Enabling Cost-Effective UI Automation Testing with Retrieval-Based LLMs: A Case Study in WeChat
UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to generate these tests, they still face several challenges, such as the mismatch of UI elements. The recent advances in Large Language Models (LLMs)...
Saved in:
Published in | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] pp. 1973 - 1978 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
27.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2643-1572 |
DOI | 10.1145/3691620.3695260 |
Cover
Loading…
Abstract | UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to generate these tests, they still face several challenges, such as the mismatch of UI elements. The recent advances in Large Language Models (LLMs) have addressed these issues by leveraging their semantic understanding capabilities. However, a significant gap remains in applying these models to industrial-level app testing, particularly in terms of cost optimization and knowledge limitation. To address this, we introduce CAT to create cost-effective UI automation tests for industry apps by combining machine learning and LLMs with best practices. Given the task description, CAT employs Retrieval Augmented Generation (RAG) to source examples of industrial app usage as the few-shot learning context, assisting LLMs in generating the specific sequence of actions. CAT then employs machine learning techniques, with LLMs serving as a complementary optimizer, to map the target element on the UI screen. Our evaluations on the WeChat testing dataset demonstrate the CAT's performance and cost-effectiveness, achieving 90% UI automation with 0.34 cost, outperforming the state-of-the-art. We have also integrated our approach into the real-world WeChat testing platform, demonstrating its usefulness in detecting 141 bugs and enhancing the developers' testing process.CCS CONCEPTS* Software and its engineering → Software testing and debugging. |
---|---|
AbstractList | UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to generate these tests, they still face several challenges, such as the mismatch of UI elements. The recent advances in Large Language Models (LLMs) have addressed these issues by leveraging their semantic understanding capabilities. However, a significant gap remains in applying these models to industrial-level app testing, particularly in terms of cost optimization and knowledge limitation. To address this, we introduce CAT to create cost-effective UI automation tests for industry apps by combining machine learning and LLMs with best practices. Given the task description, CAT employs Retrieval Augmented Generation (RAG) to source examples of industrial app usage as the few-shot learning context, assisting LLMs in generating the specific sequence of actions. CAT then employs machine learning techniques, with LLMs serving as a complementary optimizer, to map the target element on the UI screen. Our evaluations on the WeChat testing dataset demonstrate the CAT's performance and cost-effectiveness, achieving 90% UI automation with 0.34 cost, outperforming the state-of-the-art. We have also integrated our approach into the real-world WeChat testing platform, demonstrating its usefulness in detecting 141 bugs and enhancing the developers' testing process.CCS CONCEPTS* Software and its engineering → Software testing and debugging. |
Author | Aleti, Aldeida Liang, Yinglin Jiang, Jianqin Deng, Yuetang Xiong, Ting Huang, Likun Lu, Haochuan Feng, Sidong Li, Xiaoqin |
Author_xml | – sequence: 1 givenname: Sidong surname: Feng fullname: Feng, Sidong email: sidong.feng@monash.edu organization: Monash University,Melbourne,Australia – sequence: 2 givenname: Haochuan surname: Lu fullname: Lu, Haochuan email: hudsonhclu@tencent.com organization: Tencent Inc.,Guangzhou,China – sequence: 3 givenname: Jianqin surname: Jiang fullname: Jiang, Jianqin email: janetjiang@tencent.com organization: Tencent Inc.,Guangzhou,China – sequence: 4 givenname: Ting surname: Xiong fullname: Xiong, Ting email: candyxiong@tencent.com organization: Tencent Inc.,Guangzhou,China – sequence: 5 givenname: Likun surname: Huang fullname: Huang, Likun email: likunhuang@tencent.com organization: Tencent Inc.,Guangzhou,China – sequence: 6 givenname: Yinglin surname: Liang fullname: Liang, Yinglin email: dickylliang@tencent.com organization: Tencent Inc.,Guangzhou,China – sequence: 7 givenname: Xiaoqin surname: Li fullname: Li, Xiaoqin email: allysali@tencent.com organization: Tencent Inc.,Guangzhou,China – sequence: 8 givenname: Yuetang surname: Deng fullname: Deng, Yuetang email: yuetangdeng@tencent.com organization: Tencent Inc.,Guangzhou,China – sequence: 9 givenname: Aldeida surname: Aleti fullname: Aleti, Aldeida email: aldeida.aleti@monash.edu organization: Monash University,Melbourne,Australia |
BookMark | eNotjlFLwzAUhaMoOGefffEhf6DzJmmSxrdZqg4qgm74WJL21gW2VpZsY__eij5958DH4VyTi37okZBbBjPGMnkvlGGKw2yk5ArOSGK0yTMAzXiW63My4SoTKZOaX5EkBO9gjFIxpiakLnvrNr7_osUQYlp2HTbRH5CuFnS-j8PWRj_0dIkh_kpHH9f0HePO48Fu0kcbsKVV9Roe6JwWY6Mfcd-eqO_pJxZrG2_IZWc3AZN_TsnqqVwWL2n19rwo5lVqeW5iamG86ixrOSpUIBx3jZTGKCYgM062woGDDpnSukHRuMYaEHkzSpg71Yopufvb9YhYf-_81u5ONQOtJEAmfgBkG1Vk |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1145/3691620.3695260 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798400712487 |
EISSN | 2643-1572 |
EndPage | 1978 |
ExternalDocumentID | 10765004 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Research Council funderid: 10.13039/501100000923 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN 6J9 AAJGR AAWTH ABLEC ACREN ADYOE ADZIZ AFYQB ALMA_UNASSIGNED_HOLDINGS AMTXH BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-a289t-a0248ba1d2e6e603b2bc5599613049b5d3b0b0fe1677ce3cbca9038cc55e8b6d3 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 15 06:20:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a289t-a0248ba1d2e6e603b2bc5599613049b5d3b0b0fe1677ce3cbca9038cc55e8b6d3 |
OpenAccessLink | https://doi.org/10.1145/3691620.3695260 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10765004 |
PublicationCentury | 2000 |
PublicationDate | 2024-Oct.-27 |
PublicationDateYYYYMMDD | 2024-10-27 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | IEEE/ACM International Conference on Automated Software Engineering : [proceedings] |
PublicationTitleAbbrev | ASE |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssib057256116 ssj0051577 |
Score | 2.299856 |
Snippet | UI automation tests play a crucial role in ensuring the quality of mobile applications. Despite the growing popularity of machine learning techniques to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1973 |
SubjectTerms | Automation Computer bugs cost optimization Costs large language model Message services Mobile applications Optimization retrieval-augmented generation Social networking (online) Software engineering Software testing Testing UI automation test |
Title | Enabling Cost-Effective UI Automation Testing with Retrieval-Based LLMs: A Case Study in WeChat |
URI | https://ieeexplore.ieee.org/document/10765004 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJ07jMcRbOXDN6CNNWm6j2jTQNiG0id2mOvUEQmoRaw_w63H6AISExK0PH6zEiT8n9mfGLh0fZeSgEpqsVxD-NwKkTASgC5G9-QsrnoLpTI0X8m4ZLJti9aoWBhGr5DPs28fqLj_NTWmPymiFawIUlv1zm-ysLtZqjSfQ5Lxdi3XqbZj8tNYNl48rgytfERDyKEZVUeBZQsofzVQqXzLqslmrRZ1C8tIvC-ibj18Ejf9Wc5f1vsv2-P2XQ9pjW5jts27bt4E3y_iArYa2YIpEeJxvClETGNOuxxe3fFAWeV3NyOeWgIOE7FEtf6g6b5FZihvyeymfTKabaz7gMb1xm4z4zp8z_ojxU1L02GI0nMdj0TRaEAnFW4VILLEZJG7qoULl-OCBsUxkNraQEQSpDw44a3SV1gZ9AyaJHD80JIQhqNQ_ZJ0sz_CIcfQ0BAqMdDVKYzAC1wFClWsMZEK_jlnPDtjqtebSWLVjdfLH91O245F21lt4-ox1ircSzwkGFHBRTf8nEHivvg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SD3qqj4pvc_Cauo9s0vVWl5ZW2yLSYm9lJztFEbpidw_6653sQ0UQvO1jDiFM8s0k833D2KXjowwdVEKT9wqK_40AKWMB6EJob_46hU7BeKIGM3k7D-YVWb3gwiBiUXyGbftY3OUnqcntURmtcE0BhVX_3CTgl0FJ16rdJ9AE366NdsqNmJBa60rNx5XBla8oFPIoS1Vh4FlJyh_tVAo06TfZpB5HWUTy0s4zaJuPXxKN_x7oDmt9E_f4_Rck7bINXO2xZt25gVcLeZ8tepYyRSY8SteZKCWMad_jsyHv5lla8hn51EpwkJE9rOUPRe8tckxxQ8iX8NFovL7mXR7RG7fliO_8ecUfMXqKsxab9XvTaCCqVgsipowrE7GVNoPYTTxUqBwfPDBWi8xmFzKEIPHBAWeJrtLaoG_AxKHjdwwZYQdU4h-wxipd4SHj6GkIFBjpapTGYAiuAxRXLjGQMf06Yi07YYvXUk1jUc_V8R_fL9jWYDoeLUbDyd0J2_ZopBY7PH3KGtlbjmcUFGRwXrjCJ3Pzsws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Enabling+Cost-Effective+UI+Automation+Testing+with+Retrieval-Based+LLMs%3A+A+Case+Study+in+WeChat&rft.au=Feng%2C+Sidong&rft.au=Lu%2C+Haochuan&rft.au=Jiang%2C+Jianqin&rft.au=Xiong%2C+Ting&rft.date=2024-10-27&rft.pub=ACM&rft.eissn=2643-1572&rft.spage=1973&rft.epage=1978&rft_id=info:doi/10.1145%2F3691620.3695260&rft.externalDocID=10765004 |