Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning

Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits t...

Full description

Saved in:
Bibliographic Details
Published in2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6
Main Authors Fu, Yonggan, Yuan, Ye, Wu, Shang, Yuan, Jiayi, Lin, Yingyan Celine
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.07.2023
Subjects
Online AccessGet full text
DOI10.1109/DAC56929.2023.10247920

Cover

Abstract Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis.
AbstractList Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis.
Author Wu, Shang
Yuan, Ye
Lin, Yingyan Celine
Yuan, Jiayi
Fu, Yonggan
Author_xml – sequence: 1
  givenname: Yonggan
  surname: Fu
  fullname: Fu, Yonggan
  email: yfu314@gatech.edu
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  email: eiclab.gatech@gatech.edu
  organization: Georgia Institute of Technology
– sequence: 3
  givenname: Shang
  surname: Wu
  fullname: Wu, Shang
  email: sw99@rice.edu
  organization: Rice University
– sequence: 4
  givenname: Jiayi
  surname: Yuan
  fullname: Yuan, Jiayi
  email: jy101@rice.edu
  organization: Rice University
– sequence: 5
  givenname: Yingyan Celine
  surname: Lin
  fullname: Lin, Yingyan Celine
  email: celine.lin@gatech.edu
  organization: Georgia Institute of Technology
BookMark eNpNkNtKAzEURSMoqHX-QCQ_MPXkPvGtTusFRgQdXy3J9IwMrRlJUop_b8ELPu2HzVqw9yk5DGNAQi4YTBkDezmf1UpbbqccuJgy4NJYDgeksMZWQoHgQlbsmBQpDR40qEqClifk9Wn025RpO3RrzInWLtA2upB6jPQac8Z4RefR7YbwRh_GiH-t8xukz1sfMO_GuE50-Ec26GLYI2fkqHebhMVPTsjLzaKt78rm8fa-njWl4xZy2dkejfdCGG5ZpYXrpJLVCjuwVpseuFNGr4Tx0mOHones976TbL8YJDAlJuT82zsg4vIjDu8ufi5_bxBflb5WHQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC56929.2023.10247920
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350323481
EndPage 6
ExternalDocumentID 10247920
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
ACM
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a290t-c9fe7bb337291863ac4548dec09967f02a576d37b4bece3fa1fbbc41692040153
IEDL.DBID RIE
IngestDate Wed Aug 27 02:47:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a290t-c9fe7bb337291863ac4548dec09967f02a576d37b4bece3fa1fbbc41692040153
PageCount 6
ParticipantIDs ieee_primary_10247920
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle 2023 60th ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib060584064
Score 2.2320683
Snippet Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial neural networks
Design automation
Measurement
Pipelines
Robustness
Task analysis
Transfer learning
Title Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning
URI https://ieeexplore.ieee.org/document/10247920
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6J59UnPgxJQ--trZNmrS-6eYYwobIBnty5FOG0MnWIvjXe0nb-QGCb6XlSJtL-rvL3e8OoasoFVyKOA6Y0OCgWEMDaRMVWJ0xZrkEk8ERhccTNprRh3k6b8jqngtjjPHJZyZ0lz6Wr1eqckdlsMMTyvMEPPRdWGc1WatdPC68B-BEGxZwHOXXg9t-ygD-Q9ciPGyFf7RR8Sgy3EeTdvw6eeQ1rEoZqo9fpRn__YIHqPtF2MOPWyg6RDumOELPTytZbUo8XcJOLTe4LwrsoQkk8J2n8dzgwVq8gwgew1Dbp45OheGXUtQ54hu8_CbZVGR96aLZ8H7aHwVNO4VAJHlUBiq3hktJXKAuzhgRioK7oo0CI5FxGyUCfA9NuKSgV0OsiK2UCgw2-CDwwlJyjDrFqjAnCKdCKMFATJuMSgbaViIyGdGG24zY9BR13eQs3uqKGYt2Xs7-uH-O9pyOfBps3kOdcl2ZCwD7Ul56JX8C59uq9w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHvSkYsW3e_CamGST3cSbtpaqbRFpoSfLPqUIqbQJgr_e2U3iCwRvIWHIZiabbyYz3wxC50HCmeBh6FGuIEAxOvaEiaRnVEqpYQJcBksUHo5ofxLfTZNpTVZ3XBittSs-0749dLl8tZCl_VUGOzyKWRZBhL4OwB8nFV2reX1sgg_gKa55wGGQXXSvOgkFB8C3Q8L9RvzHIBWHI70tNGpWUJWPvPhlIXz5_qs547-XuI3aX5Q9_PAJRjtoTee76OlxIcpVgcdz2KvFCnd4jh04gQS-dkSeS9xd8jcQwUO41edVS6jC8FHJqyrxFZ5_k6x7sj630aR3M-70vXqggsejLCg8mRnNhCA2VRemlHAJWkyVluAmUmaCiEP0oQgTMVhWE8NDI4QElw0eCOKwhOyhVr7I9T7CCeeSUxBTOo0FBXtLHuiUKM1MSkxygNpWObPXqmfGrNHL4R_nz9BGfzwczAa3o_sjtGnt5Ypis2PUKpalPgHoL8SpM_gHCjuuRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Robust+Tickets+Can+Transfer+Better%3A+Drawing+More+Transferable+Subnetworks+in+Transfer+Learning&rft.au=Fu%2C+Yonggan&rft.au=Yuan%2C+Ye&rft.au=Wu%2C+Shang&rft.au=Yuan%2C+Jiayi&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10247920&rft.externalDocID=10247920