Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning
Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits t...
Saved in:
Published in | 2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.07.2023
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/DAC56929.2023.10247920 |
Cover
Abstract | Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis. |
---|---|
AbstractList | Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis. |
Author | Wu, Shang Yuan, Ye Lin, Yingyan Celine Yuan, Jiayi Fu, Yonggan |
Author_xml | – sequence: 1 givenname: Yonggan surname: Fu fullname: Fu, Yonggan email: yfu314@gatech.edu organization: Georgia Institute of Technology – sequence: 2 givenname: Ye surname: Yuan fullname: Yuan, Ye email: eiclab.gatech@gatech.edu organization: Georgia Institute of Technology – sequence: 3 givenname: Shang surname: Wu fullname: Wu, Shang email: sw99@rice.edu organization: Rice University – sequence: 4 givenname: Jiayi surname: Yuan fullname: Yuan, Jiayi email: jy101@rice.edu organization: Rice University – sequence: 5 givenname: Yingyan Celine surname: Lin fullname: Lin, Yingyan Celine email: celine.lin@gatech.edu organization: Georgia Institute of Technology |
BookMark | eNpNkNtKAzEURSMoqHX-QCQ_MPXkPvGtTusFRgQdXy3J9IwMrRlJUop_b8ELPu2HzVqw9yk5DGNAQi4YTBkDezmf1UpbbqccuJgy4NJYDgeksMZWQoHgQlbsmBQpDR40qEqClifk9Wn025RpO3RrzInWLtA2upB6jPQac8Z4RefR7YbwRh_GiH-t8xukz1sfMO_GuE50-Ec26GLYI2fkqHebhMVPTsjLzaKt78rm8fa-njWl4xZy2dkejfdCGG5ZpYXrpJLVCjuwVpseuFNGr4Tx0mOHones976TbL8YJDAlJuT82zsg4vIjDu8ufi5_bxBflb5WHQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/DAC56929.2023.10247920 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350323481 |
EndPage | 6 |
ExternalDocumentID | 10247920 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
ID | FETCH-LOGICAL-a290t-c9fe7bb337291863ac4548dec09967f02a576d37b4bece3fa1fbbc41692040153 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:47:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a290t-c9fe7bb337291863ac4548dec09967f02a576d37b4bece3fa1fbbc41692040153 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10247920 |
PublicationCentury | 2000 |
PublicationDate | 2023-July-9 |
PublicationDateYYYYMMDD | 2023-07-09 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | 2023 60th ACM/IEEE Design Automation Conference (DAC) |
PublicationTitleAbbrev | DAC |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib060584064 |
Score | 2.2320683 |
Snippet | Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Design automation Measurement Pipelines Robustness Task analysis Transfer learning |
Title | Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning |
URI | https://ieeexplore.ieee.org/document/10247920 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J59UnPgxJQ--trZNmrS-6eYYwobIBnty5FOG0MnWIvjXe0nb-QGCb6XlSJtL-rvL3e8OoasoFVyKOA6Y0OCgWEMDaRMVWJ0xZrkEk8ERhccTNprRh3k6b8jqngtjjPHJZyZ0lz6Wr1eqckdlsMMTyvMEPPRdWGc1WatdPC68B-BEGxZwHOXXg9t-ygD-Q9ciPGyFf7RR8Sgy3EeTdvw6eeQ1rEoZqo9fpRn__YIHqPtF2MOPWyg6RDumOELPTytZbUo8XcJOLTe4LwrsoQkk8J2n8dzgwVq8gwgew1Dbp45OheGXUtQ54hu8_CbZVGR96aLZ8H7aHwVNO4VAJHlUBiq3hktJXKAuzhgRioK7oo0CI5FxGyUCfA9NuKSgV0OsiK2UCgw2-CDwwlJyjDrFqjAnCKdCKMFATJuMSgbaViIyGdGG24zY9BR13eQs3uqKGYt2Xs7-uH-O9pyOfBps3kOdcl2ZCwD7Ul56JX8C59uq9w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvSkYsW3e_CamGST3cSbtpaqbRFpoSfLPqUIqbQJgr_e2U3iCwRvIWHIZiabbyYz3wxC50HCmeBh6FGuIEAxOvaEiaRnVEqpYQJcBksUHo5ofxLfTZNpTVZ3XBittSs-0749dLl8tZCl_VUGOzyKWRZBhL4OwB8nFV2reX1sgg_gKa55wGGQXXSvOgkFB8C3Q8L9RvzHIBWHI70tNGpWUJWPvPhlIXz5_qs547-XuI3aX5Q9_PAJRjtoTee76OlxIcpVgcdz2KvFCnd4jh04gQS-dkSeS9xd8jcQwUO41edVS6jC8FHJqyrxFZ5_k6x7sj630aR3M-70vXqggsejLCg8mRnNhCA2VRemlHAJWkyVluAmUmaCiEP0oQgTMVhWE8NDI4QElw0eCOKwhOyhVr7I9T7CCeeSUxBTOo0FBXtLHuiUKM1MSkxygNpWObPXqmfGrNHL4R_nz9BGfzwczAa3o_sjtGnt5Ypis2PUKpalPgHoL8SpM_gHCjuuRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Robust+Tickets+Can+Transfer+Better%3A+Drawing+More+Transferable+Subnetworks+in+Transfer+Learning&rft.au=Fu%2C+Yonggan&rft.au=Yuan%2C+Ye&rft.au=Wu%2C+Shang&rft.au=Yuan%2C+Jiayi&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247920&rft.externalDocID=10247920 |