Multiple Charge Transfer Dynamics in Colloidal CsPbBr3 Perovskite Quantum Dots Sensitized Molecular Adsorbate
Ultrafast charge-transfer (CT) dynamics has been verified in CsPbBr3 (CPB) quantum dot (QD)–4,5-dibromofluorescein (DBF) composite materials, which form a strong CT complex in the ground state and can absorb more photons in the red region of the solar spectrum. Cyclic voltammetry and steady state lu...
Saved in:
Published in | Journal of physical chemistry. C Vol. 120; no. 32; pp. 18348 - 18354 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
18.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrafast charge-transfer (CT) dynamics has been verified in CsPbBr3 (CPB) quantum dot (QD)–4,5-dibromofluorescein (DBF) composite materials, which form a strong CT complex in the ground state and can absorb more photons in the red region of the solar spectrum. Cyclic voltammetry and steady state luminescence studies suggest that the conduction (CB) and valence bands (VB) of CPB lie, respectively, below the LUMO and the HOMO of the DBF molecule. Steady state and time-resolved luminescence measurements with selective photoexcitation reveal the photoexcited hole transfer from CPB QDs to the DBF molecule, which is thermodynamically viable. Additionally, a red-shifted PL band was detected upon excitation of the CT complex that has been attributed to CT luminescence. Femtosecond transient absorption measurements have been performed to measure the hole transfer and direct electron transfer processes in the composite system and have been measured to be 1–1.25 ps and <100 fs, respectively. Dual behavior of the DBF molecule in the composite material, like hole transporting and sensitizing of the CPB perovskite, can drastically improve the solar conversion efficiency. |
---|---|
AbstractList | Ultrafast charge-transfer (CT) dynamics has been verified in CsPbBr3 (CPB) quantum dot (QD)–4,5-dibromofluorescein (DBF) composite materials, which form a strong CT complex in the ground state and can absorb more photons in the red region of the solar spectrum. Cyclic voltammetry and steady state luminescence studies suggest that the conduction (CB) and valence bands (VB) of CPB lie, respectively, below the LUMO and the HOMO of the DBF molecule. Steady state and time-resolved luminescence measurements with selective photoexcitation reveal the photoexcited hole transfer from CPB QDs to the DBF molecule, which is thermodynamically viable. Additionally, a red-shifted PL band was detected upon excitation of the CT complex that has been attributed to CT luminescence. Femtosecond transient absorption measurements have been performed to measure the hole transfer and direct electron transfer processes in the composite system and have been measured to be 1–1.25 ps and <100 fs, respectively. Dual behavior of the DBF molecule in the composite material, like hole transporting and sensitizing of the CPB perovskite, can drastically improve the solar conversion efficiency. Ultrafast charge-transfer (CT) dynamics has been verified in CsPbBr₃ (CPB) quantum dot (QD)–4,5-dibromofluorescein (DBF) composite materials, which form a strong CT complex in the ground state and can absorb more photons in the red region of the solar spectrum. Cyclic voltammetry and steady state luminescence studies suggest that the conduction (CB) and valence bands (VB) of CPB lie, respectively, below the LUMO and the HOMO of the DBF molecule. Steady state and time-resolved luminescence measurements with selective photoexcitation reveal the photoexcited hole transfer from CPB QDs to the DBF molecule, which is thermodynamically viable. Additionally, a red-shifted PL band was detected upon excitation of the CT complex that has been attributed to CT luminescence. Femtosecond transient absorption measurements have been performed to measure the hole transfer and direct electron transfer processes in the composite system and have been measured to be 1–1.25 ps and <100 fs, respectively. Dual behavior of the DBF molecule in the composite material, like hole transporting and sensitizing of the CPB perovskite, can drastically improve the solar conversion efficiency. |
Author | Dana, Jayanta Ghosh, Hirendra N Maity, Partha |
AuthorAffiliation | Bhabha Atomic Research Centre Radiation and Photochemistry Division |
AuthorAffiliation_xml | – name: Bhabha Atomic Research Centre – name: Radiation and Photochemistry Division |
Author_xml | – sequence: 1 givenname: Partha surname: Maity fullname: Maity, Partha – sequence: 2 givenname: Jayanta surname: Dana fullname: Dana, Jayanta – sequence: 3 givenname: Hirendra N surname: Ghosh fullname: Ghosh, Hirendra N email: hnghosh@barc.gov.in |
BookMark | eNo9kE1PAjEYhBuDiYDePfboQbDb7rb0iItfCUSMeN7040UXS4vtron-elchnmYymUwmzwD1fPCA0HlGxhmh2ZUyabzZGTPmmvBJwY5QP5OMjkReFL1_n4sTNEhpQ0jBSMb6aLtoXVPvHODyTcVXwKuofFpDxLMvr7a1Sbj2uAzOhdoqh8u01NeR4SXE8Jne6wbwU6t8027xLDQJP4NPdVN_g8WL4MC0TkU8tSlErRo4Rcdr5RKcHXSIXm5vVuX9aP5491BO5yNFZdaMhGYgqMx1IbXMCaWMGdWdt5IKC8Alt5RzbgWnTBuj1yyTRNuJEYZJkls2RBf73V0MHy2kptrWyYBzykNoU0UJF90C5aKrXu6rHcBqE9rou2NVRqpfqtVf2FGtDlTZD4P0bwg |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | 7S9 L.6 |
DOI | 10.1021/acs.jpcc.6b06853 |
DatabaseName | AGRICOLA AGRICOLA - Academic |
DatabaseTitle | AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 18354 |
ExternalDocumentID | a327408098 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 7S9 ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CUPRZ GGK L.6 |
ID | FETCH-LOGICAL-a291t-7b3e7294b59b9402233ca744d927dee696d2666d7623bccbf3190bd8c7c3904d3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri Jul 11 06:12:50 EDT 2025 Thu Aug 27 13:42:28 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a291t-7b3e7294b59b9402233ca744d927dee696d2666d7623bccbf3190bd8c7c3904d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2067266267 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2067266267 acs_journals_10_1021_acs_jpcc_6b06853 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2016-08-18 |
PublicationDateYYYYMMDD | 2016-08-18 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-18 day: 18 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0053013 |
Score | 2.4357593 |
Snippet | Ultrafast charge-transfer (CT) dynamics has been verified in CsPbBr3 (CPB) quantum dot (QD)–4,5-dibromofluorescein (DBF) composite materials, which form a... Ultrafast charge-transfer (CT) dynamics has been verified in CsPbBr₃ (CPB) quantum dot (QD)–4,5-dibromofluorescein (DBF) composite materials, which form a... |
SourceID | proquest acs |
SourceType | Aggregation Database Publisher |
StartPage | 18348 |
SubjectTerms | absorption composite materials electron transfer luminescence photochemical reactions photons quantum dots thermodynamics |
Title | Multiple Charge Transfer Dynamics in Colloidal CsPbBr3 Perovskite Quantum Dots Sensitized Molecular Adsorbate |
URI | http://dx.doi.org/10.1021/acs.jpcc.6b06853 https://www.proquest.com/docview/2067266267 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiW6wvVtBjarObbLLH2lqKUKnUQm8h-6hUaSLZxEN_vbNpgmA99LqHYZmdx7fzDTMI3enQl3xGiUMhFzh2-osjwGwcJSjAf-m3RcmeD1_YYOI9T_3p75icvww-cR9iaVofX1K2mGgzELiNdggDH7YwqDuuo64PhkpXDDIgRs8LKkryPwk2EUmzFnzLjNI_WK0mMuUgQttI8tkqctGSy_UxjRtc9hDtV8ASd1aWcIS2dHKMdrv1PrcTtBhWvYPYUuzvGpdpaqYz3FttpTd4nmBbSEjnCiR1zUg8ZhSPdJZ-G1vkxa8FvEOxwL00N3hsW9_z-VIrPKx37OKOMmkmAL-eokn_6a07cKplC05MuJs7gaAagLYnfC44fCoJpTIGRSpOAqU140xBLmcKgicVUooZ-G5bqFAGkvK2p-gZaiRpos8R1spjRFokyAXIY6GSQkl3phV1PRKrJroHPUWVs5io5MGJG5WHoLyoUl4T3dYvFIGuLJMRJzotTGRnzsNtCAsuNpR1ifYA6jBbDXbDK9TIs0JfA5zIxU1pRz_gV8Yb |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HMaFN2I8gwTHjjVp0_U4BtN4DA0GErdqeQwNRIualgO_HqdrQQIOcM3BshzH_urPtQEOdcuX4ZhRh2EucOz0F0eg2zhKMIT_0m-Kgj3vX_PevXfx4D_MgFv9C4NKGJRkChL_a7qAe2zPnl6lbHDR5Ch3FuYRi1Dr1O3OsAq-PvormxLJCBw9LyiZyd8k2HwkzY8YXCSW7hLcfqpU9JM8N_JMNOT7t2mN_9J5GRZLmEnaU79YgRkdr0KtU213W4OXftlJSCzh_qhJkbTGOiWn0x31hkxiYssKyUShpI4ZiJOUkYFOkzdjS77kJsdbyV_IaZIZMrSN8NnkXSvSrzbukrYySSoQza7DfffsrtNzytULzoiGbuYEgmmE3Z7wQxHiJyZlTI7QniqkgdKah1xhZucKQykTUooxvuSmUC0ZSBY2PcU2YC5OYr0JRCuPU2lxYShQHm8pKZR0x1ox16MjVYcjtFNUPh0TFaw4daPiEI0Xlcarw0F1URHayvIao1gnuYnsBHrUhvJg64-y9qHWu-tfRVfn15fbsIAgiNs6sdvagbkszfUuAo1M7BWu9QFfzc58 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SMCFN2I8gwTHjrVp0_U4NiZeQ0NjiFu1PIoGWjs1LQd-PU7XcgAOcM3BshzH_urPtQFOVdMTQUQdi2IusMz0F4uj21iSU4T_wmvwgj3v3bOroXvz7D3PgVf9C4NKaJSkCxLfvOqpjMoJA_a5OX-dClFnvMFQ9jwsGtbOOHarPagCsIc-S2dkMoJH1_VLdvI3CSYnCf0jDhfJpbsGT19qFT0lb_U843Xx8W1i47_1XofVEm6S1sw_NmBOxZuw3K62vG3BpFd2FBJDvL8oUiSvSKWkM9tVr8k4Jqa8kIwlSmrrPr9IKemrNHnXpvRLHnK8nXxCOkmmycA0xGfjDyVJr9q8S1pSJylHVLsNw-7lY_vKKlcwWCMnsDPL51Qh_Ha5F_AAPzUdSsUIbSoDx5dKsYBJzPBMYkilXAge4YtucNkUvqBBw5V0BxbiJFa7QJR0mSMMPgw4ymNNKbgUdqQktV1nJGtwhnYKyyekw4Idd-ywOETjhaXxanBSXVaItjL8xihWSa5DM4ketXGYv_dHWcew1O90w7vr-9t9WEEsxEy52G4ewEKW5uoQ8UbGjwrv-gQpcND_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Charge+Transfer+Dynamics+in+Colloidal+CsPbBr3+Perovskite+Quantum+Dots+Sensitized+Molecular+Adsorbate&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Maity%2C+Partha&rft.au=Dana%2C+Jayanta&rft.au=Ghosh%2C+Hirendra+N&rft.date=2016-08-18&rft.issn=1932-7455&rft.volume=120&rft.issue=32+p.18348-18354&rft.spage=18348&rft.epage=18354&rft_id=info:doi/10.1021%2Facs.jpcc.6b06853&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |