Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review

Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- and polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (eaq –). This study provides a critical review on the mechanisms and p...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 54; no. 7; pp. 3752 - 3766
Main Authors Cui, Junkui, Gao, Panpan, Deng, Yang
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- and polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (eaq –). This study provides a critical review on the mechanisms and performance of reductive destruction of PFAS with eaq –. Unique properties of eaq – and its generation in different ARP systems, particularly UV/sulfite and UV/iodide, are overviewed. Different degradation mechanisms of PFAS chemicals, such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and others (e.g., short chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), per- and polyfluoro dicarboxylic acids, and fluorotelomer carboxylic acids), are reviewed, discussed, and compared. The degradation pathways of these PFAS chemicals rely heavily upon their head groups. For specific PFAS types, fluoroalkyl chain lengths may also affect their reductive degradation patterns. Degradation and defluorination efficiencies of PFAS are considerably influenced by solution chemistry parameters and operating factors, such as pH, dose of chemical solute (i.e., sulfite or iodide) for eaq – photoproduction, dissolved oxygen, humic acid, nitrate, and temperature. Furthermore, implications of the state-of-the-art knowledge on practical PFAS control actions in water industries are discussed and the priority research needs are identified.
AbstractList Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- and polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (eaq –). This study provides a critical review on the mechanisms and performance of reductive destruction of PFAS with eaq –. Unique properties of eaq – and its generation in different ARP systems, particularly UV/sulfite and UV/iodide, are overviewed. Different degradation mechanisms of PFAS chemicals, such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and others (e.g., short chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), per- and polyfluoro dicarboxylic acids, and fluorotelomer carboxylic acids), are reviewed, discussed, and compared. The degradation pathways of these PFAS chemicals rely heavily upon their head groups. For specific PFAS types, fluoroalkyl chain lengths may also affect their reductive degradation patterns. Degradation and defluorination efficiencies of PFAS are considerably influenced by solution chemistry parameters and operating factors, such as pH, dose of chemical solute (i.e., sulfite or iodide) for eaq – photoproduction, dissolved oxygen, humic acid, nitrate, and temperature. Furthermore, implications of the state-of-the-art knowledge on practical PFAS control actions in water industries are discussed and the priority research needs are identified.
Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- and polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (e ). This study provides a critical review on the mechanisms and performance of reductive destruction of PFAS with e . Unique properties of e and its generation in different ARP systems, particularly UV/sulfite and UV/iodide, are overviewed. Different degradation mechanisms of PFAS chemicals, such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and others (e.g., short chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), per- and polyfluoro dicarboxylic acids, and fluorotelomer carboxylic acids), are reviewed, discussed, and compared. The degradation pathways of these PFAS chemicals rely heavily upon their head groups. For specific PFAS types, fluoroalkyl chain lengths may also affect their reductive degradation patterns. Degradation and defluorination efficiencies of PFAS are considerably influenced by solution chemistry parameters and operating factors, such as pH, dose of chemical solute (i.e., sulfite or iodide) for e photoproduction, dissolved oxygen, humic acid, nitrate, and temperature. Furthermore, implications of the state-of-the-art knowledge on practical PFAS control actions in water industries are discussed and the priority research needs are identified.
Author Cui, Junkui
Deng, Yang
Gao, Panpan
AuthorAffiliation School of Environmental Studies
Department of Earth and Environmental Studies
China University of Geosciences
AuthorAffiliation_xml – name: China University of Geosciences
– name: Department of Earth and Environmental Studies
– name: School of Environmental Studies
Author_xml – sequence: 1
  givenname: Junkui
  surname: Cui
  fullname: Cui, Junkui
  organization: Department of Earth and Environmental Studies
– sequence: 2
  givenname: Panpan
  surname: Gao
  fullname: Gao, Panpan
  organization: China University of Geosciences
– sequence: 3
  givenname: Yang
  orcidid: 0000-0002-2908-3044
  surname: Deng
  fullname: Deng, Yang
  email: dengy@montclair.edu
  organization: Department of Earth and Environmental Studies
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32162904$$D View this record in MEDLINE/PubMed
BookMark eNp10Utr3DAUBWBREpJJmnV3RdBNQvHkShrLUndm2rSFQE0e0J2RrSvq1GOlkp0w_z4yM82i0JVAfOfocU_IweAHJOQdgyUDzi5NG5cYx6VuIM9l_oYsWM4hy1XODsgCgIlMC_nzmJzE-AAAXIA6IseCM8k1rBZk-pziYWrHzg_UO1phyKgZLK18v3X95IM3_e9tT2-nJo5maDHS8-qqvL2gz934i5b2ad609AbtvqUKPqk4w_KmihefaEnXoRu71vSJPXX4_JYcOtNHPNuvp-T-6svd-lt2_ePr93V5nRmu2ZhJ1IUQDZdSukZLa522oIzQzCCCyxVTFsAWDt2q5VYhClsIVnDDDIAR4pSc73ofg_8zpZfWmy622PdmQD_FmotCFukzVjzRD__QBz-FId0uKaVUIYWGpC53qg0-xoCufgzdxoRtzaCeJ1KnidRzej-RlHi_752aDdpX_3cECXzcgTn5eub_6l4ARW-XhQ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_154548
crossref_primary_10_1016_j_cej_2024_150218
crossref_primary_10_3390_ijerph17197242
crossref_primary_10_1016_j_coche_2024_101015
crossref_primary_10_1016_j_coche_2024_101014
crossref_primary_10_1021_acs_est_2c01469
crossref_primary_10_1016_j_coche_2024_101017
crossref_primary_10_1016_j_cherd_2022_04_009
crossref_primary_10_1039_D2EW00058J
crossref_primary_10_1016_j_jece_2024_113425
crossref_primary_10_1021_acsenvironau_1c00042
crossref_primary_10_1016_j_jhazmat_2024_133457
crossref_primary_10_1016_j_cej_2022_137246
crossref_primary_10_1016_j_chemosphere_2022_134732
crossref_primary_10_2139_ssrn_4188759
crossref_primary_10_1016_j_apcatb_2022_122306
crossref_primary_10_1002_anie_202208150
crossref_primary_10_1016_j_coche_2024_101022
crossref_primary_10_1016_j_cej_2020_126698
crossref_primary_10_1021_acs_est_2c01454
crossref_primary_10_1016_j_seppur_2023_124639
crossref_primary_10_1016_j_jece_2024_112320
crossref_primary_10_1016_j_jwpe_2022_103070
crossref_primary_10_2166_ws_2021_164
crossref_primary_10_1016_j_watres_2024_121804
crossref_primary_10_1016_j_watres_2024_121803
crossref_primary_10_1016_j_seppur_2023_124071
crossref_primary_10_1061__ASCE_EE_1943_7870_0002066
crossref_primary_10_1021_acs_est_3c00909
crossref_primary_10_1016_j_coche_2024_101018
crossref_primary_10_1016_j_cej_2021_131778
crossref_primary_10_1016_j_envpol_2024_124153
crossref_primary_10_1016_j_watres_2022_118981
crossref_primary_10_3390_w14111684
crossref_primary_10_1021_acs_est_1c03210
crossref_primary_10_1039_D3EW00543G
crossref_primary_10_1016_j_cej_2022_139202
crossref_primary_10_1021_acs_est_0c02158
crossref_primary_10_1002_etc_5773
crossref_primary_10_3389_fenvs_2022_864894
crossref_primary_10_1016_j_envres_2023_117483
crossref_primary_10_1016_j_cej_2022_138352
crossref_primary_10_1016_j_chemosphere_2024_141164
crossref_primary_10_1021_jacs_4c00435
crossref_primary_10_1126_science_abg9065
crossref_primary_10_1016_j_jece_2021_105784
crossref_primary_10_1016_j_jhazmat_2023_132864
crossref_primary_10_1016_j_chemosphere_2022_135800
crossref_primary_10_1016_j_jhazmat_2024_134687
crossref_primary_10_1016_j_scitotenv_2020_143793
crossref_primary_10_1021_acs_estlett_1c00403
crossref_primary_10_1007_s11783_021_1489_0
crossref_primary_10_1016_j_jwpe_2023_104091
crossref_primary_10_1021_acs_est_1c04429
crossref_primary_10_1016_j_chemosphere_2021_131168
crossref_primary_10_1016_j_scitotenv_2022_157844
crossref_primary_10_1016_j_envres_2023_115996
crossref_primary_10_1016_j_watres_2022_119147
crossref_primary_10_1016_j_envres_2022_114004
crossref_primary_10_1016_j_jece_2021_107050
crossref_primary_10_1016_j_envpol_2021_118060
crossref_primary_10_1007_s11356_023_31460_1
crossref_primary_10_1021_acsomega_1c05847
crossref_primary_10_1021_acs_est_2c08182
crossref_primary_10_3389_fendo_2021_799043
crossref_primary_10_1016_j_seppur_2023_124774
crossref_primary_10_1021_acs_est_1c01724
crossref_primary_10_1016_j_hazl_2020_100007
crossref_primary_10_1016_j_jwpe_2024_104870
crossref_primary_10_3390_ijerph182312550
crossref_primary_10_1039_D1EW00501D
crossref_primary_10_1016_j_scitotenv_2023_169566
crossref_primary_10_1021_acsestengg_2c00403
crossref_primary_10_1021_acs_jcim_3c01303
crossref_primary_10_1016_j_biortech_2021_126223
crossref_primary_10_1021_acs_est_4c01444
crossref_primary_10_1016_j_apcatb_2023_123556
crossref_primary_10_1016_j_scitotenv_2020_142762
crossref_primary_10_1016_j_jece_2023_109887
crossref_primary_10_3390_ijerph18073794
crossref_primary_10_1016_j_ceja_2023_100493
crossref_primary_10_1039_D3TA02073H
crossref_primary_10_1021_acs_est_3c09198
crossref_primary_10_1016_j_apcatb_2022_121652
crossref_primary_10_1021_acs_estlett_1c00383
crossref_primary_10_1016_j_cej_2024_151759
crossref_primary_10_1021_acs_est_2c01017
crossref_primary_10_1016_j_cej_2024_152272
crossref_primary_10_1016_j_chemosphere_2024_142044
crossref_primary_10_1021_acs_est_3c03308
crossref_primary_10_1016_j_cej_2022_140589
crossref_primary_10_1016_j_cej_2022_137735
crossref_primary_10_1016_j_cej_2022_137976
crossref_primary_10_1016_j_chemosphere_2022_135877
crossref_primary_10_1016_j_watres_2023_119829
crossref_primary_10_3390_nano13101668
crossref_primary_10_1039_D0EN01216E
crossref_primary_10_1039_D0EW00763C
crossref_primary_10_1016_j_chemosphere_2020_127659
crossref_primary_10_1016_j_chemosphere_2024_141522
crossref_primary_10_1016_j_cej_2021_130266
crossref_primary_10_1016_j_jphotobiol_2022_112444
crossref_primary_10_1021_acsenvironau_1c00057
crossref_primary_10_1016_j_psep_2022_07_064
crossref_primary_10_1016_j_hazl_2022_100072
crossref_primary_10_1007_s11356_022_21513_2
crossref_primary_10_1016_j_jes_2024_01_014
crossref_primary_10_1021_acsestwater_3c00274
crossref_primary_10_1039_D3CP04973F
crossref_primary_10_3390_w15203670
crossref_primary_10_1016_j_cej_2023_147858
crossref_primary_10_1021_acs_est_1c03780
crossref_primary_10_1016_j_coche_2023_100971
crossref_primary_10_1016_j_efmat_2022_11_002
crossref_primary_10_1039_D2EM00291D
crossref_primary_10_1016_j_jece_2023_111833
crossref_primary_10_1016_j_jwpe_2021_102463
crossref_primary_10_1039_D1EW00221J
crossref_primary_10_1021_acs_estlett_2c00837
crossref_primary_10_1016_j_watres_2020_116311
crossref_primary_10_1021_acs_est_3c05940
crossref_primary_10_1007_s40242_023_3047_8
crossref_primary_10_1016_j_jhazmat_2021_126361
crossref_primary_10_1021_acs_estlett_1c01020
crossref_primary_10_1016_j_cej_2021_128872
crossref_primary_10_1021_acs_estlett_0c00505
crossref_primary_10_1039_D1RA06235B
crossref_primary_10_1051_bioconf_20248601018
crossref_primary_10_1016_j_chemosphere_2023_140051
crossref_primary_10_1002_aws2_1249
crossref_primary_10_1016_j_watres_2022_119212
crossref_primary_10_1016_j_chemosphere_2024_141302
crossref_primary_10_1016_j_wasman_2023_12_036
crossref_primary_10_1021_acs_est_0c06212
crossref_primary_10_1016_j_jhazmat_2022_129580
crossref_primary_10_1016_j_watres_2021_117676
crossref_primary_10_1039_D2AN00904H
crossref_primary_10_1016_j_chemosphere_2022_133920
crossref_primary_10_1016_j_watres_2021_117677
crossref_primary_10_1016_j_ceja_2022_100296
crossref_primary_10_1016_j_coche_2023_100956
crossref_primary_10_1016_j_chemosphere_2024_142760
crossref_primary_10_1016_j_envres_2023_117553
crossref_primary_10_1039_D1EW00897H
crossref_primary_10_1021_acs_est_1c06793
crossref_primary_10_1021_acs_estlett_2c00452
crossref_primary_10_1002_wer_10928
crossref_primary_10_1021_acs_est_2c09451
crossref_primary_10_1089_ees_2021_0054
crossref_primary_10_1016_j_watres_2022_118919
crossref_primary_10_1016_j_jhazmat_2023_131047
crossref_primary_10_1016_j_jhazmat_2023_130996
crossref_primary_10_1016_j_chemosphere_2023_139972
crossref_primary_10_1016_j_jhazmat_2022_128389
crossref_primary_10_1016_j_cej_2021_132108
crossref_primary_10_1016_j_coche_2023_100943
crossref_primary_10_1016_j_coche_2023_100947
crossref_primary_10_1016_j_seppur_2024_126911
crossref_primary_10_1016_j_chemosphere_2024_141562
crossref_primary_10_1021_acs_est_2c03228
crossref_primary_10_3390_lubricants12040114
crossref_primary_10_1016_j_watres_2022_118101
crossref_primary_10_1016_j_heliyon_2020_e05614
crossref_primary_10_1016_j_apcatb_2021_119900
crossref_primary_10_1016_j_envpol_2022_120941
crossref_primary_10_1016_j_jwpe_2023_103836
crossref_primary_10_1016_j_apsusc_2024_160241
crossref_primary_10_1016_j_seppur_2024_127552
crossref_primary_10_1039_D1CC02641K
crossref_primary_10_1016_j_jhazmat_2021_126452
crossref_primary_10_1016_j_jhazmat_2021_128195
crossref_primary_10_1016_j_scitotenv_2024_171932
crossref_primary_10_1021_acsenvironau_3c00079
crossref_primary_10_2139_ssrn_4115319
crossref_primary_10_1016_j_hazadv_2023_100322
crossref_primary_10_1016_j_nanoen_2022_108163
crossref_primary_10_1002_wer_1448
crossref_primary_10_1016_j_scitotenv_2023_169332
crossref_primary_10_1016_j_cej_2024_149612
crossref_primary_10_1021_acs_est_1c00353
crossref_primary_10_1021_acs_analchem_3c01537
crossref_primary_10_1016_j_watres_2021_117221
crossref_primary_10_1016_j_jwpe_2020_101393
crossref_primary_10_3390_polysaccharides5020006
crossref_primary_10_2139_ssrn_4118494
crossref_primary_10_1016_j_xcrp_2021_100348
crossref_primary_10_1002_ange_202208150
crossref_primary_10_1021_acs_est_3c08453
crossref_primary_10_1039_D4RA02448F
crossref_primary_10_1016_j_molliq_2023_123929
crossref_primary_10_1039_D3EM00209H
crossref_primary_10_3390_w15071283
crossref_primary_10_1016_j_jhazmat_2021_125224
crossref_primary_10_1016_j_envres_2023_115326
crossref_primary_10_1016_j_watres_2024_121210
crossref_primary_10_1038_s44221_023_00046_z
crossref_primary_10_1016_j_watres_2023_120769
crossref_primary_10_1063_5_0039264
crossref_primary_10_1061__ASCE_EE_1943_7870_0002036
crossref_primary_10_2139_ssrn_4191830
crossref_primary_10_1021_acs_jpca_3c04750
crossref_primary_10_1016_j_ceja_2021_100135
crossref_primary_10_1016_j_scitotenv_2023_169279
crossref_primary_10_1007_s10311_021_01340_6
crossref_primary_10_1016_j_cej_2024_151355
crossref_primary_10_1016_j_envint_2021_106600
crossref_primary_10_1016_j_chemosphere_2023_140759
crossref_primary_10_1016_j_chemosphere_2021_133436
crossref_primary_10_1021_acs_est_2c04242
crossref_primary_10_1021_acs_est_1c07608
crossref_primary_10_1016_j_jhazmat_2023_132459
crossref_primary_10_1021_jacs_3c08352
crossref_primary_10_1002_solr_202400116
crossref_primary_10_1021_acs_jcim_2c00374
crossref_primary_10_1021_acsestengg_3c00114
crossref_primary_10_1016_j_watres_2023_119876
crossref_primary_10_1016_j_coche_2021_100779
crossref_primary_10_1021_acs_est_3c08367
crossref_primary_10_1016_j_ijleo_2023_170787
crossref_primary_10_3390_membranes11010018
crossref_primary_10_1021_acs_estlett_0c00236
crossref_primary_10_1016_j_scitotenv_2024_170647
crossref_primary_10_1021_acs_est_1c05318
crossref_primary_10_1016_j_cej_2021_133929
crossref_primary_10_1021_acsestwater_2c00548
crossref_primary_10_1021_jacs_2c04341
crossref_primary_10_1038_s44221_023_00164_8
crossref_primary_10_1016_j_cej_2021_130436
crossref_primary_10_3390_catal13091308
crossref_primary_10_1002_rem_21711
crossref_primary_10_1039_D1EW00774B
crossref_primary_10_3390_pr11061856
crossref_primary_10_1016_j_colsurfa_2021_126539
crossref_primary_10_1088_1361_6595_ac8074
crossref_primary_10_1021_acs_est_4c02020
crossref_primary_10_1016_j_chemosphere_2023_138109
crossref_primary_10_1360_TB_2023_0288
crossref_primary_10_3390_catal13111440
crossref_primary_10_1016_j_cej_2021_132724
crossref_primary_10_1016_j_jwpe_2022_102917
crossref_primary_10_1016_j_scitotenv_2021_151018
crossref_primary_10_3389_fenve_2022_1087494
crossref_primary_10_1016_j_seppur_2024_127505
Cites_doi 10.1021/jp0312417
10.1021/ja00893a002
10.1021/es00044a013
10.1016/S0043-1354(00)00350-X
10.1021/acs.est.8b02172
10.1515/zpch-1928-13904
10.1021/jp407912k
10.1016/0009-2614(93)85263-N
10.1039/df9633600193
10.1039/b925741a
10.1021/j100825a033
10.1016/S0166-1280(01)00553-X
10.1021/es011001+
10.1021/es0303440
10.1021/j100784a005
10.1021/es0519278
10.1021/es302471n
10.1007/s11356-017-1024-9
10.1016/j.jhazmat.2013.08.059
10.1016/j.watres.2017.10.010
10.1126/science.1189588
10.1016/j.scitotenv.2015.03.111
10.1021/j100625a008
10.1021/ar00065a002
10.1016/j.cej.2016.09.123
10.1088/0022-3700/4/12/026
10.1103/PhysRevLett.64.1469
10.1021/ed058p101
10.1039/b812796d
10.1016/j.cplett.2004.09.081
10.1016/j.progsurf.2009.03.001
10.1021/es5028663
10.1021/jp953236b
10.1021/j100213a022
10.1016/j.watres.2015.10.060
10.1021/es801705f
10.1201/b17118
10.1002/clen.201300869
10.1007/BF02037875
10.1016/j.apcatb.2016.07.034
10.1021/es061000n
10.1021/jp9513531
10.1021/es803556w
10.1021/es900637a
10.2307/3571692
10.1248/cpb.22.962
10.1021/es100382z
10.5339/qfarf.2011.evp16
10.1016/j.watres.2018.12.010
10.1021/ja00756a009
10.1021/es9914590
10.1021/es061069v
10.1021/acs.estlett.6b00260
10.1021/jp961261r
10.1021/acs.est.5b01026
10.1021/acs.est.6b05005
10.1146/annurev-physchem-052516-050816
10.1021/es048245p
10.1016/j.jhazmat.2011.07.026
10.1016/j.watres.2019.114907
10.1016/S1001-0742(08)62085-9
10.1021/ja01405a011
10.1038/srep32949
10.1139/v92-207
10.1016/j.cej.2012.11.086
10.1016/j.jphotochemrev.2004.10.002
10.1016/0009-2614(90)85182-C
10.1016/j.envpol.2018.01.066
10.1021/es402879x
10.1021/j100788a001
10.1063/1.555805
10.1021/es801169k
10.1021/es049719n
10.1016/j.cej.2019.122866
10.1039/b212497a
10.1002/ieam.258
10.1002/oby.21258
10.1016/j.chemosphere.2015.11.012
10.1016/j.cplett.2007.01.037
10.1016/j.watres.2013.12.034
10.1021/es000895f
10.1021/acs.est.7b05912
10.1021/acs.est.8b06648
10.1021/j100081a003
10.1021/j100857a020
10.1016/j.chemosphere.2013.12.046
10.1016/j.seppur.2015.07.047
10.1080/10643380600580011
10.1021/j100368a084
10.1016/j.chemosphere.2017.10.023
10.1039/C7EW00544J
10.1016/j.chemosphere.2017.10.074
10.1021/es049971v
10.1016/j.jwpe.2015.01.001
10.1021/acs.est.6b05843
10.1080/01919512.1999.10382889
10.1080/10934527809374833
10.1016/j.envpol.2010.01.023
10.2134/jeq1993.00472425002200030002x
10.1016/j.chemosphere.2007.02.008
10.1016/j.watres.2014.09.052
10.1039/f19747000208
10.1016/j.watres.2010.02.019
10.1021/acs.est.9b05869
10.1016/j.scitotenv.2013.03.060
10.1016/j.chemosphere.2014.09.086
10.1021/acs.est.6b03261
10.1089/ees.2012.0273
10.1007/s13762-013-0375-0
10.1021/j100851a073
10.1515/znb-1995-1211
10.1016/j.envpol.2009.12.031
10.1016/j.scitotenv.2017.06.197
10.1021/jp807116q
10.1016/S0169-7722(98)00133-8
10.1038/srep09353
10.1016/j.chemosphere.2010.11.072
10.1021/es980272q
10.1021/es4018877
10.1126/science.146.3652.1664-d
10.1016/j.jhazmat.2013.08.061
10.1016/j.cej.2017.10.153
10.1016/j.cej.2018.10.204
ContentType Journal Article
Copyright Copyright American Chemical Society Apr 7, 2020
Copyright_xml – notice: Copyright American Chemical Society Apr 7, 2020
DBID NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/acs.est.9b05565
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 3766
ExternalDocumentID 10_1021_acs_est_9b05565
32162904
c608051176
Genre Journal Article
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
ABJNI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CUPRZ
GGK
MS~
MW2
NPM
XSW
ZCA
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a291t-6e9733b2666fb96ddf9d08a391aee0f5818d00d7fef4c2d8ee3d73172a1a00a33
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Fri Aug 16 05:41:14 EDT 2024
Fri Sep 13 00:37:04 EDT 2024
Fri Aug 23 00:38:20 EDT 2024
Sat Sep 28 08:31:08 EDT 2024
Thu Aug 27 22:09:52 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a291t-6e9733b2666fb96ddf9d08a391aee0f5818d00d7fef4c2d8ee3d73172a1a00a33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-2908-3044
PMID 32162904
PQID 2388876390
PQPubID 45412
PageCount 15
ParticipantIDs proquest_miscellaneous_2376732142
proquest_journals_2388876390
crossref_primary_10_1021_acs_est_9b05565
pubmed_primary_32162904
acs_journals_10_1021_acs_est_9b05565
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20200407
2020-Apr-07
2020-04-07
PublicationDateYYYYMMDD 2020-04-07
PublicationDate_xml – month: 04
  year: 2020
  text: 20200407
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref81/cit81
ref16/cit16
ref52/cit52
Hart E. J. (ref73/cit73) 1970
ref114/cit114
ref23/cit23
ref115/cit115
Andreottola G. (ref117/cit117) 1992; 1
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
USEPA. (ref28/cit28) 2019
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref120/cit120
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
Haynes W. M. (ref80/cit80) 2014
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref133/cit133
ref132/cit132
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ITRC. (ref4/cit4) 2017
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
CDC. (ref1/cit1) 2017
ATSDR. (ref3/cit3) 2017
ref50/cit50
ref78/cit78
ref36/cit36
Croue J.-P. (ref113/cit113) 2000
ref83/cit83
ref79/cit79
ref100/cit100
Swallow A. J. (ref71/cit71) 1973
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref26/cit26
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref123/cit123
ref7/cit7
References_xml – ident: ref105/cit105
  doi: 10.1021/jp0312417
– ident: ref33/cit33
  doi: 10.1021/ja00893a002
– ident: ref11/cit11
  doi: 10.1021/es00044a013
– ident: ref112/cit112
  doi: 10.1016/S0043-1354(00)00350-X
– ident: ref58/cit58
  doi: 10.1021/acs.est.8b02172
– ident: ref83/cit83
  doi: 10.1515/zpch-1928-13904
– ident: ref70/cit70
  doi: 10.1021/jp407912k
– ident: ref88/cit88
  doi: 10.1016/0009-2614(93)85263-N
– ident: ref32/cit32
  doi: 10.1039/df9633600193
– ident: ref92/cit92
  doi: 10.1039/b925741a
– ident: ref84/cit84
  doi: 10.1021/j100825a033
– ident: ref104/cit104
  doi: 10.1016/S0166-1280(01)00553-X
– ident: ref9/cit9
  doi: 10.1021/es011001+
– ident: ref13/cit13
  doi: 10.1021/es0303440
– ident: ref85/cit85
  doi: 10.1021/j100784a005
– ident: ref130/cit130
  doi: 10.1021/es0519278
– ident: ref25/cit25
  doi: 10.1021/es302471n
– ident: ref57/cit57
  doi: 10.1007/s11356-017-1024-9
– ident: ref48/cit48
  doi: 10.1016/j.jhazmat.2013.08.059
– ident: ref53/cit53
  doi: 10.1016/j.watres.2017.10.010
– ident: ref65/cit65
  doi: 10.1126/science.1189588
– ident: ref26/cit26
  doi: 10.1016/j.scitotenv.2015.03.111
– ident: ref77/cit77
  doi: 10.1021/j100625a008
– ident: ref69/cit69
  doi: 10.1021/ar00065a002
– ident: ref44/cit44
  doi: 10.1016/j.cej.2016.09.123
– ident: ref109/cit109
  doi: 10.1088/0022-3700/4/12/026
– ident: ref89/cit89
  doi: 10.1103/PhysRevLett.64.1469
– volume-title: Characterization of natural organic matter in drinking water
  year: 2000
  ident: ref113/cit113
  contributor:
    fullname: Croue J.-P.
– ident: ref72/cit72
  doi: 10.1021/ed058p101
– ident: ref101/cit101
  doi: 10.1039/b812796d
– ident: ref94/cit94
  doi: 10.1016/j.cplett.2004.09.081
– ident: ref102/cit102
  doi: 10.1016/j.progsurf.2009.03.001
– ident: ref124/cit124
  doi: 10.1021/es5028663
– year: 1973
  ident: ref71/cit71
  publication-title: Radiation chemistry. An introduction
  contributor:
    fullname: Swallow A. J.
– ident: ref79/cit79
  doi: 10.1021/jp953236b
– ident: ref96/cit96
  doi: 10.1021/j100213a022
– ident: ref116/cit116
  doi: 10.1016/j.watres.2015.10.060
– ident: ref120/cit120
  doi: 10.1021/es801705f
– volume-title: CRC handbook of chemistry and physics
  year: 2014
  ident: ref80/cit80
  doi: 10.1201/b17118
  contributor:
    fullname: Haynes W. M.
– ident: ref51/cit51
  doi: 10.1002/clen.201300869
– ident: ref95/cit95
  doi: 10.1007/BF02037875
– ident: ref54/cit54
  doi: 10.1016/j.apcatb.2016.07.034
– ident: ref6/cit6
  doi: 10.1021/es061000n
– ident: ref91/cit91
  doi: 10.1021/jp9513531
– ident: ref16/cit16
  doi: 10.1021/es803556w
– ident: ref20/cit20
  doi: 10.1021/es900637a
– ident: ref35/cit35
  doi: 10.2307/3571692
– ident: ref36/cit36
  doi: 10.1248/cpb.22.962
– ident: ref10/cit10
– ident: ref15/cit15
  doi: 10.1021/es100382z
– ident: ref30/cit30
  doi: 10.5339/qfarf.2011.evp16
– ident: ref125/cit125
  doi: 10.1016/j.watres.2018.12.010
– ident: ref76/cit76
  doi: 10.1021/ja00756a009
– ident: ref129/cit129
  doi: 10.1021/es9914590
– ident: ref122/cit122
  doi: 10.1021/es061069v
– ident: ref21/cit21
  doi: 10.1021/acs.estlett.6b00260
– ident: ref90/cit90
  doi: 10.1021/jp961261r
– ident: ref97/cit97
  doi: 10.1021/acs.est.5b01026
– ident: ref27/cit27
  doi: 10.1021/acs.est.6b05005
– year: 2017
  ident: ref4/cit4
  publication-title: History and Use of Per- and Polyfluoroalkyl Substances (PFAS)
  contributor:
    fullname: ITRC.
– ident: ref68/cit68
  doi: 10.1146/annurev-physchem-052516-050816
– year: 2019
  ident: ref28/cit28
  publication-title: EPA’s Per- and Polyfluoroalkyl Substances (PFAS) Action Plan (EPA 823R18004)
  contributor:
    fullname: USEPA.
– ident: ref5/cit5
  doi: 10.1021/es048245p
– ident: ref103/cit103
  doi: 10.1016/j.jhazmat.2011.07.026
– ident: ref107/cit107
  doi: 10.1016/j.watres.2019.114907
– ident: ref118/cit118
  doi: 10.1016/S1001-0742(08)62085-9
– ident: ref74/cit74
  doi: 10.1021/ja01405a011
– ident: ref63/cit63
  doi: 10.1038/srep32949
– ident: ref93/cit93
  doi: 10.1139/v92-207
– ident: ref38/cit38
  doi: 10.1016/j.cej.2012.11.086
– ident: ref128/cit128
  doi: 10.1016/j.jphotochemrev.2004.10.002
– ident: ref86/cit86
  doi: 10.1016/0009-2614(90)85182-C
– ident: ref22/cit22
  doi: 10.1016/j.envpol.2018.01.066
– ident: ref123/cit123
  doi: 10.1021/es402879x
– ident: ref34/cit34
  doi: 10.1021/j100788a001
– ident: ref60/cit60
  doi: 10.1063/1.555805
– ident: ref132/cit132
  doi: 10.1021/es801169k
– ident: ref99/cit99
  doi: 10.1021/es049719n
– ident: ref106/cit106
  doi: 10.1016/j.cej.2019.122866
– ident: ref7/cit7
  doi: 10.1039/b212497a
– ident: ref2/cit2
  doi: 10.1002/ieam.258
– ident: ref12/cit12
  doi: 10.1002/oby.21258
– ident: ref133/cit133
  doi: 10.1016/j.chemosphere.2015.11.012
– ident: ref62/cit62
  doi: 10.1016/j.cplett.2007.01.037
– ident: ref81/cit81
  doi: 10.1016/j.watres.2013.12.034
– ident: ref100/cit100
  doi: 10.1021/es000895f
– ident: ref56/cit56
  doi: 10.1021/acs.est.7b05912
– ident: ref59/cit59
  doi: 10.1021/acs.est.8b06648
– ident: ref87/cit87
  doi: 10.1021/j100081a003
– ident: ref66/cit66
  doi: 10.1021/j100857a020
– ident: ref49/cit49
  doi: 10.1016/j.chemosphere.2013.12.046
– ident: ref43/cit43
  doi: 10.1016/j.seppur.2015.07.047
– ident: ref115/cit115
  doi: 10.1080/10643380600580011
– volume: 1
  start-page: 65
  year: 1992
  ident: ref117/cit117
  publication-title: Landfilling of waste: leachate
  contributor:
    fullname: Andreottola G.
– ident: ref78/cit78
  doi: 10.1021/j100368a084
– ident: ref45/cit45
  doi: 10.1016/j.chemosphere.2017.10.023
– ident: ref119/cit119
  doi: 10.1039/C7EW00544J
– ident: ref64/cit64
  doi: 10.1016/j.chemosphere.2017.10.074
– ident: ref131/cit131
  doi: 10.1021/es049971v
– ident: ref41/cit41
  doi: 10.1016/j.jwpe.2015.01.001
– year: 2017
  ident: ref3/cit3
  publication-title: The family tree of per- and polyfluoroalkyl substances (PFAS) for environmental health professionals: Names and abbreviations
  contributor:
    fullname: ATSDR.
– ident: ref19/cit19
  doi: 10.1021/acs.est.6b05843
– ident: ref29/cit29
  doi: 10.1080/01919512.1999.10382889
– ident: ref111/cit111
  doi: 10.1080/10934527809374833
– ident: ref8/cit8
  doi: 10.1016/j.envpol.2010.01.023
– ident: ref126/cit126
  doi: 10.2134/jeq1993.00472425002200030002x
– ident: ref14/cit14
  doi: 10.1016/j.chemosphere.2007.02.008
– year: 2017
  ident: ref1/cit1
  publication-title: An Overview of Perfluoroalkyl and Polyfluoroalkyl Substances and Interim Guidance for Clinicians Responding to Patient Exposure Concerns
  contributor:
    fullname: CDC.
– ident: ref18/cit18
  doi: 10.1016/j.watres.2014.09.052
– ident: ref82/cit82
  doi: 10.1039/f19747000208
– ident: ref47/cit47
  doi: 10.1016/j.watres.2010.02.019
– ident: ref108/cit108
  doi: 10.1021/acs.est.9b05869
– ident: ref37/cit37
  doi: 10.1016/j.scitotenv.2013.03.060
– ident: ref40/cit40
  doi: 10.1016/j.chemosphere.2014.09.086
– ident: ref52/cit52
  doi: 10.1021/acs.est.6b03261
– ident: ref31/cit31
  doi: 10.1089/ees.2012.0273
– ident: ref42/cit42
  doi: 10.1007/s13762-013-0375-0
– ident: ref75/cit75
  doi: 10.1021/j100851a073
– ident: ref110/cit110
  doi: 10.1515/znb-1995-1211
– ident: ref23/cit23
  doi: 10.1016/j.envpol.2009.12.031
– year: 1970
  ident: ref73/cit73
  publication-title: Hydrated electron
  contributor:
    fullname: Hart E. J.
– ident: ref55/cit55
  doi: 10.1016/j.scitotenv.2017.06.197
– ident: ref46/cit46
  doi: 10.1021/jp807116q
– ident: ref114/cit114
  doi: 10.1016/S0169-7722(98)00133-8
– ident: ref50/cit50
  doi: 10.1038/srep09353
– ident: ref24/cit24
  doi: 10.1016/j.chemosphere.2010.11.072
– ident: ref121/cit121
  doi: 10.1021/es980272q
– ident: ref17/cit17
  doi: 10.1021/es4018877
– ident: ref67/cit67
  doi: 10.1126/science.146.3652.1664-d
– ident: ref127/cit127
– ident: ref39/cit39
  doi: 10.1016/j.jhazmat.2013.08.061
– ident: ref61/cit61
  doi: 10.1016/j.cej.2017.10.153
– ident: ref98/cit98
  doi: 10.1016/j.cej.2018.10.204
SSID ssj0002308
Score 2.6939178
SecondaryResourceType review_article
Snippet Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- and polyfluoroalkyl substances (PFAS) in water due to...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 3752
SubjectTerms Acids
Carboxylic acids
Chains
Chemicals
Defluorination
Degradation
Destruction
Dicarboxylic acids
Dissolved oxygen
Humic acids
Hydrated electrons
Iodides
Perfluoro compounds
Perfluoroalkyl & polyfluoroalkyl substances
Perfluorooctanoic acid
Photoproduction
Reduction
Sulfite
Title Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review
URI http://dx.doi.org/10.1021/acs.est.9b05565
https://www.ncbi.nlm.nih.gov/pubmed/32162904
https://www.proquest.com/docview/2388876390/abstract/
https://search.proquest.com/docview/2376732142
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BuZQDlJbCQkGu1EN7yOI4iR1zi6quqkqgVR_S3qKJH5euEtTsHsqvx5Nkd2mrCq7OxLHs8cznzPgbgCNpMnSYmijLbE6k2hhVStjIZ0Yqo6XhHRPTj5_y_Ca9mGWzDVn04wi-iL-hacfBQI51Rbwv2Ut4JSh_kFDQ6dXa6AYkna-KFehEztYsPk86IDdk2odu6Bls2fmYyds-O6vtqAkpteR2vFxUY_P7KXHjv4e_A28GpMmKXjXewQtX78Lrv_gHd2H_bHPNLYgO-7zdgyUdRwdiWdZ4NnV3EcPasmkzv_fzZXPX4Pz2PrwS7M6CFKdlx9NJcXXC6McuK4bMAnZJzLBdL8ONBBIsLqftyXdWsFWdBdZHKN7DzeTs-vQ8Ggo0RCh0vIik0ypJquDjpa-0tNZry3NMdIzOcZ8FMGA5t8o7nxphc-cSqwJgERgj55gk-7BVN7X7CEwajSqLjddpsCne5CgsR-Tep77yqRvBUZjJcthgbdnFzkVcUmOYkXKY3hEcr5a1_NXTdTwverBa9k23AcDkxNGn-QgO14_DjqMwCtauWZKMkorqO4kRfOjVZf2t0CyF5umn_xvuZ9gWdH6nTCB1AFthZd2XAHIW1ddOvf8AUUf3WQ
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOPAqFhQJG6qE9ZHGc2I65RVVXC7TV0oe0t8jx49JVgprdQ_n1jLNJlocqwdWZnczaY8_njP0NwL4wXDudmohzmwVSbR2VktnIcyOkUcLQlonp9ExMr9Ivcz7fAtrfhUEjGtTUtEn8DbtA_DG04To5VmWgf-H34D6XuBsPYOjoYlh7EVBnfc0ClYj5QObzl4IQjUzzezS6A2K2oWbyBL4NRrYnTK7Hq2U5Nj_-4G_8n3_xFB53uJPka0d5Bluu2oFHv7AR7sDu8ebSG4p2s755DquwOe1oZkntyczdRERXlszqxa1frOqbWi-ub_EnaNAyuFFDDmaT_OKQhM-8JO_OGZDzwBPbaunuJwTB_HzWHH4iOemrLpB1vuIFXE2OL4-mUVeuIdJMxctIOCWTpMSIL3yphLVeWZrpRMXaOeo5QgNLqZXe-dQwmzmXWInwhelYU6qTZBe2q7pyr4AIo7TksfEqxRXGm0wzS7Wm3qe-9KkbwT72ZNFNt6ZoM-ksLkIj9kjRde8IDvrRLb6vyTvuFt3rR3-jFuFMFhj7FB3Bh-Exzr-QVNGVq1dBRgoZqj2xEbxce83wLmwWTNH09b-Z-x4eTC9PT4qTz2df38BDFnb24YyQ3INtHGX3FuHPsnzXevxPc5H_xA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcaCkUFlowUg_tIVvHiZ24t6h0VV5V1LLS3iLHj0tXSdXsHsqvx5P1pjxUCa7OZDJxZjzjjOcbgH2hubIq1RHnJkdQbRXVGTOR41pkWgpNeySmb-fibJp-nvFZKArDWhgvROc5dX0SH6362riAMBAf4bhfK8eyRggY_hAecWzfjQHRyeWw_vqgOl_3LZCJmA2APn8xQI-ku9890j1hZu9uJpswHQTtT5lcjZeLeqx__IHh-L9vsgXPQvxJipXCPIcHttmGp7-gEm7Dzuld8ZsnDdbfvYAlblID3CxpHSntTURUY0jZzm_dfNnetGp-detv8UItUJ06clBOistDgr97SRHOG5ALxIvtuYQ6BSQsLsru8JgUZN19gazyFi9hOjn9fnIWhbYNkWIyXkTCyixJau_5haulMMZJQ3OVyFhZSx33IYKh1GTOulQzk1ubmMyHMUzFilKVJDuw0bSNfQ1EaKkyHmsnU7_SOJ0rZqhS1LnU1S61I9j3M1kFs-uqPqPO4goH_YxUYXpHcLD-wtX1CsTjftLdtQbcsfVhTY7IfZKO4MNw2dshJldUY9sl0mQiw65PbASvVpozPMsPCyZp-ubfxH0Pj8uPk-rrp_Mvb-EJww0-HhXKdmHDf2S756OgRf2uV_qfo1kCTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Destruction+of+Per-+and+Polyfluoroalkyl+Substances+%28PFAS%29+with+Advanced+Reduction+Processes+%28ARPs%29%3A+A+Critical+Review&rft.jtitle=Environmental+science+%26+technology&rft.au=Cui%2C+Junkui&rft.au=Gao%2C+Panpan&rft.au=Deng%2C+Yang&rft.date=2020-04-07&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=54&rft.issue=7&rft.spage=3752&rft.epage=3766&rft_id=info:doi/10.1021%2Facs.est.9b05565&rft.externalDocID=c608051176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon