Enabling Cost-Effective UI Automation Testing with Retrieval-Based LLMs: A Case Study in WeChat

UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to generate these tests, they still face several challenges, such as the mismatch of UI elements. The recent advances in Large Language Models (LLMs)...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 1973 - 1978
Main Authors Feng, Sidong, Lu, Haochuan, Jiang, Jianqin, Xiong, Ting, Huang, Likun, Liang, Yinglin, Li, Xiaoqin, Deng, Yuetang, Aleti, Aldeida
Format Conference Proceeding
LanguageEnglish
Published ACM 27.10.2024
Subjects
Online AccessGet full text
ISSN2643-1572
DOI10.1145/3691620.3695260

Cover

Loading…
Abstract UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to generate these tests, they still face several challenges, such as the mismatch of UI elements. The recent advances in Large Language Models (LLMs) have addressed these issues by leveraging their semantic understanding capabilities. However, a significant gap remains in applying these models to industrial-level app testing, particularly in terms of cost optimization and knowledge limitation. To address this, we introduce CAT to create cost-effective UI automation tests for industry apps by combining machine learning and LLMs with best practices. Given the task description, CAT employs Retrieval Augmented Generation (RAG) to source examples of industrial app usage as the few-shot learning context, assisting LLMs in generating the specific sequence of actions. CAT then employs machine learning techniques, with LLMs serving as a complementary optimizer, to map the target element on the UI screen. Our evaluations on the WeChat testing dataset demonstrate the CAT's performance and cost-effectiveness, achieving 90% UI automation with 0.34 cost, outperforming the state-of-the-art. We have also integrated our approach into the real-world WeChat testing platform, demonstrating its usefulness in detecting 141 bugs and enhancing the developers' testing process.CCS CONCEPTS* Software and its engineering → Software testing and debugging.
AbstractList UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to generate these tests, they still face several challenges, such as the mismatch of UI elements. The recent advances in Large Language Models (LLMs) have addressed these issues by leveraging their semantic understanding capabilities. However, a significant gap remains in applying these models to industrial-level app testing, particularly in terms of cost optimization and knowledge limitation. To address this, we introduce CAT to create cost-effective UI automation tests for industry apps by combining machine learning and LLMs with best practices. Given the task description, CAT employs Retrieval Augmented Generation (RAG) to source examples of industrial app usage as the few-shot learning context, assisting LLMs in generating the specific sequence of actions. CAT then employs machine learning techniques, with LLMs serving as a complementary optimizer, to map the target element on the UI screen. Our evaluations on the WeChat testing dataset demonstrate the CAT's performance and cost-effectiveness, achieving 90% UI automation with 0.34 cost, outperforming the state-of-the-art. We have also integrated our approach into the real-world WeChat testing platform, demonstrating its usefulness in detecting 141 bugs and enhancing the developers' testing process.CCS CONCEPTS* Software and its engineering → Software testing and debugging.
Author Aleti, Aldeida
Liang, Yinglin
Jiang, Jianqin
Deng, Yuetang
Xiong, Ting
Huang, Likun
Lu, Haochuan
Feng, Sidong
Li, Xiaoqin
Author_xml – sequence: 1
  givenname: Sidong
  surname: Feng
  fullname: Feng, Sidong
  email: sidong.feng@monash.edu
  organization: Monash University,Melbourne,Australia
– sequence: 2
  givenname: Haochuan
  surname: Lu
  fullname: Lu, Haochuan
  email: hudsonhclu@tencent.com
  organization: Tencent Inc.,Guangzhou,China
– sequence: 3
  givenname: Jianqin
  surname: Jiang
  fullname: Jiang, Jianqin
  email: janetjiang@tencent.com
  organization: Tencent Inc.,Guangzhou,China
– sequence: 4
  givenname: Ting
  surname: Xiong
  fullname: Xiong, Ting
  email: candyxiong@tencent.com
  organization: Tencent Inc.,Guangzhou,China
– sequence: 5
  givenname: Likun
  surname: Huang
  fullname: Huang, Likun
  email: likunhuang@tencent.com
  organization: Tencent Inc.,Guangzhou,China
– sequence: 6
  givenname: Yinglin
  surname: Liang
  fullname: Liang, Yinglin
  email: dickylliang@tencent.com
  organization: Tencent Inc.,Guangzhou,China
– sequence: 7
  givenname: Xiaoqin
  surname: Li
  fullname: Li, Xiaoqin
  email: allysali@tencent.com
  organization: Tencent Inc.,Guangzhou,China
– sequence: 8
  givenname: Yuetang
  surname: Deng
  fullname: Deng, Yuetang
  email: yuetangdeng@tencent.com
  organization: Tencent Inc.,Guangzhou,China
– sequence: 9
  givenname: Aldeida
  surname: Aleti
  fullname: Aleti, Aldeida
  email: aldeida.aleti@monash.edu
  organization: Monash University,Melbourne,Australia
BookMark eNotjlFLwzAUhaMoOGefffEhf6DzJmmSxrdZqg4qgm74WJL21gW2VpZsY__eij5958DH4VyTi37okZBbBjPGMnkvlGGKw2yk5ArOSGK0yTMAzXiW63My4SoTKZOaX5EkBO9gjFIxpiakLnvrNr7_osUQYlp2HTbRH5CuFnS-j8PWRj_0dIkh_kpHH9f0HePO48Fu0kcbsKVV9Roe6JwWY6Mfcd-eqO_pJxZrG2_IZWc3AZN_TsnqqVwWL2n19rwo5lVqeW5iamG86ixrOSpUIBx3jZTGKCYgM062woGDDpnSukHRuMYaEHkzSpg71Yopufvb9YhYf-_81u5ONQOtJEAmfgBkG1Vk
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3691620.3695260
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798400712487
EISSN 2643-1572
EndPage 1978
ExternalDocumentID 10765004
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  funderid: 10.13039/501100000923
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a289t-a0248ba1d2e6e603b2bc5599613049b5d3b0b0fe1677ce3cbca9038cc55e8b6d3
IEDL.DBID RIE
IngestDate Wed Jan 15 06:20:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-a0248ba1d2e6e603b2bc5599613049b5d3b0b0fe1677ce3cbca9038cc55e8b6d3
OpenAccessLink https://doi.org/10.1145/3691620.3695260
PageCount 6
ParticipantIDs ieee_primary_10765004
PublicationCentury 2000
PublicationDate 2024-Oct.-27
PublicationDateYYYYMMDD 2024-10-27
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-27
  day: 27
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib057256116
ssj0051577
Score 2.299856
Snippet UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to...
SourceID ieee
SourceType Publisher
StartPage 1973
SubjectTerms Automation
Computer bugs
cost optimization
Costs
large language model
Message services
Mobile applications
Optimization
retrieval-augmented generation
Social networking (online)
Software engineering
Software testing
Testing
UI automation test
Title Enabling Cost-Effective UI Automation Testing with Retrieval-Based LLMs: A Case Study in WeChat
URI https://ieeexplore.ieee.org/document/10765004
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJ07jMcRbOXDN6CNNWm6j2jTQNiG0id2mOvUEQmoRaw_w63H6AISExK0PH6zEiT8n9mfGLh0fZeSgEpqsVxD-NwKkTASgC5G9-QsrnoLpTI0X8m4ZLJti9aoWBhGr5DPs28fqLj_NTWmPymiFawIUlv1zm-ysLtZqjSfQ5Lxdi3XqbZj8tNYNl48rgytfERDyKEZVUeBZQsofzVQqXzLqslmrRZ1C8tIvC-ibj18Ejf9Wc5f1vsv2-P2XQ9pjW5jts27bt4E3y_iArYa2YIpEeJxvClETGNOuxxe3fFAWeV3NyOeWgIOE7FEtf6g6b5FZihvyeymfTKabaz7gMb1xm4z4zp8z_ojxU1L02GI0nMdj0TRaEAnFW4VILLEZJG7qoULl-OCBsUxkNraQEQSpDw44a3SV1gZ9AyaJHD80JIQhqNQ_ZJ0sz_CIcfQ0BAqMdDVKYzAC1wFClWsMZEK_jlnPDtjqtebSWLVjdfLH91O245F21lt4-ox1ircSzwkGFHBRTf8nEHivvg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SD3qqj4pvc_Cauo9s0vVWl5ZW2yLSYm9lJztFEbpidw_6653sQ0UQvO1jDiFM8s0k833D2KXjowwdVEKT9wqK_40AKWMB6EJob_46hU7BeKIGM3k7D-YVWb3gwiBiUXyGbftY3OUnqcntURmtcE0BhVX_3CTgl0FJ16rdJ9AE366NdsqNmJBa60rNx5XBla8oFPIoS1Vh4FlJyh_tVAo06TfZpB5HWUTy0s4zaJuPXxKN_x7oDmt9E_f4_Rck7bINXO2xZt25gVcLeZ8tepYyRSY8SteZKCWMad_jsyHv5lla8hn51EpwkJE9rOUPRe8tckxxQ8iX8NFovL7mXR7RG7fliO_8ecUfMXqKsxab9XvTaCCqVgsipowrE7GVNoPYTTxUqBwfPDBWi8xmFzKEIPHBAWeJrtLaoG_AxKHjdwwZYQdU4h-wxipd4SHj6GkIFBjpapTGYAiuAxRXLjGQMf06Yi07YYvXUk1jUc_V8R_fL9jWYDoeLUbDyd0J2_ZopBY7PH3KGtlbjmcUFGRwXrjCJ3Pzsws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Enabling+Cost-Effective+UI+Automation+Testing+with+Retrieval-Based+LLMs%3A+A+Case+Study+in+WeChat&rft.au=Feng%2C+Sidong&rft.au=Lu%2C+Haochuan&rft.au=Jiang%2C+Jianqin&rft.au=Xiong%2C+Ting&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=1973&rft.epage=1978&rft_id=info:doi/10.1145%2F3691620.3695260&rft.externalDocID=10765004