First-Principles Study of Lithium Adsorption and Diffusion on Graphene with Point Defects

To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy and Stone–Wales defect using the first-principles calculations. Our results show that in the presence of divacancy Li adatom energetically pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 116; no. 41; pp. 21780 - 21787
Main Authors Zhou, Liu-Jiang, Hou, Z. F, Wu, Li-Ming
Format Journal Article
LanguageEnglish
Published Columbus, OH American Chemical Society 18.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy and Stone–Wales defect using the first-principles calculations. Our results show that in the presence of divacancy Li adatom energetically prefers the hollow site above the center of an octagonal ring rather than the top sites of carbon atoms next to vacancy site. In the case of Stone–Wales defect, Li atom is energetically favorable to be adsorbed on the top site of carbon atom in a pentagonal ring shared with two hexagonal rings, and such adsorption results in a bucking of graphene sheet. For divacancy and Stone–Wales defects in graphene, their interactions with a Li adatom are attractive, suggesting that the presence of point defects would enhance the Li adsorption on graphene. The difference charge density and the Bader charge analysis both show that there is a significant charge transfer from Li adatom to it nearest neighbor carbon atoms.
AbstractList To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy and Stone–Wales defect using the first-principles calculations. Our results show that in the presence of divacancy Li adatom energetically prefers the hollow site above the center of an octagonal ring rather than the top sites of carbon atoms next to vacancy site. In the case of Stone–Wales defect, Li atom is energetically favorable to be adsorbed on the top site of carbon atom in a pentagonal ring shared with two hexagonal rings, and such adsorption results in a bucking of graphene sheet. For divacancy and Stone–Wales defects in graphene, their interactions with a Li adatom are attractive, suggesting that the presence of point defects would enhance the Li adsorption on graphene. The difference charge density and the Bader charge analysis both show that there is a significant charge transfer from Li adatom to it nearest neighbor carbon atoms.
Author Zhou, Liu-Jiang
Hou, Z. F
Wu, Li-Ming
AuthorAffiliation Xiamen University (XMU)
Chinese Academy of Sciences
Graduate School of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Chinese Academy of Sciences
– name: Xiamen University (XMU)
– name: Graduate School of Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Liu-Jiang
  surname: Zhou
  fullname: Zhou, Liu-Jiang
– sequence: 2
  givenname: Z. F
  surname: Hou
  fullname: Hou, Z. F
  email: zhufeng.hou@gmail.com, liming_wu@fjirsm.ac.cn
– sequence: 3
  givenname: Li-Ming
  surname: Wu
  fullname: Wu, Li-Ming
  email: zhufeng.hou@gmail.com, liming_wu@fjirsm.ac.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26544545$$DView record in Pascal Francis
BookMark eNptkE1rAjEQhkOxULU99B_k0kMPW5NNsh9H0WoLQoW2h56WmA-MrMmSZCn-e3fReijCwMzA877MOyMwsM4qAB4xesEoxZNdQxAtMixvwBCXJE1yytjgMtP8DoxC2CHECMJkCH4WxoeYrL2xwjS1CvAztvIAnYYrE7em3cOpDM430TgLuZVwbrRuQ791tfS82Sqr4G8Hw7UzNsK50krEcA9uNa-Dejj3MfhevH7N3pLVx_J9Nl0lPC3KmKQciQ3SjCmRI4IlxVkhSKGKUggiM1LkpdwgUgouaEZ037SkglCdowIzSsbg6eTb8CB4rT3vkoSq8WbP_aFKM0Ypo6zjJidOeBeCV7oSJvI-VvTc1BVGVf_B6vLBTvH8T_Fneo09X8FFqHau9bbLfIU7As1of2U
CitedBy_id crossref_primary_10_1021_acsaem_4c02377
crossref_primary_10_1021_ja501520b
crossref_primary_10_1126_sciadv_1701010
crossref_primary_10_1063_1_4940754
crossref_primary_10_1021_cm503861r
crossref_primary_10_1021_jp5080847
crossref_primary_10_1016_j_comptc_2019_01_006
crossref_primary_10_1016_j_apsusc_2015_05_119
crossref_primary_10_1021_acs_jpcc_9b04449
crossref_primary_10_1016_j_ensm_2021_12_047
crossref_primary_10_1039_C5NR06856H
crossref_primary_10_1021_acs_jpcc_8b05689
crossref_primary_10_1039_D0RA01086C
crossref_primary_10_1039_C6CP05781K
crossref_primary_10_1039_D3CP00787A
crossref_primary_10_1039_D2CP05421C
crossref_primary_10_1016_j_surfin_2023_103197
crossref_primary_10_1021_acs_jpcc_1c01069
crossref_primary_10_1002_idm2_12146
crossref_primary_10_1038_s41524_019_0211_2
crossref_primary_10_1016_j_susc_2023_122250
crossref_primary_10_1021_acs_jpcc_0c10369
crossref_primary_10_1016_j_apsusc_2020_148516
crossref_primary_10_1016_j_jpowsour_2024_236156
crossref_primary_10_1016_j_pmatsci_2018_09_004
crossref_primary_10_1016_j_scriptamat_2019_11_017
crossref_primary_10_1142_S0218625X2150061X
crossref_primary_10_1021_am5050604
crossref_primary_10_1016_j_physb_2024_416756
crossref_primary_10_1142_S0219633614500552
crossref_primary_10_1103_PhysRevB_90_125434
crossref_primary_10_1016_j_jpowsour_2016_09_091
crossref_primary_10_1021_acsnano_8b05529
crossref_primary_10_1103_PhysRevB_100_085422
crossref_primary_10_1007_s40820_021_00706_3
crossref_primary_10_1016_j_carbon_2014_08_068
crossref_primary_10_1016_j_ijhydene_2024_08_108
crossref_primary_10_1039_C5RA25028E
crossref_primary_10_1063_5_0241530
crossref_primary_10_1007_s11051_016_3623_7
crossref_primary_10_1039_C6RA16604K
crossref_primary_10_1016_j_mcat_2021_111624
crossref_primary_10_1016_j_matchemphys_2020_123527
crossref_primary_10_1016_j_carbon_2019_03_085
crossref_primary_10_1038_ncomms4710
crossref_primary_10_1016_j_diamond_2023_109928
crossref_primary_10_1039_C8NH00333E
crossref_primary_10_1016_j_cartre_2021_100045
crossref_primary_10_1016_j_jpowsour_2022_232256
crossref_primary_10_1021_jp5102175
crossref_primary_10_1039_C7TA04354F
crossref_primary_10_18038_estubtda_513854
crossref_primary_10_1016_j_apmt_2017_08_013
crossref_primary_10_1080_00268976_2018_1523480
crossref_primary_10_1002_aenm_201900343
crossref_primary_10_1007_s00339_022_06036_4
crossref_primary_10_1016_j_rser_2023_114030
crossref_primary_10_1039_D2NR02302D
crossref_primary_10_1016_j_est_2024_112109
crossref_primary_10_1016_j_ssi_2023_116214
crossref_primary_10_1002_open_202300313
crossref_primary_10_1016_j_cplett_2013_09_006
crossref_primary_10_1038_srep18712
crossref_primary_10_1016_j_commatsci_2013_09_046
crossref_primary_10_1016_j_apsusc_2017_03_057
crossref_primary_10_1039_C9EE00536F
crossref_primary_10_1039_C5CP04666A
crossref_primary_10_1039_C9CP04499J
crossref_primary_10_1088_2515_7655_abab66
crossref_primary_10_1021_acsaem_1c03739
crossref_primary_10_1038_s41524_024_01225_6
crossref_primary_10_1021_acs_jpcc_9b06151
crossref_primary_10_1021_acs_chemrev_8b00116
crossref_primary_10_1016_j_apsusc_2022_154176
crossref_primary_10_1016_j_jpowsour_2018_12_002
crossref_primary_10_1016_j_electacta_2014_09_059
crossref_primary_10_1016_j_jcis_2021_12_157
crossref_primary_10_1021_acs_jpcc_7b07583
crossref_primary_10_1039_D4EE00119B
crossref_primary_10_1002_adts_201700009
crossref_primary_10_1016_j_carbon_2017_12_074
crossref_primary_10_1557_mrc_2013_24
crossref_primary_10_1016_j_matchemphys_2018_11_033
crossref_primary_10_1021_am403685w
crossref_primary_10_1021_am404788e
crossref_primary_10_1016_j_inoche_2018_08_018
crossref_primary_10_1039_D0NA00585A
crossref_primary_10_1016_j_cej_2020_126812
crossref_primary_10_1016_j_cej_2024_151636
crossref_primary_10_1557_s43578_021_00297_0
crossref_primary_10_1016_j_jechem_2019_04_018
crossref_primary_10_1016_j_electacta_2016_12_002
crossref_primary_10_1038_s41467_018_04190_z
crossref_primary_10_1039_C7CP00064B
crossref_primary_10_1038_am_2016_7
crossref_primary_10_1149_2_1011908jes
crossref_primary_10_1063_1_4931152
crossref_primary_10_3390_ma17091941
crossref_primary_10_1016_j_mtcomm_2024_111425
crossref_primary_10_1021_acs_jpcc_8b08909
crossref_primary_10_1021_nn502045y
crossref_primary_10_1039_C8NJ01098F
crossref_primary_10_1002_adma_201804973
crossref_primary_10_1039_C8NR04467H
crossref_primary_10_1039_D4CP00108G
crossref_primary_10_1016_j_mtcomm_2024_109492
crossref_primary_10_1039_c3nr33218g
crossref_primary_10_1039_C4TA04460F
crossref_primary_10_1021_am503715g
crossref_primary_10_1039_C6TA01645F
crossref_primary_10_1088_2053_1591_3_6_064001
crossref_primary_10_1016_j_nanoen_2020_104807
crossref_primary_10_1039_C5CP03599F
crossref_primary_10_1039_C8CP04958K
crossref_primary_10_1016_j_apsusc_2015_01_236
crossref_primary_10_1088_2053_1591_2_10_105016
crossref_primary_10_1007_s12274_021_4023_6
crossref_primary_10_1021_jacs_8b10488
crossref_primary_10_1039_C9CP06099E
crossref_primary_10_1039_C8NR04868A
crossref_primary_10_1063_1_4960581
crossref_primary_10_1002_slct_201901140
crossref_primary_10_1039_D1MA00328C
crossref_primary_10_1016_j_cclet_2021_11_030
crossref_primary_10_1039_C9RA03235E
crossref_primary_10_1002_adfm_201807441
crossref_primary_10_1134_S0022476617060154
crossref_primary_10_1016_j_apsusc_2023_157391
crossref_primary_10_1021_acsami_5b01315
crossref_primary_10_1039_D3NR04298G
crossref_primary_10_1016_j_apsusc_2021_150155
crossref_primary_10_1021_acs_jpcc_8b07478
crossref_primary_10_1016_j_apsusc_2021_150033
crossref_primary_10_1039_C9TA08676E
crossref_primary_10_1021_acsami_0c04188
crossref_primary_10_1016_j_diamond_2017_09_010
crossref_primary_10_1088_1361_648X_ac6a98
crossref_primary_10_1016_j_molstruc_2024_139152
crossref_primary_10_1007_s11581_022_04526_2
crossref_primary_10_1016_j_apsusc_2017_07_004
crossref_primary_10_1039_D3CP01161E
crossref_primary_10_1039_C5TA01443C
crossref_primary_10_1088_1361_648X_aca8e7
crossref_primary_10_1007_s41918_018_0001_4
crossref_primary_10_1016_j_inoche_2025_114070
crossref_primary_10_1039_C5RA12096A
crossref_primary_10_1016_j_jpowsour_2016_09_029
crossref_primary_10_1007_s40242_017_7038_5
crossref_primary_10_1016_j_mtcomm_2019_100714
crossref_primary_10_1039_C8TA12504J
crossref_primary_10_1016_j_apsusc_2017_08_178
crossref_primary_10_1016_j_mtchem_2017_02_003
crossref_primary_10_1039_c3cp51689j
crossref_primary_10_1039_C7TA08665B
crossref_primary_10_1016_j_est_2020_101386
crossref_primary_10_1016_j_ensm_2020_11_004
crossref_primary_10_1039_C6TA04350J
crossref_primary_10_1016_j_carbon_2023_01_009
crossref_primary_10_1016_j_jallcom_2022_167722
crossref_primary_10_1021_nl403010s
crossref_primary_10_1016_j_jiec_2019_09_016
crossref_primary_10_1016_j_apsusc_2019_144446
crossref_primary_10_1016_j_physb_2024_416479
crossref_primary_10_1039_c3cp52364k
crossref_primary_10_1002_er_6254
crossref_primary_10_1103_PhysRevB_99_155403
crossref_primary_10_1039_C5RA05935F
crossref_primary_10_1016_j_carbon_2016_06_035
crossref_primary_10_1039_C5TA05676D
crossref_primary_10_1016_j_ijhydene_2019_08_186
crossref_primary_10_1021_acs_jpcc_5b09034
crossref_primary_10_1016_j_cjche_2024_03_034
crossref_primary_10_1016_j_mtcomm_2020_101602
crossref_primary_10_1002_adma_201808091
crossref_primary_10_3390_ma15186241
crossref_primary_10_1002_admt_201900307
crossref_primary_10_1039_C5NR00690B
crossref_primary_10_1039_C6TA05623G
crossref_primary_10_1021_jp512411g
crossref_primary_10_1016_j_cocom_2020_e00473
crossref_primary_10_1016_j_apsusc_2017_08_199
crossref_primary_10_1002_adfm_202301987
crossref_primary_10_1039_D1TA07962J
crossref_primary_10_1016_j_apsusc_2021_150988
crossref_primary_10_1016_j_jallcom_2025_179324
crossref_primary_10_1080_10408436_2016_1182469
crossref_primary_10_1016_j_apsusc_2024_159714
crossref_primary_10_1016_j_physe_2016_06_018
crossref_primary_10_1016_j_cplett_2014_09_023
crossref_primary_10_1016_j_ijleo_2021_166830
crossref_primary_10_1016_j_matchemphys_2016_08_043
crossref_primary_10_1021_acsami_7b04170
crossref_primary_10_1039_C8NR10468A
crossref_primary_10_1021_acsami_8b11476
crossref_primary_10_1016_j_cplett_2017_01_036
crossref_primary_10_1021_am504674p
crossref_primary_10_1016_j_jpcs_2021_110021
crossref_primary_10_1021_acsnano_8b01345
crossref_primary_10_1002_adfm_202003871
crossref_primary_10_1007_s11664_022_09807_0
crossref_primary_10_1016_j_micromeso_2022_111794
crossref_primary_10_1088_1402_4896_ad5e14
crossref_primary_10_1021_acsenergylett_7b00164
crossref_primary_10_1177_0263617415623429
crossref_primary_10_1016_j_apsusc_2021_150634
crossref_primary_10_1016_j_apsusc_2018_10_107
crossref_primary_10_1063_1_5016317
crossref_primary_10_1039_D3CP01189E
crossref_primary_10_1002_adsu_202400421
crossref_primary_10_1016_j_apsusc_2019_05_311
crossref_primary_10_1016_j_carbon_2017_01_024
crossref_primary_10_1039_D2CP02730E
crossref_primary_10_1039_c3ta12639k
crossref_primary_10_1016_j_commatsci_2024_113573
crossref_primary_10_1021_acsami_6b12727
crossref_primary_10_1021_acs_jpclett_7b01364
crossref_primary_10_1016_j_physe_2014_02_018
crossref_primary_10_1039_C5RA15315H
crossref_primary_10_1038_srep37911
crossref_primary_10_1063_5_0138282
crossref_primary_10_1021_acs_jpcc_6b05458
crossref_primary_10_1016_j_cartre_2022_100237
crossref_primary_10_1039_D1TA02623B
crossref_primary_10_1021_acs_jpcc_9b03963
crossref_primary_10_1016_j_cej_2021_129786
crossref_primary_10_1038_s41467_018_07942_z
crossref_primary_10_1063_5_0144995
crossref_primary_10_1002_adma_201603414
crossref_primary_10_1016_j_susc_2017_01_004
crossref_primary_10_1021_acsami_7b03659
crossref_primary_10_1021_acs_jpclett_6b00171
crossref_primary_10_1039_C9TA05453G
crossref_primary_10_1016_j_cej_2020_126565
crossref_primary_10_1016_j_apsusc_2023_158079
crossref_primary_10_1016_j_jcis_2020_01_120
crossref_primary_10_1021_acsmaterialslett_2c01124
crossref_primary_10_1016_j_ijhydene_2014_12_071
crossref_primary_10_1016_j_cej_2023_141924
crossref_primary_10_1021_acs_jpcc_9b11441
crossref_primary_10_1002_pssb_202100369
crossref_primary_10_1103_PhysRevMaterials_2_085408
crossref_primary_10_1016_j_apsusc_2021_149448
crossref_primary_10_1039_C6TA09831B
crossref_primary_10_1021_jp410812v
crossref_primary_10_1088_1674_1056_abf10e
crossref_primary_10_1038_srep21254
crossref_primary_10_1088_1674_1056_25_8_086301
crossref_primary_10_1002_celc_201801187
crossref_primary_10_1016_j_physb_2020_412700
crossref_primary_10_1016_j_aej_2023_07_044
crossref_primary_10_1038_ncomms6261
crossref_primary_10_3390_nano11123397
crossref_primary_10_1016_S1452_3981_23_14301_X
crossref_primary_10_1016_j_carbon_2019_12_063
crossref_primary_10_1002_smll_202105292
crossref_primary_10_1016_j_matchemphys_2020_124138
crossref_primary_10_1021_acs_chemmater_5b01398
crossref_primary_10_1016_j_apmt_2020_100773
crossref_primary_10_1080_00268976_2019_1581291
crossref_primary_10_1007_s00894_024_06227_1
crossref_primary_10_1088_1757_899X_544_1_012004
crossref_primary_10_3390_ma8095297
crossref_primary_10_1016_j_est_2022_103996
crossref_primary_10_1039_C4NR00390J
crossref_primary_10_1007_s12274_017_1531_5
crossref_primary_10_1142_S0217979216502088
crossref_primary_10_1088_1361_648X_ada70f
crossref_primary_10_1021_acsaem_2c01621
Cites_doi 10.1007/978-94-010-9598-3_32
10.1103/PhysRevB.74.224438
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.72.155121
10.1103/PhysRevB.75.125408
10.1039/c0jm00672f
10.1093/oso/9780198551683.001.0001
10.1103/PhysRevLett.88.015502
10.1103/PhysRevLett.106.105505
10.1088/0957-4484/21/11/115701
10.1063/1.1329672
10.1149/1.1391828
10.1016/j.cplett.2005.02.084
10.1063/1.1323224
10.1103/PhysRevB.45.13244
10.1021/am3000962
10.1103/PhysRevB.83.125411
10.1021/nl100865a
10.1038/35104644
10.1021/nl0731872
10.1143/JPSJ.79.094708
10.1021/nl801386m
10.1103/PhysRevB.70.125422
10.1103/PhysRevLett.93.187202
10.1063/1.2963976
10.1103/PhysRevB.75.125425
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.104.096804
10.1016/j.commatsci.2005.04.010
10.1021/nn102598m
10.1021/nn202710s
10.1021/nn900150y
10.1126/science.270.5236.590
10.1063/1.3582814
10.1038/nature02817
10.1103/PhysRevB.13.5188
10.1103/PhysRevLett.77.3865
10.1038/nnano.2010.53
10.1016/S0013-4686(99)00198-X
10.1103/PhysRevLett.96.046806
10.1016/0009-2614(86)80661-3
10.1103/PhysRevB.80.033407
10.1021/ja208232h
10.1103/PhysRevB.77.235430
10.1016/S0009-2614(00)00851-4
10.1103/PhysRevLett.88.075506
10.1038/nnano.2007.411
10.1103/PhysRevB.85.121402
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1021/jp304861d
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1932-7455
EndPage 21787
ExternalDocumentID 26544545
10_1021_jp304861d
a606764508
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
186
6TJ
ACRPL
ADNMO
ADXHL
AEYZD
AFFNX
AGQPQ
ANPPW
ANTXH
IQODW
UQL
ZCG
ID FETCH-LOGICAL-a289t-2a0cb0f55ec7031d4168c38e89cc3d63879db039cac463fcac4fd4c34f7081543
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Mon Jul 21 09:16:21 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Tue Jul 01 01:21:15 EDT 2025
Thu Aug 27 13:50:16 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Point defects
Vacancies
Surface electron state
Surface diffusion
Electronic density of states
Charge density
Adsorption
Graphene
Density functional method
Adatoms
Divacancy
Charge transfer
Stone Wales defect
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a289t-2a0cb0f55ec7031d4168c38e89cc3d63879db039cac463fcac4fd4c34f7081543
PageCount 8
ParticipantIDs pascalfrancis_primary_26544545
crossref_citationtrail_10_1021_jp304861d
crossref_primary_10_1021_jp304861d
acs_journals_10_1021_jp304861d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-18
PublicationDateYYYYMMDD 2012-10-18
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-18
  day: 18
PublicationDecade 2010
PublicationPlace Columbus, OH
PublicationPlace_xml – name: Columbus, OH
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Chan C. K. (ref11/cit11) 2008; 3
Medeiros P. V. C. (ref13/cit13) 2010; 21
Yazyev O. V. (ref21/cit21) 2007; 75
Fan X. F. (ref43/cit43) 2012; 4
Shimoda H. (ref6/cit6) 2001; 88
Wu G. T. (ref8/cit8) 1999; 146
Henkelman G. (ref40/cit40) 2000; 113
Dugaev V. K. (ref46/cit46) 2006; 74
Dahn J. R. (ref2/cit2) 1995; 270
Perdew J. P. (ref35/cit35) 1992; 45
Kotakoski J. (ref26/cit26) 2011; 106
Balandin A. A. (ref22/cit22) 2008; 8
Ugeda M. M. (ref29/cit29) 2012; 85
Kresse G. (ref33/cit33) 1999; 59
Zhao X. (ref17/cit17) 2011; 5
Henkelman G. (ref50/cit50) 2006; 36
Stone A. (ref38/cit38) 1986; 128
Sugawara K. (ref16/cit16) 2011; 1
Chan K. T. (ref41/cit41) 2008; 77
Zhang L. S. (ref19/cit19) 2010; 20
Perdew J. P. (ref36/cit36) 1996; 77
Kittel C. (ref42/cit42) 2005
Vozmediano M. A. H. (ref45/cit45) 2005; 72
Tarascon J. M. (ref3/cit3) 2001; 414
Gao B. (ref7/cit7) 2000; 327
Bade R. F. W. (ref49/cit49) 1990
Buiel E. (ref5/cit5) 1999; 45
Meyer J. C. (ref24/cit24) 2008; 8
Monkhorst H. J. (ref37/cit37) 1976; 13
Romero M. A. (ref14/cit14) 2011; 83
Uthaisar C. (ref32/cit32) 2010; 10
Lahiri J. (ref28/cit28) 2010; 5
Lehtinen P. O. (ref31/cit31) 2004; 93
Udomvech A. (ref10/cit10) 2005; 406
Meunier V. (ref9/cit9) 2002; 88
Banhart F. (ref23/cit23) 2011; 5
Ma J. (ref44/cit44) 2009; 80
Ataca C. (ref15/cit15) 2008; 93
Ugeda M. M. (ref27/cit27) 2010; 104
Henkelman G. (ref39/cit39) 2000; 113
Chockla A. M. (ref12/cit12) 2011; 133
Carlsson J. M. (ref30/cit30) 2006; 96
Wehling T. O. (ref47/cit47) 2007; 75
Kresse G. (ref34/cit34) 1996; 54
Khantha M. (ref18/cit18) 2004; 70
Toyoda A. (ref48/cit48) 2010; 79
Wang D. (ref20/cit20) 2009; 3
Hashimoto A. (ref25/cit25) 2004; 430
ref4/cit4
ref1/cit1
References_xml – ident: ref4/cit4
  doi: 10.1007/978-94-010-9598-3_32
– volume: 74
  start-page: 224438
  year: 2006
  ident: ref46/cit46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.224438
– volume: 59
  start-page: 1758
  year: 1999
  ident: ref33/cit33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 72
  start-page: 155121
  year: 2005
  ident: ref45/cit45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.155121
– volume: 75
  start-page: 125408
  year: 2007
  ident: ref21/cit21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.125408
– volume: 20
  start-page: 5462
  year: 2010
  ident: ref19/cit19
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00672f
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1990
  ident: ref49/cit49
  doi: 10.1093/oso/9780198551683.001.0001
– volume: 88
  start-page: 015502
  year: 2001
  ident: ref6/cit6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.015502
– volume: 106
  start-page: 105505
  year: 2011
  ident: ref26/cit26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.105505
– volume: 21
  start-page: 115701
  year: 2010
  ident: ref13/cit13
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/11/115701
– volume: 113
  start-page: 9901
  year: 2000
  ident: ref39/cit39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 146
  start-page: 1696
  year: 1999
  ident: ref8/cit8
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1391828
– volume: 406
  start-page: 161
  year: 2005
  ident: ref10/cit10
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2005.02.084
– volume: 113
  start-page: 9978
  year: 2000
  ident: ref40/cit40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume-title: Introduction to Solid Sate Physics
  year: 2005
  ident: ref42/cit42
– volume: 45
  start-page: 13244
  year: 1992
  ident: ref35/cit35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.13244
– volume: 4
  start-page: 2432
  year: 2012
  ident: ref43/cit43
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3000962
– volume: 83
  start-page: 125411
  year: 2011
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.125411
– volume: 10
  start-page: 2838
  year: 2010
  ident: ref32/cit32
  publication-title: Nano Lett.
  doi: 10.1021/nl100865a
– volume: 414
  start-page: 359
  year: 2001
  ident: ref3/cit3
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 8
  start-page: 902
  year: 2008
  ident: ref22/cit22
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 79
  start-page: 094708
  year: 2010
  ident: ref48/cit48
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.79.094708
– volume: 8
  start-page: 3582
  year: 2008
  ident: ref24/cit24
  publication-title: Nano Lett.
  doi: 10.1021/nl801386m
– volume: 70
  start-page: 125422
  year: 2004
  ident: ref18/cit18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.125422
– volume: 93
  start-page: 187202
  year: 2004
  ident: ref31/cit31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.187202
– volume: 93
  start-page: 043123
  year: 2008
  ident: ref15/cit15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2963976
– volume: 75
  start-page: 125425
  year: 2007
  ident: ref47/cit47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.125425
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref34/cit34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 104
  start-page: 096804
  year: 2010
  ident: ref27/cit27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.096804
– volume: 36
  start-page: 354
  year: 2006
  ident: ref50/cit50
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 5
  start-page: 26
  year: 2011
  ident: ref23/cit23
  publication-title: ACS Nano
  doi: 10.1021/nn102598m
– volume: 5
  start-page: 8739
  year: 2011
  ident: ref17/cit17
  publication-title: ACS Nano
  doi: 10.1021/nn202710s
– volume: 3
  start-page: 907
  year: 2009
  ident: ref20/cit20
  publication-title: ACS Nano
  doi: 10.1021/nn900150y
– ident: ref1/cit1
– volume: 270
  start-page: 590
  year: 1995
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.270.5236.590
– volume: 1
  start-page: 022103
  year: 2011
  ident: ref16/cit16
  publication-title: AIP Adv.
  doi: 10.1063/1.3582814
– volume: 430
  start-page: 870
  year: 2004
  ident: ref25/cit25
  publication-title: Nature
  doi: 10.1038/nature02817
– volume: 13
  start-page: 5188
  year: 1976
  ident: ref37/cit37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref36/cit36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 5
  start-page: 326
  year: 2010
  ident: ref28/cit28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.53
– volume: 45
  start-page: 121
  year: 1999
  ident: ref5/cit5
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00198-X
– volume: 96
  start-page: 046806
  year: 2006
  ident: ref30/cit30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.046806
– volume: 128
  start-page: 501
  year: 1986
  ident: ref38/cit38
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(86)80661-3
– volume: 80
  start-page: 033407
  year: 2009
  ident: ref44/cit44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.033407
– volume: 133
  start-page: 20914
  year: 2011
  ident: ref12/cit12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208232h
– volume: 77
  start-page: 235430
  year: 2008
  ident: ref41/cit41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.235430
– volume: 327
  start-page: 69
  year: 2000
  ident: ref7/cit7
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00851-4
– volume: 88
  start-page: 075506
  year: 2002
  ident: ref9/cit9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.075506
– volume: 3
  start-page: 31
  year: 2008
  ident: ref11/cit11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
– volume: 85
  start-page: 121402
  year: 2012
  ident: ref29/cit29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.121402
SSID ssj0053013
Score 2.5343804
Snippet To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy...
SourceID pascalfrancis
crossref
acs
SourceType Index Database
Enrichment Source
Publisher
StartPage 21780
SubjectTerms Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Physics
Thin films and multilayers
Title First-Principles Study of Lithium Adsorption and Diffusion on Graphene with Point Defects
URI http://dx.doi.org/10.1021/jp304861d
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5qPSiIb7E-yqIevKSmu5vXsbTWIioFLdRTye5mMT6S0iQH_fXOJk1psSoEcpnAMrs7880j3yB0YSmqdIHLUC4nBiNcGK7UdHfgragriGPmUyLuH-zegN0OrWEFnf9SwSfNq9cx1bRwTbmCVokNl1fjn_ZjaW4tOKG0KB0DVGTMKemD5j_VrkckC65nY-wnoAVVjK-Y8yndLdQp_8wpWkneGlnKG-LrJ1HjX8vdRptTTIlbxSHYQZUg2kVr7XKU2x567oYA8ox-mVhPsG4f_MSxwndh-hJmH7glk3iSmw_sRxJ3QqUynUjD8NxoUmuwiVgnbXE_DqMUd4K8D2QfDbrXT-2eMZ2pYPgQWqUG8U3BTWVZgdDM9RLwmCuoG7ieEFTCZXQ8yU3qCV8wmyr9UpIJypQD4MFi9ABVozgKDhEOKAN05SnT8SHMCIhHbOVwsAea6YgrWUN1UPpoeieSUV7uJhBulBqqoctyP0ZiykiuB2O8LxM9m4mOCxqOZUL1hU2dSRJbUw4x6-i_FR2jdQBERPumpnuCqukkC04BdKS8nh-6b6Wm0AA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UHzAxfhvxAxvjgy_D0XZseyQgogIhERJ8Ilu7xvmxETYe9K_3ug8EQ6LJkr3clkt7vfu1d_0dQleGpFIluDRpuURjxOWaJRTdHUQranFi6kmXiG6v1h6yh5Exymhy1F0YUCKCP0VJEv-HXaB68zqhih2uKtbRBoAQoqy53njKva4BhkrTDDIgRsbMnEVo8VMVgXi0FIG2Jk4EgyHTLhYLoaW1k_YoSpRKKkreKrPYrfCvX3yN_9N6F21nCBPXU5PYQ2tesI-Kjbyx2wF6bvkA-bR-fsweYVVM-IlDiTt-_OLPPnBdROE0cSbYCQRu-lLO1LEahudOUVyDh8TqCBf3Qz-IcdNLqkIO0bB1O2i0tazDgubARivWiKNzV5eG4XHFYy8AnVmcWp5lc04FLE3TFq5Obe5wVqNSvaRgnDJpApQwGD1ChSAMvGOEPcoAa9lSNx3YdHjEJjVpuuAdFO-RK0UJlWGAxtkKicZJ8pvA5iMfoRK6zqdlzDN-ctUm432V6OVcdJKScqwSKi_N7VyS1BQBETNO_tLoAhXbg25n3LnvPZ6iTYBKREWtqnWGCvF05p0DHIndcmKH32j62GE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60ggriW3zWRTx4SU13N69jaa1vLWihnkqym8X4SEqTHvTXO5MmxYqgEMhlEobd2Zlvdna_IeTY0lxjgcvQbsAMwQJpuArp7iBacVcyx8y7RNze2RddcdWzekWiiHdhQIkU_pTmRXxc1QOlC4aB-unLgCNDXF3Nkjks16FFN5oPpee1wFj5uIoMqFEIp2QS-v4pRiGZTkWhpYGfwoDocSeLb-GlvULuJ4rlp0pea6MsqMnPH5yN_9d8lSwXSJM2xqaxRmbCeJ0sNMsGbxvkqR0B9DM65XZ7SvFQ4QdNNL2Jsudo9E4bKk2GuVOhfqxoK9J6hNtrFJ5zpLoGT0lxK5d2kijOaCvMT4dskm777LF5YRSdFgwfEq7MYL4pA1NbViiRz14BSnMld0PXk5IrWKKOpwKTe9KXwuYaX1oJyYV2AFJYgm-RSpzE4TahIReAuTxtOj4kHyHzmK2dALwE8h8FWu2QKgxSv1gpaT8vgjNIQsoR2iEn5dT0ZcFTju0y3n4TPZqIDsbkHL8JVafmdyLJbCQiEtbuXxodkvlOq92_uby73iOLgJgYBq-6u08q2XAUHgAqyYJqbopflIDa5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-Principles+Study+of+Lithium+Adsorption+and+Diffusion+on+Graphene+with+Point+Defects&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=ZHOU%2C+Liu-Jiang&rft.au=HOU%2C+Z.+F&rft.au=WU%2C+Li-Ming&rft.date=2012-10-18&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.volume=116&rft.issue=41&rft.spage=21780&rft.epage=21787&rft_id=info:doi/10.1021%2Fjp304861d&rft.externalDBID=n%2Fa&rft.externalDocID=26544545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon