PFOA Cooperative Adsorption to DPPC Monolayers and Ordering of Interfacial Water

Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air–water interface. Studies were performed as a fu...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 129; no. 29; pp. 7528 - 7538
Main Authors Sobolewski, Tess N., Walker, Robert A.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air–water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the –OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA–DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer.
AbstractList Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air-water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å /monomer and 55 Å /monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the -OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA-DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å /monomer rather than ∼90 Å /monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer.
Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air-water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the -OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA-DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer.Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air-water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the -OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA-DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer.
Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant perfluorooctanoic acid (PFOA) affects dipalmitoylphosphatidylcholine (DPPC) monolayers adsorbed to the air–water interface. Studies were performed as a function of PFOA concentration for DPPC surface coverages of 40 Å2/monomer and 55 Å2/monomer, corresponding to tightly packed and moderately packed monolayers, respectively. VSFG data showed that PFOA does not affect the structure of tightly packed DPPC monolayers, but cooperative adsorption of PFOA to moderately packed DPPC monolayers forces lipid compression, creating highly ordered acyl chains. PFOA adsorption to moderately packed DPPC monolayers also creates a charged interface, evidenced by significant intensity growth in the –OH stretching region as interfacial water is oriented by the resulting electric double layer. Interestingly, this effect is also observed for the tightly packed DPPC monolayers, implying that the surfactant adsorbs to the solvated lipid headgroups without affecting lipid chain conformation. PFOA–DPPC interactions at all DPPC surface coverages are apparent in Langmuir isotherms, where PFOA concentrations as low as 10 μM induce DPPC monolayer liftoff at 130 Å2/monomer rather than ∼90 Å2/monomer observed in the absence of PFOA and a monolayer collapse pressure that is ∼6 mN/m lower than that for a pure DPPC monolayer.
Author Walker, Robert A.
Sobolewski, Tess N.
AuthorAffiliation Department of Chemistry and Biochemistry
Montana State University
Montana Materials Science and Engineering
AuthorAffiliation_xml – name: Montana Materials Science and Engineering
– name: Montana State University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Tess N.
  surname: Sobolewski
  fullname: Sobolewski, Tess N.
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Robert A.
  orcidid: 0000-0002-0754-6298
  surname: Walker
  fullname: Walker, Robert A.
  email: rawalker@montana.edu
  organization: Montana State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40642923$$D View this record in MEDLINE/PubMed
BookMark eNp1kLtPwzAQhy1URB-wMyGPDKT4kVfHKlCoVNQMIEbLdi4oVWoHO0Hqf09KAxvD6U667076fVM0MtYAQteUzClh9F5qP981Ws0jTVhIyRma0IiRoK9kNMwxJfEYTb3fEcIilsYXaBySOGQLxicoz1fbJc6sbcDJtvoCvCy8dU1bWYNbix_yPMMv1thaHsB5LE2Bt64AV5kPbEu8Ni24UupK1vhd9vMlOi9l7eFq6DP0tnp8zZ6DzfZpnS03gWQL2gaaSBYmPEkgikEp0IVO05JKRbVmRZFqGfI0KbmmoVYxiSINnMlYaV4wUCHnM3R7-ts4-9mBb8W-8hrqWhqwnRec9QHpIk7DHr0Z0E7toRCNq_bSHcSvhR4gJ0A7672D8g-hRBxFi160OIoWg-j-5O508rOxnTN92P_xb-8EgH4
Cites_doi 10.1063/1.1318199
10.1021/acs.estlett.6b00260
10.1529/biophysj.107.106765
10.1021/la203439u
10.1021/acs.jpcc.9b01300
10.1021/la060816z
10.1021/ja962277y
10.1021/acs.jpca.9b02255
10.1021/acs.jpcb.5c01380
10.1021/la0535227
10.1039/D2EM00358A
10.1021/acs.jpcc.3c07235
10.1021/ja972570d
10.1021/la504252s
10.1016/j.ecoenv.2023.115663
10.1021/ja980736k
10.1063/1.4895561
10.3390/molecules24030516
10.1016/j.tiv.2019.104656
10.1002/etc.4890
10.1021/acs.jpcb.9b07770
10.1021/acs.jpcc.5b04416
10.1021/la970497z
10.3389/fendo.2020.612320
10.1016/j.scitotenv.2024.176247
10.1063/1.2179794
10.1080/10962247.2023.2192009
10.2478/v10063-009-0009-z
10.1016/j.scitotenv.2021.146399
10.1021/ac202414w
10.1021/cr040377d
10.1021/acs.langmuir.7b01077
10.1016/S0927-7757(00)00706-8
10.3390/toxics8040112
10.1021/acs.jpcb.9b01246
10.1039/C7CP01978E
10.3389/fcell.2020.581016
10.1021/acs.langmuir.4c02566
10.1021/jp068874g
10.3390/molecules24162911
10.1103/PhysRevLett.72.238
10.1021/acs.jpcc.3c04844
10.1016/j.chemphys.2018.02.011
10.1021/acs.jpcb.2c02526
10.1080/014423500229882
10.1007/s10973-006-8061-9
10.1021/acs.estlett.2c00019
10.1513/AnnalsATS.201411-507FR
10.1021/la7006974
10.1002/cphc.202300062
10.1021/acs.jpcb.8b02138
10.1007/s00134-001-1121-5
10.1007/s13758-012-0020-3
10.1021/acs.jpcc.1c07173
10.1016/j.bbamem.2008.06.002
10.1016/j.envres.2021.111712
10.1002/anie.201411188
10.1117/12.306122
10.1529/biophysj.107.114215
10.1021/acs.estlett.1c00481
10.1021/jp9806011
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.jpcb.5c02410
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 7538
ExternalDocumentID 40642923
10_1021_acs_jpcb_5c02410
c902419839
Genre Journal Article
GroupedDBID ---
-~X
.DC
.K2
123
29L
4.4
55A
5VS
7~N
85S
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YQT
YZZ
ZGI
~02
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-a291t-c0a247377e56ebbecdc88f1ab1cc2dd8ca4387f3c14cb6055ce32a6bc3d2eb433
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Sat Jul 12 03:29:11 EDT 2025
Fri Jul 25 01:50:13 EDT 2025
Thu Jul 31 00:23:59 EDT 2025
Fri Jul 25 03:23:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a291t-c0a247377e56ebbecdc88f1ab1cc2dd8ca4387f3c14cb6055ce32a6bc3d2eb433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0754-6298
PMID 40642923
PQID 3229219684
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3229219684
pubmed_primary_40642923
crossref_primary_10_1021_acs_jpcb_5c02410
acs_journals_10_1021_acs_jpcb_5c02410
PublicationCentury 2000
PublicationDate 2025-07-24
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref12/cit12
Smiley B. L. (ref46/cit46) 1998; 3273
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1063/1.1318199
– ident: ref12/cit12
  doi: 10.1021/acs.estlett.6b00260
– ident: ref19/cit19
  doi: 10.1529/biophysj.107.106765
– ident: ref9/cit9
– ident: ref41/cit41
  doi: 10.1021/la203439u
– ident: ref62/cit62
  doi: 10.1021/acs.jpcc.9b01300
– ident: ref43/cit43
  doi: 10.1021/la060816z
– ident: ref33/cit33
  doi: 10.1021/ja962277y
– ident: ref35/cit35
  doi: 10.1021/acs.jpca.9b02255
– ident: ref68/cit68
  doi: 10.1021/acs.jpcb.5c01380
– ident: ref25/cit25
  doi: 10.1021/la0535227
– ident: ref7/cit7
  doi: 10.1039/D2EM00358A
– ident: ref42/cit42
  doi: 10.1021/acs.jpcc.3c07235
– ident: ref45/cit45
  doi: 10.1021/ja972570d
– ident: ref53/cit53
  doi: 10.1021/la504252s
– ident: ref3/cit3
  doi: 10.1016/j.ecoenv.2023.115663
– ident: ref44/cit44
  doi: 10.1021/ja980736k
– ident: ref59/cit59
  doi: 10.1063/1.4895561
– ident: ref40/cit40
  doi: 10.3390/molecules24030516
– ident: ref17/cit17
  doi: 10.1016/j.tiv.2019.104656
– ident: ref1/cit1
  doi: 10.1002/etc.4890
– ident: ref8/cit8
– ident: ref37/cit37
  doi: 10.1021/acs.jpcb.9b07770
– ident: ref50/cit50
  doi: 10.1021/acs.jpcc.5b04416
– ident: ref52/cit52
  doi: 10.1021/la970497z
– ident: ref5/cit5
  doi: 10.3389/fendo.2020.612320
– ident: ref10/cit10
  doi: 10.1016/j.scitotenv.2024.176247
– ident: ref58/cit58
  doi: 10.1063/1.2179794
– ident: ref11/cit11
  doi: 10.1080/10962247.2023.2192009
– ident: ref66/cit66
  doi: 10.2478/v10063-009-0009-z
– ident: ref6/cit6
  doi: 10.1016/j.scitotenv.2021.146399
– ident: ref14/cit14
  doi: 10.1021/ac202414w
– ident: ref48/cit48
  doi: 10.1021/cr040377d
– ident: ref63/cit63
  doi: 10.1021/acs.langmuir.7b01077
– ident: ref29/cit29
  doi: 10.1016/S0927-7757(00)00706-8
– ident: ref18/cit18
  doi: 10.3390/toxics8040112
– ident: ref56/cit56
  doi: 10.1021/acs.jpcb.9b01246
– ident: ref60/cit60
  doi: 10.1039/C7CP01978E
– ident: ref64/cit64
  doi: 10.3389/fcell.2020.581016
– ident: ref28/cit28
  doi: 10.1021/acs.langmuir.4c02566
– ident: ref65/cit65
  doi: 10.1021/jp068874g
– ident: ref30/cit30
  doi: 10.3390/molecules24162911
– ident: ref2/cit2
– ident: ref47/cit47
  doi: 10.1103/PhysRevLett.72.238
– ident: ref36/cit36
  doi: 10.1021/acs.jpcc.3c04844
– ident: ref13/cit13
– ident: ref24/cit24
  doi: 10.1016/j.chemphys.2018.02.011
– ident: ref38/cit38
  doi: 10.1021/acs.jpcb.2c02526
– ident: ref51/cit51
  doi: 10.1080/014423500229882
– ident: ref23/cit23
  doi: 10.1007/s10973-006-8061-9
– ident: ref16/cit16
  doi: 10.1021/acs.estlett.2c00019
– ident: ref22/cit22
  doi: 10.1513/AnnalsATS.201411-507FR
– ident: ref27/cit27
  doi: 10.1021/la7006974
– ident: ref67/cit67
  doi: 10.1513/AnnalsATS.201411-507FR
– ident: ref55/cit55
  doi: 10.1002/cphc.202300062
– ident: ref57/cit57
  doi: 10.1021/acs.jpcb.8b02138
– ident: ref20/cit20
  doi: 10.1007/s00134-001-1121-5
– ident: ref26/cit26
  doi: 10.1021/ja972570d
– ident: ref54/cit54
  doi: 10.1007/s13758-012-0020-3
– ident: ref61/cit61
  doi: 10.1021/acs.jpcc.1c07173
– ident: ref21/cit21
  doi: 10.1016/j.bbamem.2008.06.002
– ident: ref4/cit4
  doi: 10.1016/j.envres.2021.111712
– ident: ref49/cit49
  doi: 10.1002/anie.201411188
– volume: 3273
  start-page: 134
  volume-title: Laser Techniques for Condensed-Phase and Biological Systems
  year: 1998
  ident: ref46/cit46
  doi: 10.1117/12.306122
– ident: ref39/cit39
  doi: 10.1529/biophysj.107.114215
– ident: ref15/cit15
  doi: 10.1021/acs.estlett.1c00481
– ident: ref32/cit32
  doi: 10.1021/jp9806011
– ident: ref34/cit34
  doi: 10.1016/j.chemphys.2018.02.011
SSID ssj0025286
Score 2.483305
Snippet Vibrational sum frequency generation (VSFG) and Langmuir trough surface pressure measurements were used to investigate how the soluble surfactant...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 7528
SubjectTerms B: Biomaterials and Membranes
Title PFOA Cooperative Adsorption to DPPC Monolayers and Ordering of Interfacial Water
URI http://dx.doi.org/10.1021/acs.jpcb.5c02410
https://www.ncbi.nlm.nih.gov/pubmed/40642923
https://www.proquest.com/docview/3229219684
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDh5TEcZYeo0BVIUEjQUVvke04B5CSqkkvfD0zTlrEql6jyEpmbL_3PJ4ZQi5toQNYNtJCeLC48DMLQMGzbOkKmA4Y7MTk5IdHfzDi92Nv_Fkm53sEnzk3QlXd14mSXU8BnmA21RrzwwCFVhQ_LcSVx0xXR4AjlEP2PCT52wgIRKr6CkR_sEuDMv2tpl1RZYoT4uWSt-6sll31_rN04xI_sE02W7JJo2Z27JAVXeyS9Xje422PJEl_GNG4LCe6qQBOo6wqp2YboXVJb5MkprDsQf8iNaeiyOgQi3UC4NEyp-Y8MRd47E5fgLVO98mof_ccD6y2x4IlWM-pLWULxgM3CLTnawkOzVQY5o6QjlIsy0IluBsGuascriRIH09plwlfKjdjWnLXPSCrRVnoI0JzyTCtV6Pk4gpoV54ZMMx9hj1-dIdcgSnSdo1UqQl_Myc1D8E-aWufDrmeOyadNCU3_nn3Yu65FEyHwQ5R6HJWpbBR9WA39kPeIYeNSxejcVRdwGyPl_yiE7LBsO2vHViMn5LVejrTZ8BFanluJuEHmwnXdw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4hONALFNrCtlBcqRx6yJI4zg8HDqvQ1VL-VioIbsF2nANIyWqTVQVvw6vwZMx4k61atYgLElcrsibj8XzzeewZgK-uNBFuG-UQPDhChpmDoBA4rvIlmgMlO-lx8vFJODgXPy6Dyzm4b9_CoBAVzlTZJP7v6gLeDo1dj7TqBhphxXObe5SH5vYXsrRq72Afl3Sb8_73s2TgNI0EHMl3vdrRruQi8qPIBKFRKHWm4zj3pPK05lkWayn8OMp97QmtML4PtPG5DJX2M26UoDNP9PILGPtw4ne95OeM0wXcNpNEFCQW5raZ0H9JTPinqz_x7z9BrQW3_jI8zNRi77TcdCe16uq7vypGvmq9vYWlJrRmveleWIE5U6zCYtJ2tHsHw2H_tMeSshyZab1z1suqcmydJqtLtj8cJgydHLJ9IiJMFhk7pdKkCO-szJk9Pc0lJRnYBcbo4_dw_iI_9AHmi7Iw68ByxekRsyGCKTQGmXlmoT8POXU0Mh3YRtWnjUeoUpvs515qB3E90mY9OvCttYd0NC0w8sS3X1qDSVF1lNqRhSknVYpueRexJ4xFB9amljSbTRDHxDj-4zMl2oLFwdnxUXp0cHL4Cd5wanjsRg4XGzBfjydmE6OwWn22-4DB1Usb0CMhRD1q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB5CCk0vfaWP7SsKJIccvLFl-ZFDD4u3Sx5NYkhCc3P08qEFe1l7Ke3_6V_p7-qM1l5oaEougVyFEWNpZr75NNIMwJYvbYJmozyCB0_I2HgICpHnq1CiOlCykx4nH5_E-xfi8DK6XIFf_VsYFKLBmRqXxCernpqyqzAQ7NL416lWw0gjtAR-d5fyyP74jkyt-Xgwxm3d5nzy6Tzb97pmAp7ke0HraV9ykYRJYqPYKpTc6DQtA6kCrbkxqZYiTJMy1IHQCmP8SNuQy1jp0HCrBJ17oqd_QFlC4nij7GzJ6yLuGkoiEhIT8_ts6L8kJgzUzd8YeENg6wBu8gR-L5fG3Wv5Npy3aqh_Xqsaee_X7ik87kJsNlrYxDNYsdVzWMv6znbrkOeT0xHL6npqF3XP2cg09cw5T9bWbJznGUNnh6yfCAmTlWGnVKIUYZ7VJXOnqKWkZAP7grH67AVc3MkPvYTVqq7sa2Cl4vSY2RLRFBqDzdK4EKCMOXU2sgPYxqUvOs_QFC7pz4PCDeJ-FN1-DGCn14liuig08p9vN3ulKXDpKMUjK1vPmwLd8x5iUJyKAbxaaNNyNkFcE-P5N7eUaAMe5uNJ8fng5OgtPOLU99hPPC7ewWo7m9v3GIy16oMzBQZXd60_fwCnQj_t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PFOA+Cooperative+Adsorption+to+DPPC+Monolayers+and+Ordering+of+Interfacial+Water&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Sobolewski%2C+Tess+N.&rft.au=Walker%2C+Robert+A.&rft.date=2025-07-24&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=129&rft.issue=29&rft.spage=7528&rft.epage=7538&rft_id=info:doi/10.1021%2Facs.jpcb.5c02410&rft.externalDocID=c902419839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon