OvCttYd0NC0w8sS3X1qDSVF1lNqRhSknVYpueRexJ4xFB9amljSbTRDHxDj-4zMl2oLFwdnxUXp0cHL4Cd5wanjsRg4XGzBfjydmE6OwWn22-4DB1Usb0CMhRD1q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB5CCk0vfaWP7SsKJIccvLFl-ZFDD4u3Sx5NYkhCc3P08qEFe1l7Ke3_6V_p7-qM1l5oaEougVyFEWNpZr75NNIMwJYvbYJmozyCB0_I2HgICpHnq1CiOlCykx4nH5_E-xfi8DK6XIFf_VsYFKLBmRqXxCernpqyqzAQ7NL416lWw0gjtAR-d5fyyP74jkyt-Xgwxm3d5nzy6Tzb97pmAp7ke0HraV9ykYRJYqPYKpTc6DQtA6kCrbkxqZYiTJMy1IHQCmP8SNuQy1jp0HCrBJ17oqd_QFlC4nij7GzJ6yLuGkoiEhIT8_ts6L8kJgzUzd8YeENg6wBu8gR-L5fG3Wv5Npy3aqh_Xqsaee_X7ik87kJsNlrYxDNYsdVzWMv6znbrkOeT0xHL6npqF3XP2cg09cw5T9bWbJznGUNnh6yfCAmTlWGnVKIUYZ7VJXOnqKWkZAP7grH67AVc3MkPvYTVqq7sa2Cl4vSY2RLRFBqDzdK4EKCMOXU2sgPYxqUvOs_QFC7pz4PCDeJ-FN1-DGCn14liuig08p9vN3ulKXDpKMUjK1vPmwLd8x5iUJyKAbxaaNNyNkFcE-P5N7eUaAMe5uNJ8fng5OgtPOLU99hPPC7ewWo7m9v3GIy16oMzBQZXd60_fwCnQj_t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PFOA+Cooperative+Adsorption+to+DPPC+Monolayers+and+Ordering+of+Interfacial+Water&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Sobolewski%2C+Tess+N.&rft.au=Walker%2C+Robert+A.&rft.date=2025-07-24&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=129&rft.issue=29&rft.spage=7528&rft.epage=7538&rft_id=info:doi/10.1021%2Facs.jpcb.5c02410&rft.externalDocID=c902419839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |