Adaptive-passive tuned mass damper for structural aseismic protection including soil–structure interaction
As one of the most traditional vibration mitigation devices, tuned mass dampers (TMDs) are applied widely in aseismic protection of building structures. The control effect of a passive TMD is depended on its parameters, especially the frequency ratio. Nevertheless, passive TMDs are high sensitive to...
Saved in:
Published in | Soil dynamics and earthquake engineering (1984) Vol. 158; p. 107298 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.07.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As one of the most traditional vibration mitigation devices, tuned mass dampers (TMDs) are applied widely in aseismic protection of building structures. The control effect of a passive TMD is depended on its parameters, especially the frequency ratio. Nevertheless, passive TMDs are high sensitive to the frequency detuning issue, and a mistuned TMD will lose its aseismic protection. Soil-structure interaction (SSI) will deviate the structural frequency and lead to a mistuned TMD. Besides, different soil conditions will lead to different frequency deviations of the primary structure. However, it may be difficult to obtain parameters of the soil exactly. To solve this problem, a recently developed adaptive-passive eddy current pendulum TMD (APEC-PTMD) is applied to a benchmark 40-story tall building including SSI in this study, and four different soil conditions are considered. The APEC-PTMD can identify the optimal TMD frequency in the building with different soil types, and then retune itself through adjusting the pendulum length, and also the air gap between the conduct plate and permanent magnets to reset its damping ratio. Therefore, no prior knowledge of the soil condition is needed for the APEC-PTMD. To verify the aseismic protection effect, 44 far-field earthquake excitations are chosen, and two passive TMDs are used for comparison, while one is optimized for the base-fixed structure and the other is optimized based on the dense-soil model. The passive TMD will become mistuned when SSI is considered or soil parameters are changed, while APEC-PTMD can adapt to the structural dominant frequency with different SSI. Therefore, it always works as a passive TMD with well-tuned parameters. Results show that the APEC-PTMD has a better aseismic protection than the passive TMD, especially in the soft-soil model, and it has an excellent control effect compared to the without TMD case at the same time.
•An adaptive-passive eddy current tuned mass damper (APEC-TMD) with variable pendulum length and damping ratio is proposed.•The APEC-TMD is applied to a benchmark high-rise building considering soil-structure interaction (SSI).•The APEC-TMD can identify the dominant frequency of the building with different SSI condition.•The APEC-TMD has the best structural aseismic protection performance compared to passive TMDs. |
---|---|
AbstractList | As one of the most traditional vibration mitigation devices, tuned mass dampers (TMDs) are applied widely in aseismic protection of building structures. The control effect of a passive TMD is depended on its parameters, especially the frequency ratio. Nevertheless, passive TMDs are high sensitive to the frequency detuning issue, and a mistuned TMD will lose its aseismic protection. Soil-structure interaction (SSI) will deviate the structural frequency and lead to a mistuned TMD. Besides, different soil conditions will lead to different frequency deviations of the primary structure. However, it may be difficult to obtain parameters of the soil exactly. To solve this problem, a recently developed adaptive-passive eddy current pendulum TMD (APEC-PTMD) is applied to a benchmark 40-story tall building including SSI in this study, and four different soil conditions are considered. The APEC-PTMD can identify the optimal TMD frequency in the building with different soil types, and then retune itself through adjusting the pendulum length, and also the air gap between the conduct plate and permanent magnets to reset its damping ratio. Therefore, no prior knowledge of the soil condition is needed for the APEC-PTMD. To verify the aseismic protection effect, 44 far-field earthquake excitations are chosen, and two passive TMDs are used for comparison, while one is optimized for the base-fixed structure and the other is optimized based on the dense-soil model. The passive TMD will become mistuned when SSI is considered or soil parameters are changed, while APEC-PTMD can adapt to the structural dominant frequency with different SSI. Therefore, it always works as a passive TMD with well-tuned parameters. Results show that the APEC-PTMD has a better aseismic protection than the passive TMD, especially in the soft-soil model, and it has an excellent control effect compared to the without TMD case at the same time. As one of the most traditional vibration mitigation devices, tuned mass dampers (TMDs) are applied widely in aseismic protection of building structures. The control effect of a passive TMD is depended on its parameters, especially the frequency ratio. Nevertheless, passive TMDs are high sensitive to the frequency detuning issue, and a mistuned TMD will lose its aseismic protection. Soil-structure interaction (SSI) will deviate the structural frequency and lead to a mistuned TMD. Besides, different soil conditions will lead to different frequency deviations of the primary structure. However, it may be difficult to obtain parameters of the soil exactly. To solve this problem, a recently developed adaptive-passive eddy current pendulum TMD (APEC-PTMD) is applied to a benchmark 40-story tall building including SSI in this study, and four different soil conditions are considered. The APEC-PTMD can identify the optimal TMD frequency in the building with different soil types, and then retune itself through adjusting the pendulum length, and also the air gap between the conduct plate and permanent magnets to reset its damping ratio. Therefore, no prior knowledge of the soil condition is needed for the APEC-PTMD. To verify the aseismic protection effect, 44 far-field earthquake excitations are chosen, and two passive TMDs are used for comparison, while one is optimized for the base-fixed structure and the other is optimized based on the dense-soil model. The passive TMD will become mistuned when SSI is considered or soil parameters are changed, while APEC-PTMD can adapt to the structural dominant frequency with different SSI. Therefore, it always works as a passive TMD with well-tuned parameters. Results show that the APEC-PTMD has a better aseismic protection than the passive TMD, especially in the soft-soil model, and it has an excellent control effect compared to the without TMD case at the same time. •An adaptive-passive eddy current tuned mass damper (APEC-TMD) with variable pendulum length and damping ratio is proposed.•The APEC-TMD is applied to a benchmark high-rise building considering soil-structure interaction (SSI).•The APEC-TMD can identify the dominant frequency of the building with different SSI condition.•The APEC-TMD has the best structural aseismic protection performance compared to passive TMDs. |
ArticleNumber | 107298 |
Author | Wang, Liangkun Shi, Weixing Zhou, Ying |
Author_xml | – sequence: 1 givenname: Liangkun orcidid: 0000-0003-3426-4023 surname: Wang fullname: Wang, Liangkun email: wangliangkun@tongji.edu.cn organization: Department of Disaster Mitigation for Structures, Tongji University, Shanghai, 200092, China – sequence: 2 givenname: Weixing surname: Shi fullname: Shi, Weixing email: swxtgk@tongji.edu.cn organization: Department of Disaster Mitigation for Structures, Tongji University, Shanghai, 200092, China – sequence: 3 givenname: Ying surname: Zhou fullname: Zhou, Ying email: yingzhou@tongji.edu.cn organization: Department of Disaster Mitigation for Structures, Tongji University, Shanghai, 200092, China |
BookMark | eNqFkM1KAzEQx4MoWKuPIAQ8b02ybXaDBynFLyh4UfAWsslEUrbZNckWevMdfEOfxNTqxYunYWb-__n4naBD33lA6JySCSWUX64msXOt2foJI4zlWsVEfYBGtK5EUU7pyyEaEcaromKcHqOTGFeE0IrWfITauVF9chsoehVjjjgNHgxe5wwbte4hYNsFHFMYdBqCarGK4OLaadyHLoFOrvPYed0OxvlXvDvl8_3jVw-5lSCob9kpOrKqjXD2E8fo-fbmaXFfLB_vHhbzZaGYIKkAKowtiZ3ZacOErolWygpmmVENYVowYKLiTdNwxaesqUndlA01lulpzYXg5Rhd7OfmC98GiEmuuiH4vFJmDKzi9UyUWTXbq3ToYgxgZR_cWoWtpETuwMqV_AErd2DlHmz2Xf3xaZfU7r8UlGv_dV_v3ZABbBwEGbUDr8G4kGFK07l_JnwBXF-e0w |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_111101 crossref_primary_10_1016_j_ymssp_2023_110291 crossref_primary_10_1080_13467581_2023_2257275 crossref_primary_10_1016_j_istruc_2025_108356 crossref_primary_10_1016_j_istruc_2023_01_075 crossref_primary_10_1016_j_istruc_2022_05_014 crossref_primary_10_1016_j_soildyn_2024_108825 crossref_primary_10_1016_j_soildyn_2023_108428 crossref_primary_10_1016_j_istruc_2023_105752 crossref_primary_10_1016_j_soildyn_2023_108277 crossref_primary_10_1080_13467581_2023_2257283 crossref_primary_10_1016_j_soildyn_2024_109085 crossref_primary_10_1080_13467581_2023_2257280 crossref_primary_10_1155_2024_8817461 crossref_primary_10_1080_13467581_2023_2257289 crossref_primary_10_1016_j_eqrea_2022_100173 crossref_primary_10_1080_13467581_2023_2257287 crossref_primary_10_3390_buildings15071020 crossref_primary_10_1080_13467581_2023_2257286 crossref_primary_10_1016_j_jobe_2025_112203 crossref_primary_10_1016_j_istruc_2022_12_037 crossref_primary_10_1016_j_istruc_2024_107804 crossref_primary_10_1016_j_renene_2024_121185 crossref_primary_10_1016_j_istruc_2023_03_117 crossref_primary_10_1080_13467581_2023_2270018 crossref_primary_10_1016_j_soildyn_2024_108956 crossref_primary_10_1007_s40430_022_03743_0 crossref_primary_10_1016_j_istruc_2022_07_003 crossref_primary_10_1016_j_soildyn_2024_108565 crossref_primary_10_3390_su16229623 crossref_primary_10_1016_j_ijnaoe_2022_100483 crossref_primary_10_1061_JSENDH_STENG_12951 crossref_primary_10_1080_13467581_2023_2264934 crossref_primary_10_1080_13467581_2023_2264933 crossref_primary_10_1080_13467581_2023_2267645 crossref_primary_10_3390_su151512016 crossref_primary_10_1080_13467581_2023_2264903 crossref_primary_10_1016_j_est_2025_115691 crossref_primary_10_1016_j_jobe_2024_108674 crossref_primary_10_1016_j_oceaneng_2023_114593 crossref_primary_10_1016_j_istruc_2023_03_107 crossref_primary_10_1016_j_heliyon_2023_e19381 crossref_primary_10_1016_j_istruc_2024_106507 crossref_primary_10_1016_j_engstruct_2023_116109 crossref_primary_10_1016_j_istruc_2024_106348 crossref_primary_10_1016_j_jobe_2025_112380 crossref_primary_10_1016_j_istruc_2023_04_023 crossref_primary_10_1016_j_engstruct_2023_116744 crossref_primary_10_3390_geosciences14100264 crossref_primary_10_3390_app13148046 crossref_primary_10_1016_j_istruc_2023_06_112 crossref_primary_10_1080_13467581_2023_2278465 crossref_primary_10_3389_fbuil_2025_1559530 crossref_primary_10_1016_j_istruc_2024_105925 crossref_primary_10_1155_2023_7686917 crossref_primary_10_1080_13467581_2023_2270754 crossref_primary_10_1177_09544062231166876 crossref_primary_10_1016_j_oceaneng_2024_119784 crossref_primary_10_1016_j_soildyn_2025_109376 crossref_primary_10_1080_13467581_2023_2292089 crossref_primary_10_1007_s40430_022_03895_z crossref_primary_10_1080_13467581_2023_2257272 crossref_primary_10_3390_buildings14020308 crossref_primary_10_1002_tal_2005 crossref_primary_10_1016_j_istruc_2023_04_017 crossref_primary_10_3390_buildings13051276 crossref_primary_10_1016_j_jobe_2024_109225 crossref_primary_10_1016_j_apacoust_2023_109456 crossref_primary_10_3390_s23094547 crossref_primary_10_1007_s42417_023_00979_5 crossref_primary_10_1016_j_jobe_2023_107685 crossref_primary_10_1016_j_soildyn_2024_108987 crossref_primary_10_1007_s11071_024_10141_9 crossref_primary_10_1016_j_istruc_2023_07_059 crossref_primary_10_3390_ma16062291 crossref_primary_10_3390_buildings12070893 crossref_primary_10_1016_j_istruc_2024_107052 crossref_primary_10_3390_su16072679 crossref_primary_10_1007_s41062_024_01830_w crossref_primary_10_3390_app13063641 crossref_primary_10_1016_j_engstruct_2024_117861 crossref_primary_10_1002_eer2_38 crossref_primary_10_1016_j_soildyn_2023_107765 crossref_primary_10_1007_s42107_025_01307_w crossref_primary_10_1016_j_istruc_2024_107966 crossref_primary_10_1016_j_istruc_2023_02_125 crossref_primary_10_1016_j_jobe_2025_112251 crossref_primary_10_1080_13467581_2023_2265145 crossref_primary_10_3390_app13179741 crossref_primary_10_3390_su15054506 crossref_primary_10_1016_j_jobe_2023_107549 crossref_primary_10_1016_j_istruc_2022_08_121 crossref_primary_10_1080_13467581_2023_2257298 crossref_primary_10_1016_j_engstruct_2024_118841 crossref_primary_10_1016_j_pes_2025_100051 crossref_primary_10_1061_PPSCFX_SCENG_1479 crossref_primary_10_1142_S0219455423400278 crossref_primary_10_1016_j_istruc_2025_108217 crossref_primary_10_1007_s00419_022_02299_8 crossref_primary_10_1016_j_istruc_2024_106425 crossref_primary_10_1016_j_engstruct_2022_114963 crossref_primary_10_1016_j_ymssp_2024_111639 crossref_primary_10_1016_j_oceaneng_2024_117856 crossref_primary_10_1016_j_istruc_2023_05_086 crossref_primary_10_1016_j_jobe_2024_110384 crossref_primary_10_1016_j_jsv_2024_118271 crossref_primary_10_1016_j_istruc_2023_02_073 crossref_primary_10_1016_j_soildyn_2024_108977 crossref_primary_10_1016_j_engstruct_2023_115714 crossref_primary_10_1016_j_soildyn_2024_108857 crossref_primary_10_1016_j_istruc_2024_106011 crossref_primary_10_1016_j_istruc_2024_107188 crossref_primary_10_1002_eqe_4232 crossref_primary_10_1016_j_ymssp_2024_112158 crossref_primary_10_1002_tal_2047 crossref_primary_10_1016_j_engstruct_2023_116131 crossref_primary_10_3390_buildings13071587 crossref_primary_10_1016_j_istruc_2022_11_064 crossref_primary_10_1016_j_soildyn_2025_109291 |
Cites_doi | 10.1016/j.jweia.2021.104761 10.1002/tal.1561 10.1002/stc.2377 10.1061/(ASCE)0733-9445(2007)133:1(67) 10.1016/j.engstruct.2004.10.015 10.1016/j.engstruct.2019.110010 10.1016/j.soildyn.2020.106333 10.1002/stc.1620 10.1016/j.soildyn.2016.10.019 10.1016/j.soildyn.2018.10.035 10.1016/j.jsv.2019.04.008 10.1016/j.engstruct.2019.03.110 10.1061/(ASCE)ST.1943-541X.0002458 10.1016/j.soildyn.2015.06.013 10.1016/j.engstruct.2020.110486 10.1016/j.soildyn.2017.09.020 10.1016/j.engstruct.2021.112743 10.1002/stc.2627 10.1016/j.jobe.2019.100930 10.1002/eqe.3162 10.1061/(ASCE)EM.1943-7889.0000824 10.1016/j.engstruct.2020.110960 10.1016/j.soildyn.2017.05.029 10.1002/stc.2324 10.1002/stc.349 10.1016/j.soildyn.2018.07.014 10.1061/(ASCE)0733-9445(2003)129:7(845) 10.1002/tal.1501 10.1016/j.ymssp.2017.12.011 10.1002/tal.1683 10.1016/j.soildyn.2013.04.002 10.1061/(ASCE)ST.1943-541X.0000797 10.1016/j.soildyn.2019.05.007 10.1016/j.soildyn.2017.05.017 10.1002/tal.1785 10.1061/(ASCE)ST.1943-541X.0000286 10.1016/j.engstruct.2020.110531 10.1002/tal.1793 10.1016/j.jweia.2007.06.034 10.1016/j.soildyn.2018.12.027 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2022 |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K FR3 KL. KR7 SOI |
DOI | 10.1016/j.soildyn.2022.107298 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-341X |
ExternalDocumentID | 10_1016_j_soildyn_2022_107298 S0267726122001476 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSE SST SSZ T5K TN5 WUQ Y6R ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TG 7UA 8FD C1K EFKBS FR3 KL. KR7 SOI |
ID | FETCH-LOGICAL-a290t-e19df30f5f4b29c80caaf92f2dab02c92e2976bbb6a642b808b3b1df2c4869963 |
IEDL.DBID | .~1 |
ISSN | 0267-7261 |
IngestDate | Wed Aug 13 08:17:39 EDT 2025 Tue Jul 01 03:38:03 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 23 02:41:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil-structure interaction Aseismic protection Variable damping Variable frequency Tall building Tuned mass damper |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a290t-e19df30f5f4b29c80caaf92f2dab02c92e2976bbb6a642b808b3b1df2c4869963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3426-4023 |
PQID | 2672768593 |
PQPubID | 2045399 |
ParticipantIDs | proquest_journals_2672768593 crossref_primary_10_1016_j_soildyn_2022_107298 crossref_citationtrail_10_1016_j_soildyn_2022_107298 elsevier_sciencedirect_doi_10_1016_j_soildyn_2022_107298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Soil dynamics and earthquake engineering (1984) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wang, Wierschem, Spencer (bib13) 2015; 141 Sun, Jahangiri (bib43) 2018; 105 Abtahi, Mahsuli, Ghannad (bib18) 2020; 146 Wang, Sun, Yang (bib2) 2019; 190 Wang, Wang, Shi (bib36) 2021; 80 Wang, Shi, Li (bib33) 2019; 26 Den Hartog (bib40) 1985 Jabary, Madabhushi (bib24) 2015; 77 Wang, Li, Wang (bib5) 2019; 123 Roffel, Lourenco, Narasimhan (bib8) 2011; 137 Nagarajaiah (bib10) 2009; 16 Liu, Lu, Li (bib21) 2020; 212 Bekdaş, Kayabekir, Nigdeli (bib31) 2019; 116 Bybordiani, Arici (bib19) 2019; 48 Liu, Wang, Mercan (bib37) 2020; 211 Yang, Lu, Li (bib14) 2020; 220 Huergo, Hernández (bib22) 2019; 29 Jabary, Madabhushi (bib25) 2017; 100 Sun, Nagarajaiah (bib42) 2014; 21 Wang, Nagarajaiah, Shi (bib34) 2020; 29 Fang, Liu, Zhang, Wen (bib12) 2019; 26 Etedali, Akbari, Seifi (bib32) 2019; 119 Bekdaş, Nigdeli (bib29) 2017; 92 Liu, Lu, Li (bib17) 2020; 27 Farshidianfar, Soheili (bib28) 2013; 51 Yang, Jing, Li (bib15) 2020; 29 Shi, Wang, Lu (bib39) 2019; 452 Nagarajaiah, Sonmez (bib41) 2007; 133 Wang, Nagarajaiah, Shi (bib7) 2021; 244 Salvi, Pioldi, Rizzi (bib30) 2018; 114 Spencer, Nagarajaiah (bib6) 2003; 129 bib44 Liu, Li, Zhang (bib16) 2020; 138 Abd-Elhamed, Mahmoud (bib26) 2019; 26 Wang, Shi, Zhou (bib38) 2020; 25 Roffel, Narasimhan, Haskett (bib9) 2013; 139 Salvi, Rizzi (bib4) 2017; 101 Zhou, Wei, Lu (bib20) 2018; 27 Wang, Shi, Zhou (bib3) 2019; 28 Nagarajaiah, Varadarajan (bib11) 2005; 27 Liu, Chiang, Hwang (bib27) 2008; 96 Nazarimofrad, Zahrai (bib23) 2018; 115 Wang, Nagarajaiah, Sun (bib1) 2021; 218 Wang, Shi, Zhang (bib35) 2020; 209 Sun (10.1016/j.soildyn.2022.107298_bib43) 2018; 105 Wang (10.1016/j.soildyn.2022.107298_bib7) 2021; 244 Liu (10.1016/j.soildyn.2022.107298_bib27) 2008; 96 Jabary (10.1016/j.soildyn.2022.107298_bib25) 2017; 100 Jabary (10.1016/j.soildyn.2022.107298_bib24) 2015; 77 Nagarajaiah (10.1016/j.soildyn.2022.107298_bib41) 2007; 133 Huergo (10.1016/j.soildyn.2022.107298_bib22) 2019; 29 Den Hartog (10.1016/j.soildyn.2022.107298_bib40) 1985 Liu (10.1016/j.soildyn.2022.107298_bib16) 2020; 138 Liu (10.1016/j.soildyn.2022.107298_bib17) 2020; 27 Wang (10.1016/j.soildyn.2022.107298_bib36) 2021; 80 Sun (10.1016/j.soildyn.2022.107298_bib42) 2014; 21 Wang (10.1016/j.soildyn.2022.107298_bib1) 2021; 218 Nagarajaiah (10.1016/j.soildyn.2022.107298_bib11) 2005; 27 Wang (10.1016/j.soildyn.2022.107298_bib35) 2020; 209 Abtahi (10.1016/j.soildyn.2022.107298_bib18) 2020; 146 Wang (10.1016/j.soildyn.2022.107298_bib3) 2019; 28 Wang (10.1016/j.soildyn.2022.107298_bib34) 2020; 29 Liu (10.1016/j.soildyn.2022.107298_bib37) 2020; 211 Shi (10.1016/j.soildyn.2022.107298_bib39) 2019; 452 Bekdaş (10.1016/j.soildyn.2022.107298_bib29) 2017; 92 Fang (10.1016/j.soildyn.2022.107298_bib12) 2019; 26 Roffel (10.1016/j.soildyn.2022.107298_bib9) 2013; 139 Nagarajaiah (10.1016/j.soildyn.2022.107298_bib10) 2009; 16 Yang (10.1016/j.soildyn.2022.107298_bib14) 2020; 220 Wang (10.1016/j.soildyn.2022.107298_bib38) 2020; 25 Wang (10.1016/j.soildyn.2022.107298_bib5) 2019; 123 Wang (10.1016/j.soildyn.2022.107298_bib13) 2015; 141 Nazarimofrad (10.1016/j.soildyn.2022.107298_bib23) 2018; 115 Wang (10.1016/j.soildyn.2022.107298_bib2) 2019; 190 Bybordiani (10.1016/j.soildyn.2022.107298_bib19) 2019; 48 Wang (10.1016/j.soildyn.2022.107298_bib33) 2019; 26 Zhou (10.1016/j.soildyn.2022.107298_bib20) 2018; 27 Abd-Elhamed (10.1016/j.soildyn.2022.107298_bib26) 2019; 26 Roffel (10.1016/j.soildyn.2022.107298_bib8) 2011; 137 Salvi (10.1016/j.soildyn.2022.107298_bib4) 2017; 101 Bekdaş (10.1016/j.soildyn.2022.107298_bib31) 2019; 116 Salvi (10.1016/j.soildyn.2022.107298_bib30) 2018; 114 Farshidianfar (10.1016/j.soildyn.2022.107298_bib28) 2013; 51 Liu (10.1016/j.soildyn.2022.107298_bib21) 2020; 212 Spencer (10.1016/j.soildyn.2022.107298_bib6) 2003; 129 Etedali (10.1016/j.soildyn.2022.107298_bib32) 2019; 119 Yang (10.1016/j.soildyn.2022.107298_bib15) 2020; 29 |
References_xml | – volume: 115 start-page: 838 year: 2018 end-page: 852 ident: bib23 article-title: Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil-structure interaction publication-title: Soil Dynam Earthq Eng – volume: 51 start-page: 14 year: 2013 end-page: 22 ident: bib28 article-title: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction publication-title: Soil Dynam Earthq Eng – ident: bib44 article-title: Pacific earthquake engineering research center (PEER ground motion database) – volume: 137 start-page: 242 year: 2011 end-page: 251 ident: bib8 article-title: Adaptive compensation for detuning in pendulum tuned mass dampers publication-title: J Struct Eng – volume: 25 start-page: 65 year: 2020 end-page: 80 ident: bib38 article-title: Semi-active eddy current pendulum tuned mass damper with variable frequency and damping publication-title: Smart Struct Syst – volume: 26 start-page: e2324 year: 2019 ident: bib12 article-title: Tuned mass damper on a damped structure publication-title: Struct Control Health Monit – volume: 29 year: 2020 ident: bib15 article-title: Dynamic characteristics and viscous dampers design for pile-soil-structure system publication-title: Struct Des Tall Special Build – volume: 452 start-page: 97 year: 2019 end-page: 111 ident: bib39 article-title: Experimental and numerical study on adaptive-passive variable mass tuned mass damper publication-title: J Sound Vib – volume: 100 start-page: 301 year: 2017 end-page: 315 ident: bib25 article-title: Structure-soil-structure interaction effects on structures retrofitted with tuned mass dampers publication-title: Soil Dynam Earthq Eng – volume: 209 start-page: 110010 year: 2020 ident: bib35 article-title: Study on adaptive-passive multiple tuned mass damper with variable mass for a large-span floor structure publication-title: Eng Struct – volume: 80 start-page: 377 year: 2021 end-page: 390 ident: bib36 article-title: Two-dimensional air spring based semi-active TMD for vertical and lateral walking and wind-induced vibration control publication-title: Struct Eng Mech – volume: 141 year: 2015 ident: bib13 article-title: Track nonlinear energy sink for rapid response reduction in building structures publication-title: J Eng Mech – volume: 220 start-page: 110960 year: 2020 ident: bib14 article-title: Large-scale shaking table test on tall buildings with viscous dampers considering pile-soil-structure interaction publication-title: Eng Struct – volume: 146 year: 2020 ident: bib18 article-title: Probabilistic evaluation of soil–structure interaction effects on strength demands of shear buildings publication-title: J Struct Eng – volume: 211 start-page: 110486 year: 2020 ident: bib37 article-title: Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures publication-title: Eng Struct – volume: 16 start-page: 800 year: 2009 end-page: 841 ident: bib10 article-title: Adaptive passive, semi-active, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform publication-title: Struct Control Health Monit – volume: 92 start-page: 443 year: 2017 end-page: 461 ident: bib29 article-title: Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction publication-title: Soil Dynam Earthq Eng – volume: 29 year: 2020 ident: bib34 article-title: Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control publication-title: Struct Des Tall Special Build – year: 1985 ident: bib40 article-title: Mechanical vibrations – volume: 139 year: 2013 ident: bib9 article-title: Performance of pendulum tuned mass dampers in reducing the responses of flexible structures publication-title: J Struct Eng – volume: 77 start-page: 373 year: 2015 end-page: 380 ident: bib24 article-title: Tuned mass damper effects on the response of multi-storied structures observed in geotechnical centrifuge tests publication-title: Soil Dynam Earthq Eng – volume: 105 start-page: 338 year: 2018 end-page: 360 ident: bib43 article-title: Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper publication-title: Mech Syst Signal Process – volume: 244 start-page: 112743 year: 2021 ident: bib7 article-title: Semi-active control of walking-induced vibrations using adaptive tuned mass damper considering human-structure-interaction publication-title: Eng Struct – volume: 138 start-page: 106333 year: 2020 ident: bib16 article-title: Experimental study and numerical simulation on dynamic soil-structure interaction under earthquake excitations publication-title: Soil Dynam Earthq Eng – volume: 218 start-page: 104761 year: 2021 ident: bib1 article-title: Optimal design of supplemental negative stiffness damped outrigger system for high-rise buildings resisting multi-hazard of winds and earthquakes publication-title: J Wind Eng Ind Aerod – volume: 116 start-page: 552 year: 2019 end-page: 562 ident: bib31 article-title: Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction publication-title: Soil Dynam Earthq Eng – volume: 129 start-page: 845 year: 2003 end-page: 856 ident: bib6 article-title: State of the art of structural control publication-title: J Struct Eng – volume: 119 start-page: 36 year: 2019 end-page: 50 ident: bib32 article-title: MOCS-based optimum design of TMD and FTMD for tall buildings under near-field earthquakes including SSI effects publication-title: Soil Dynam Earthq Eng – volume: 114 start-page: 576 year: 2018 end-page: 597 ident: bib30 article-title: Optimum tuned mass dampers under seismic soil-structure interaction publication-title: Soil Dynam Earthq Eng – volume: 26 start-page: e2377 year: 2019 ident: bib33 article-title: An adaptive-passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum frequency publication-title: Struct Control Health Monit – volume: 27 year: 2018 ident: bib20 article-title: Influence of soil-structure interaction on performance of a super tall building using a new eddy-current tuned mass damper publication-title: Struct Des Tall Special Build – volume: 123 start-page: 435 year: 2019 end-page: 448 ident: bib5 article-title: Development of a two-phased nonlinear mass damper for displacement mitigation in base-isolated structures publication-title: Soil Dynam Earthq Eng – volume: 27 year: 2020 ident: bib17 article-title: Effectiveness of particle tuned mass damper devices for pile-supported multi-story frames under seismic excitations publication-title: Struct Control Health Monit – volume: 133 start-page: 67 year: 2007 end-page: 77 ident: bib41 article-title: Structures with semiactive variable stiffness single/multiple tuned mass dampers publication-title: J Struct Eng – volume: 26 start-page: 100930 year: 2019 ident: bib26 article-title: Simulation analysis of TMD controlled building subjected to far- and near-fault records considering soil-structure interaction publication-title: J Build Eng – volume: 190 start-page: 128 year: 2019 end-page: 141 ident: bib2 article-title: Seismic protection of SDOF systems with a negative stiffness amplifying damper publication-title: Eng Struct – volume: 27 start-page: 431 year: 2005 end-page: 441 ident: bib11 article-title: Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD publication-title: Eng Struct – volume: 48 start-page: 731 year: 2019 end-page: 748 ident: bib19 article-title: Structure-soil-structure interaction of adjacent buildings subjected to seismic loading publication-title: Earthq Eng Struct Dynam – volume: 101 start-page: 67 year: 2017 end-page: 80 ident: bib4 article-title: Optimum earthquake-tuned TMDs: seismic performance and new design concept of balance of split effective modal masses publication-title: Soil Dynam Earthq Eng – volume: 212 start-page: 110531 year: 2020 ident: bib21 article-title: Shaking table test and numerical simulation of eddy-current tuned mass damper for structural seismic control considering soil-structure interaction publication-title: Eng Struct – volume: 28 year: 2019 ident: bib3 article-title: Study on self-adjustable variable pendulum tuned mass damper publication-title: Struct Des Tall Special Build – volume: 96 start-page: 1092 year: 2008 end-page: 1102 ident: bib27 article-title: Wind-induced vibration of high-rise building with tuned mass damper including soil–structure interaction publication-title: J Wind Eng Ind Aerod – volume: 29 start-page: e1683 year: 2019 ident: bib22 article-title: Coupled-two-beam discrete model for dynamic analysis of tall buildings with tuned mass dampers including soil-structure interaction publication-title: Struct Des Tall Special Build – volume: 21 start-page: 890 year: 2014 end-page: 906 ident: bib42 article-title: Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations publication-title: Struct Control Health Monit – volume: 218 start-page: 104761 year: 2021 ident: 10.1016/j.soildyn.2022.107298_bib1 article-title: Optimal design of supplemental negative stiffness damped outrigger system for high-rise buildings resisting multi-hazard of winds and earthquakes publication-title: J Wind Eng Ind Aerod doi: 10.1016/j.jweia.2021.104761 – volume: 28 issue: 1 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib3 article-title: Study on self-adjustable variable pendulum tuned mass damper publication-title: Struct Des Tall Special Build doi: 10.1002/tal.1561 – volume: 26 start-page: e2377 issue: 7 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib33 article-title: An adaptive-passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum frequency publication-title: Struct Control Health Monit doi: 10.1002/stc.2377 – volume: 133 start-page: 67 issue: 1 year: 2007 ident: 10.1016/j.soildyn.2022.107298_bib41 article-title: Structures with semiactive variable stiffness single/multiple tuned mass dampers publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2007)133:1(67) – volume: 27 start-page: 431 issue: 3 year: 2005 ident: 10.1016/j.soildyn.2022.107298_bib11 article-title: Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD publication-title: Eng Struct doi: 10.1016/j.engstruct.2004.10.015 – volume: 209 start-page: 110010 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib35 article-title: Study on adaptive-passive multiple tuned mass damper with variable mass for a large-span floor structure publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.110010 – volume: 138 start-page: 106333 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib16 article-title: Experimental study and numerical simulation on dynamic soil-structure interaction under earthquake excitations publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2020.106333 – volume: 21 start-page: 890 issue: 6 year: 2014 ident: 10.1016/j.soildyn.2022.107298_bib42 article-title: Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations publication-title: Struct Control Health Monit doi: 10.1002/stc.1620 – volume: 92 start-page: 443 year: 2017 ident: 10.1016/j.soildyn.2022.107298_bib29 article-title: Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2016.10.019 – volume: 116 start-page: 552 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib31 article-title: Tranfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2018.10.035 – volume: 452 start-page: 97 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib39 article-title: Experimental and numerical study on adaptive-passive variable mass tuned mass damper publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.04.008 – volume: 190 start-page: 128 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib2 article-title: Seismic protection of SDOF systems with a negative stiffness amplifying damper publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.03.110 – volume: 146 issue: 1 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib18 article-title: Probabilistic evaluation of soil–structure interaction effects on strength demands of shear buildings publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002458 – volume: 77 start-page: 373 year: 2015 ident: 10.1016/j.soildyn.2022.107298_bib24 article-title: Tuned mass damper effects on the response of multi-storied structures observed in geotechnical centrifuge tests publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2015.06.013 – volume: 80 start-page: 377 issue: 4 year: 2021 ident: 10.1016/j.soildyn.2022.107298_bib36 article-title: Two-dimensional air spring based semi-active TMD for vertical and lateral walking and wind-induced vibration control publication-title: Struct Eng Mech – volume: 211 start-page: 110486 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib37 article-title: Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.110486 – volume: 115 start-page: 838 year: 2018 ident: 10.1016/j.soildyn.2022.107298_bib23 article-title: Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil-structure interaction publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2017.09.020 – year: 1985 ident: 10.1016/j.soildyn.2022.107298_bib40 – volume: 244 start-page: 112743 year: 2021 ident: 10.1016/j.soildyn.2022.107298_bib7 article-title: Semi-active control of walking-induced vibrations using adaptive tuned mass damper considering human-structure-interaction publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.112743 – volume: 27 issue: 11 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib17 article-title: Effectiveness of particle tuned mass damper devices for pile-supported multi-story frames under seismic excitations publication-title: Struct Control Health Monit doi: 10.1002/stc.2627 – volume: 26 start-page: 100930 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib26 article-title: Simulation analysis of TMD controlled building subjected to far- and near-fault records considering soil-structure interaction publication-title: J Build Eng doi: 10.1016/j.jobe.2019.100930 – volume: 48 start-page: 731 issue: 7 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib19 article-title: Structure-soil-structure interaction of adjacent buildings subjected to seismic loading publication-title: Earthq Eng Struct Dynam doi: 10.1002/eqe.3162 – volume: 141 issue: 1 year: 2015 ident: 10.1016/j.soildyn.2022.107298_bib13 article-title: Track nonlinear energy sink for rapid response reduction in building structures publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0000824 – volume: 220 start-page: 110960 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib14 article-title: Large-scale shaking table test on tall buildings with viscous dampers considering pile-soil-structure interaction publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.110960 – volume: 101 start-page: 67 year: 2017 ident: 10.1016/j.soildyn.2022.107298_bib4 article-title: Optimum earthquake-tuned TMDs: seismic performance and new design concept of balance of split effective modal masses publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2017.05.029 – volume: 26 start-page: e2324 issue: 3 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib12 article-title: Tuned mass damper on a damped structure publication-title: Struct Control Health Monit doi: 10.1002/stc.2324 – volume: 16 start-page: 800 issue: 7–8 year: 2009 ident: 10.1016/j.soildyn.2022.107298_bib10 article-title: Adaptive passive, semi-active, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform publication-title: Struct Control Health Monit doi: 10.1002/stc.349 – volume: 25 start-page: 65 issue: 1 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib38 article-title: Semi-active eddy current pendulum tuned mass damper with variable frequency and damping publication-title: Smart Struct Syst – volume: 114 start-page: 576 year: 2018 ident: 10.1016/j.soildyn.2022.107298_bib30 article-title: Optimum tuned mass dampers under seismic soil-structure interaction publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2018.07.014 – volume: 129 start-page: 845 issue: 7 year: 2003 ident: 10.1016/j.soildyn.2022.107298_bib6 article-title: State of the art of structural control publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2003)129:7(845) – volume: 27 issue: 14 year: 2018 ident: 10.1016/j.soildyn.2022.107298_bib20 article-title: Influence of soil-structure interaction on performance of a super tall building using a new eddy-current tuned mass damper publication-title: Struct Des Tall Special Build doi: 10.1002/tal.1501 – volume: 105 start-page: 338 year: 2018 ident: 10.1016/j.soildyn.2022.107298_bib43 article-title: Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.12.011 – volume: 29 start-page: e1683 issue: 1 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib22 article-title: Coupled-two-beam discrete model for dynamic analysis of tall buildings with tuned mass dampers including soil-structure interaction publication-title: Struct Des Tall Special Build doi: 10.1002/tal.1683 – volume: 51 start-page: 14 year: 2013 ident: 10.1016/j.soildyn.2022.107298_bib28 article-title: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2013.04.002 – volume: 139 issue: 12 year: 2013 ident: 10.1016/j.soildyn.2022.107298_bib9 article-title: Performance of pendulum tuned mass dampers in reducing the responses of flexible structures publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000797 – volume: 123 start-page: 435 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib5 article-title: Development of a two-phased nonlinear mass damper for displacement mitigation in base-isolated structures publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2019.05.007 – volume: 100 start-page: 301 year: 2017 ident: 10.1016/j.soildyn.2022.107298_bib25 article-title: Structure-soil-structure interaction effects on structures retrofitted with tuned mass dampers publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2017.05.017 – volume: 29 issue: 14 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib15 article-title: Dynamic characteristics and viscous dampers design for pile-soil-structure system publication-title: Struct Des Tall Special Build doi: 10.1002/tal.1785 – volume: 137 start-page: 242 issue: 2 year: 2011 ident: 10.1016/j.soildyn.2022.107298_bib8 article-title: Adaptive compensation for detuning in pendulum tuned mass dampers publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000286 – volume: 212 start-page: 110531 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib21 article-title: Shaking table test and numerical simulation of eddy-current tuned mass damper for structural seismic control considering soil-structure interaction publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.110531 – volume: 29 issue: 15 year: 2020 ident: 10.1016/j.soildyn.2022.107298_bib34 article-title: Study on adaptive-passive eddy current pendulum tuned mass damper for wind-induced vibration control publication-title: Struct Des Tall Special Build doi: 10.1002/tal.1793 – volume: 96 start-page: 1092 year: 2008 ident: 10.1016/j.soildyn.2022.107298_bib27 article-title: Wind-induced vibration of high-rise building with tuned mass damper including soil–structure interaction publication-title: J Wind Eng Ind Aerod doi: 10.1016/j.jweia.2007.06.034 – volume: 119 start-page: 36 year: 2019 ident: 10.1016/j.soildyn.2022.107298_bib32 article-title: MOCS-based optimum design of TMD and FTMD for tall buildings under near-field earthquakes including SSI effects publication-title: Soil Dynam Earthq Eng doi: 10.1016/j.soildyn.2018.12.027 |
SSID | ssj0017186 |
Score | 2.6227324 |
Snippet | As one of the most traditional vibration mitigation devices, tuned mass dampers (TMDs) are applied widely in aseismic protection of building structures. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107298 |
SubjectTerms | Air gaps Amino acid sequence Aseismic protection Damping ratio Earthquake dampers Earthquakes Eddy currents Frequency deviation Mathematical models Parameter sensitivity Pendulums Permanent magnets Seismic activity Soil conditions Soil types Soil-structure interaction Tall building Tall buildings Tuned mass damper Variable damping Variable frequency Vibration control Vibration isolators |
Title | Adaptive-passive tuned mass damper for structural aseismic protection including soil–structure interaction |
URI | https://dx.doi.org/10.1016/j.soildyn.2022.107298 https://www.proquest.com/docview/2672768593 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1xf5OC1u900bdPjIsqq6EWFvYUkTaDLbi37OHgR_4P_0F_izDb1BbLgKSQkJcykM1-SmS-EnMWRZjrORKCVcwHn3AXCJJjAHGdWRF3wOZg7fHuX9B_59SAerJDzJhcGwyq97a9t-sJa-5aOl2anKorOPb6dlCIDFoYF8RRptzkUsKbbL59hHl2wvUl9zpIG2Psri6czRL7cUf6MNKiMQRsATfGXf_plqRfu53KLbHrcSHv11LbJii13yMY3NsFdMurlqkLrFVSAiKGkszkYUTqGGs0V4OMJBYhKa8pYpNug4MKK6bgw1NM1gJJoUZrRHD0axXm_v741_S1FbolJnQmxRx4vLx7O-4F_TCFQLAtnge1muYtCFzuuWWZEaJRyGXMsVzpkJmOWATLRWicKtiRahEJHups7ZrhIYFMU7ZPV8qm0B4Rau7i9wxtAA4VQjmXOREloc5WrNG0R3ohQGs80jg9ejGQTUjaUXvISJS9rybdI-3NYVVNtLBsgGv3IH2tGgjtYNvS40af0P-1UMryVTpAA7vD_Xz4i61irI3qPySqoyJ4Abpnp08XCPCVrvaub_t0H3crxiQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7xc4AeUGlB_LX4QI9hs46TOAcOqC1afi8FiZuxHVsKWrYrdldoL4h34FF4I56kMxuH0koICYlTFCe2rBlnvnE88w3AVpoYbtJCRkZ7HwkhfCRtRgnMaeFk0kbModzh45OscyYOztPzKXhocmEorDLY_tqmT6x1aGkFabb6VdX6RbWTcmLAorAgkWchsvLQjW9w3zbY2f-BSv7G-d7P0--dKJQWiDQv4mHk2kXpk9inXhheWBlbrX3BPS-1ibktuOOI08aYTKODbmQsTWLapedWyAy3CAmOOw2zAs0FlU3Yvn2KK2mjsc_qHzt5RNP7mzbUuiSC3m45Jt5VzrENPVv5EiD-Bw0TvNv7CAvBUWW7tSwWYcr1PsGHZ_SFn6G7W-o-mcuojy44XtlwhFabXeEdKzU65NcMfWJWc9QSvwdDzKwGV5VlgR8CVwWrerY7IghlNO_Hu_vmfceIzOK6Tr1YgrN3EfEyzPR-99wKMOcmx4V05GjxIrXnhbdJFrtSlzrPV0E0IlQ2UJtThY2uamLYLlWQvCLJq1ryq7D91K1fc3u81kE2-lH_LFKF-PNa141GnypYiYHidAyeEePc2ttH3oS5zunxkTraPzlch3l6UocTb8AMqst9QadpaL5OFimDi_f-Kv4AFosuHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive-passive+tuned+mass+damper+for+structural+aseismic+protection+including+soil%E2%80%93structure+interaction&rft.jtitle=Soil+dynamics+and+earthquake+engineering+%281984%29&rft.au=Wang%2C+Liangkun&rft.au=Shi%2C+Weixing&rft.au=Zhou%2C+Ying&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0267-7261&rft.eissn=1879-341X&rft.volume=158&rft.spage=1&rft_id=info:doi/10.1016%2Fj.soildyn.2022.107298&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-7261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-7261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-7261&client=summon |