First-Principles Study of Lithium Adsorption and Diffusion on Graphene with Point Defects
To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy and Stone–Wales defect using the first-principles calculations. Our results show that in the presence of divacancy Li adatom energetically pr...
Saved in:
Published in | Journal of physical chemistry. C Vol. 116; no. 41; pp. 21780 - 21787 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Columbus, OH
American Chemical Society
18.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy and Stone–Wales defect using the first-principles calculations. Our results show that in the presence of divacancy Li adatom energetically prefers the hollow site above the center of an octagonal ring rather than the top sites of carbon atoms next to vacancy site. In the case of Stone–Wales defect, Li atom is energetically favorable to be adsorbed on the top site of carbon atom in a pentagonal ring shared with two hexagonal rings, and such adsorption results in a bucking of graphene sheet. For divacancy and Stone–Wales defects in graphene, their interactions with a Li adatom are attractive, suggesting that the presence of point defects would enhance the Li adsorption on graphene. The difference charge density and the Bader charge analysis both show that there is a significant charge transfer from Li adatom to it nearest neighbor carbon atoms. |
---|---|
AbstractList | To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy and Stone–Wales defect using the first-principles calculations. Our results show that in the presence of divacancy Li adatom energetically prefers the hollow site above the center of an octagonal ring rather than the top sites of carbon atoms next to vacancy site. In the case of Stone–Wales defect, Li atom is energetically favorable to be adsorbed on the top site of carbon atom in a pentagonal ring shared with two hexagonal rings, and such adsorption results in a bucking of graphene sheet. For divacancy and Stone–Wales defects in graphene, their interactions with a Li adatom are attractive, suggesting that the presence of point defects would enhance the Li adsorption on graphene. The difference charge density and the Bader charge analysis both show that there is a significant charge transfer from Li adatom to it nearest neighbor carbon atoms. |
Author | Zhou, Liu-Jiang Hou, Z. F Wu, Li-Ming |
AuthorAffiliation | Xiamen University (XMU) Chinese Academy of Sciences Graduate School of Chinese Academy of Sciences |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: Xiamen University (XMU) – name: Graduate School of Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Liu-Jiang surname: Zhou fullname: Zhou, Liu-Jiang – sequence: 2 givenname: Z. F surname: Hou fullname: Hou, Z. F email: zhufeng.hou@gmail.com, liming_wu@fjirsm.ac.cn – sequence: 3 givenname: Li-Ming surname: Wu fullname: Wu, Li-Ming email: zhufeng.hou@gmail.com, liming_wu@fjirsm.ac.cn |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26544545$$DView record in Pascal Francis |
BookMark | eNptkE1rAjEQhkOxULU99B_k0kMPW5NNsh9H0WoLQoW2h56WmA-MrMmSZCn-e3fReijCwMzA877MOyMwsM4qAB4xesEoxZNdQxAtMixvwBCXJE1yytjgMtP8DoxC2CHECMJkCH4WxoeYrL2xwjS1CvAztvIAnYYrE7em3cOpDM430TgLuZVwbrRuQ791tfS82Sqr4G8Hw7UzNsK50krEcA9uNa-Dejj3MfhevH7N3pLVx_J9Nl0lPC3KmKQciQ3SjCmRI4IlxVkhSKGKUggiM1LkpdwgUgouaEZ037SkglCdowIzSsbg6eTb8CB4rT3vkoSq8WbP_aFKM0Ypo6zjJidOeBeCV7oSJvI-VvTc1BVGVf_B6vLBTvH8T_Fneo09X8FFqHau9bbLfIU7As1of2U |
CitedBy_id | crossref_primary_10_1021_acsaem_4c02377 crossref_primary_10_1021_ja501520b crossref_primary_10_1126_sciadv_1701010 crossref_primary_10_1063_1_4940754 crossref_primary_10_1021_cm503861r crossref_primary_10_1021_jp5080847 crossref_primary_10_1016_j_comptc_2019_01_006 crossref_primary_10_1016_j_apsusc_2015_05_119 crossref_primary_10_1021_acs_jpcc_9b04449 crossref_primary_10_1016_j_ensm_2021_12_047 crossref_primary_10_1039_C5NR06856H crossref_primary_10_1021_acs_jpcc_8b05689 crossref_primary_10_1039_D0RA01086C crossref_primary_10_1039_C6CP05781K crossref_primary_10_1039_D3CP00787A crossref_primary_10_1039_D2CP05421C crossref_primary_10_1016_j_surfin_2023_103197 crossref_primary_10_1021_acs_jpcc_1c01069 crossref_primary_10_1002_idm2_12146 crossref_primary_10_1038_s41524_019_0211_2 crossref_primary_10_1016_j_susc_2023_122250 crossref_primary_10_1021_acs_jpcc_0c10369 crossref_primary_10_1016_j_apsusc_2020_148516 crossref_primary_10_1016_j_jpowsour_2024_236156 crossref_primary_10_1016_j_pmatsci_2018_09_004 crossref_primary_10_1016_j_scriptamat_2019_11_017 crossref_primary_10_1142_S0218625X2150061X crossref_primary_10_1021_am5050604 crossref_primary_10_1016_j_physb_2024_416756 crossref_primary_10_1142_S0219633614500552 crossref_primary_10_1103_PhysRevB_90_125434 crossref_primary_10_1016_j_jpowsour_2016_09_091 crossref_primary_10_1021_acsnano_8b05529 crossref_primary_10_1103_PhysRevB_100_085422 crossref_primary_10_1007_s40820_021_00706_3 crossref_primary_10_1016_j_carbon_2014_08_068 crossref_primary_10_1016_j_ijhydene_2024_08_108 crossref_primary_10_1039_C5RA25028E crossref_primary_10_1063_5_0241530 crossref_primary_10_1007_s11051_016_3623_7 crossref_primary_10_1039_C6RA16604K crossref_primary_10_1016_j_mcat_2021_111624 crossref_primary_10_1016_j_matchemphys_2020_123527 crossref_primary_10_1016_j_carbon_2019_03_085 crossref_primary_10_1038_ncomms4710 crossref_primary_10_1016_j_diamond_2023_109928 crossref_primary_10_1039_C8NH00333E crossref_primary_10_1016_j_cartre_2021_100045 crossref_primary_10_1016_j_jpowsour_2022_232256 crossref_primary_10_1021_jp5102175 crossref_primary_10_1039_C7TA04354F crossref_primary_10_18038_estubtda_513854 crossref_primary_10_1016_j_apmt_2017_08_013 crossref_primary_10_1080_00268976_2018_1523480 crossref_primary_10_1002_aenm_201900343 crossref_primary_10_1007_s00339_022_06036_4 crossref_primary_10_1016_j_rser_2023_114030 crossref_primary_10_1039_D2NR02302D crossref_primary_10_1016_j_est_2024_112109 crossref_primary_10_1016_j_ssi_2023_116214 crossref_primary_10_1002_open_202300313 crossref_primary_10_1016_j_cplett_2013_09_006 crossref_primary_10_1038_srep18712 crossref_primary_10_1016_j_commatsci_2013_09_046 crossref_primary_10_1016_j_apsusc_2017_03_057 crossref_primary_10_1039_C9EE00536F crossref_primary_10_1039_C5CP04666A crossref_primary_10_1039_C9CP04499J crossref_primary_10_1088_2515_7655_abab66 crossref_primary_10_1021_acsaem_1c03739 crossref_primary_10_1038_s41524_024_01225_6 crossref_primary_10_1021_acs_jpcc_9b06151 crossref_primary_10_1021_acs_chemrev_8b00116 crossref_primary_10_1016_j_apsusc_2022_154176 crossref_primary_10_1016_j_jpowsour_2018_12_002 crossref_primary_10_1016_j_electacta_2014_09_059 crossref_primary_10_1016_j_jcis_2021_12_157 crossref_primary_10_1021_acs_jpcc_7b07583 crossref_primary_10_1039_D4EE00119B crossref_primary_10_1002_adts_201700009 crossref_primary_10_1016_j_carbon_2017_12_074 crossref_primary_10_1557_mrc_2013_24 crossref_primary_10_1016_j_matchemphys_2018_11_033 crossref_primary_10_1021_am403685w crossref_primary_10_1021_am404788e crossref_primary_10_1016_j_inoche_2018_08_018 crossref_primary_10_1039_D0NA00585A crossref_primary_10_1016_j_cej_2020_126812 crossref_primary_10_1016_j_cej_2024_151636 crossref_primary_10_1557_s43578_021_00297_0 crossref_primary_10_1016_j_jechem_2019_04_018 crossref_primary_10_1016_j_electacta_2016_12_002 crossref_primary_10_1038_s41467_018_04190_z crossref_primary_10_1039_C7CP00064B crossref_primary_10_1038_am_2016_7 crossref_primary_10_1149_2_1011908jes crossref_primary_10_1063_1_4931152 crossref_primary_10_3390_ma17091941 crossref_primary_10_1016_j_mtcomm_2024_111425 crossref_primary_10_1021_acs_jpcc_8b08909 crossref_primary_10_1021_nn502045y crossref_primary_10_1039_C8NJ01098F crossref_primary_10_1002_adma_201804973 crossref_primary_10_1039_C8NR04467H crossref_primary_10_1039_D4CP00108G crossref_primary_10_1016_j_mtcomm_2024_109492 crossref_primary_10_1039_c3nr33218g crossref_primary_10_1039_C4TA04460F crossref_primary_10_1021_am503715g crossref_primary_10_1039_C6TA01645F crossref_primary_10_1088_2053_1591_3_6_064001 crossref_primary_10_1016_j_nanoen_2020_104807 crossref_primary_10_1039_C5CP03599F crossref_primary_10_1039_C8CP04958K crossref_primary_10_1016_j_apsusc_2015_01_236 crossref_primary_10_1088_2053_1591_2_10_105016 crossref_primary_10_1007_s12274_021_4023_6 crossref_primary_10_1021_jacs_8b10488 crossref_primary_10_1039_C9CP06099E crossref_primary_10_1039_C8NR04868A crossref_primary_10_1063_1_4960581 crossref_primary_10_1002_slct_201901140 crossref_primary_10_1039_D1MA00328C crossref_primary_10_1016_j_cclet_2021_11_030 crossref_primary_10_1039_C9RA03235E crossref_primary_10_1002_adfm_201807441 crossref_primary_10_1134_S0022476617060154 crossref_primary_10_1016_j_apsusc_2023_157391 crossref_primary_10_1021_acsami_5b01315 crossref_primary_10_1039_D3NR04298G crossref_primary_10_1016_j_apsusc_2021_150155 crossref_primary_10_1021_acs_jpcc_8b07478 crossref_primary_10_1016_j_apsusc_2021_150033 crossref_primary_10_1039_C9TA08676E crossref_primary_10_1021_acsami_0c04188 crossref_primary_10_1016_j_diamond_2017_09_010 crossref_primary_10_1088_1361_648X_ac6a98 crossref_primary_10_1016_j_molstruc_2024_139152 crossref_primary_10_1007_s11581_022_04526_2 crossref_primary_10_1016_j_apsusc_2017_07_004 crossref_primary_10_1039_D3CP01161E crossref_primary_10_1039_C5TA01443C crossref_primary_10_1088_1361_648X_aca8e7 crossref_primary_10_1007_s41918_018_0001_4 crossref_primary_10_1016_j_inoche_2025_114070 crossref_primary_10_1039_C5RA12096A crossref_primary_10_1016_j_jpowsour_2016_09_029 crossref_primary_10_1007_s40242_017_7038_5 crossref_primary_10_1016_j_mtcomm_2019_100714 crossref_primary_10_1039_C8TA12504J crossref_primary_10_1016_j_apsusc_2017_08_178 crossref_primary_10_1016_j_mtchem_2017_02_003 crossref_primary_10_1039_c3cp51689j crossref_primary_10_1039_C7TA08665B crossref_primary_10_1016_j_est_2020_101386 crossref_primary_10_1016_j_ensm_2020_11_004 crossref_primary_10_1039_C6TA04350J crossref_primary_10_1016_j_carbon_2023_01_009 crossref_primary_10_1016_j_jallcom_2022_167722 crossref_primary_10_1021_nl403010s crossref_primary_10_1016_j_jiec_2019_09_016 crossref_primary_10_1016_j_apsusc_2019_144446 crossref_primary_10_1016_j_physb_2024_416479 crossref_primary_10_1039_c3cp52364k crossref_primary_10_1002_er_6254 crossref_primary_10_1103_PhysRevB_99_155403 crossref_primary_10_1039_C5RA05935F crossref_primary_10_1016_j_carbon_2016_06_035 crossref_primary_10_1039_C5TA05676D crossref_primary_10_1016_j_ijhydene_2019_08_186 crossref_primary_10_1021_acs_jpcc_5b09034 crossref_primary_10_1016_j_cjche_2024_03_034 crossref_primary_10_1016_j_mtcomm_2020_101602 crossref_primary_10_1002_adma_201808091 crossref_primary_10_3390_ma15186241 crossref_primary_10_1002_admt_201900307 crossref_primary_10_1039_C5NR00690B crossref_primary_10_1039_C6TA05623G crossref_primary_10_1021_jp512411g crossref_primary_10_1016_j_cocom_2020_e00473 crossref_primary_10_1016_j_apsusc_2017_08_199 crossref_primary_10_1002_adfm_202301987 crossref_primary_10_1039_D1TA07962J crossref_primary_10_1016_j_apsusc_2021_150988 crossref_primary_10_1016_j_jallcom_2025_179324 crossref_primary_10_1080_10408436_2016_1182469 crossref_primary_10_1016_j_apsusc_2024_159714 crossref_primary_10_1016_j_physe_2016_06_018 crossref_primary_10_1016_j_cplett_2014_09_023 crossref_primary_10_1016_j_ijleo_2021_166830 crossref_primary_10_1016_j_matchemphys_2016_08_043 crossref_primary_10_1021_acsami_7b04170 crossref_primary_10_1039_C8NR10468A crossref_primary_10_1021_acsami_8b11476 crossref_primary_10_1016_j_cplett_2017_01_036 crossref_primary_10_1021_am504674p crossref_primary_10_1016_j_jpcs_2021_110021 crossref_primary_10_1021_acsnano_8b01345 crossref_primary_10_1002_adfm_202003871 crossref_primary_10_1007_s11664_022_09807_0 crossref_primary_10_1016_j_micromeso_2022_111794 crossref_primary_10_1088_1402_4896_ad5e14 crossref_primary_10_1021_acsenergylett_7b00164 crossref_primary_10_1177_0263617415623429 crossref_primary_10_1016_j_apsusc_2021_150634 crossref_primary_10_1016_j_apsusc_2018_10_107 crossref_primary_10_1063_1_5016317 crossref_primary_10_1039_D3CP01189E crossref_primary_10_1002_adsu_202400421 crossref_primary_10_1016_j_apsusc_2019_05_311 crossref_primary_10_1016_j_carbon_2017_01_024 crossref_primary_10_1039_D2CP02730E crossref_primary_10_1039_c3ta12639k crossref_primary_10_1016_j_commatsci_2024_113573 crossref_primary_10_1021_acsami_6b12727 crossref_primary_10_1021_acs_jpclett_7b01364 crossref_primary_10_1016_j_physe_2014_02_018 crossref_primary_10_1039_C5RA15315H crossref_primary_10_1038_srep37911 crossref_primary_10_1063_5_0138282 crossref_primary_10_1021_acs_jpcc_6b05458 crossref_primary_10_1016_j_cartre_2022_100237 crossref_primary_10_1039_D1TA02623B crossref_primary_10_1021_acs_jpcc_9b03963 crossref_primary_10_1016_j_cej_2021_129786 crossref_primary_10_1038_s41467_018_07942_z crossref_primary_10_1063_5_0144995 crossref_primary_10_1002_adma_201603414 crossref_primary_10_1016_j_susc_2017_01_004 crossref_primary_10_1021_acsami_7b03659 crossref_primary_10_1021_acs_jpclett_6b00171 crossref_primary_10_1039_C9TA05453G crossref_primary_10_1016_j_cej_2020_126565 crossref_primary_10_1016_j_apsusc_2023_158079 crossref_primary_10_1016_j_jcis_2020_01_120 crossref_primary_10_1021_acsmaterialslett_2c01124 crossref_primary_10_1016_j_ijhydene_2014_12_071 crossref_primary_10_1016_j_cej_2023_141924 crossref_primary_10_1021_acs_jpcc_9b11441 crossref_primary_10_1002_pssb_202100369 crossref_primary_10_1103_PhysRevMaterials_2_085408 crossref_primary_10_1016_j_apsusc_2021_149448 crossref_primary_10_1039_C6TA09831B crossref_primary_10_1021_jp410812v crossref_primary_10_1088_1674_1056_abf10e crossref_primary_10_1038_srep21254 crossref_primary_10_1088_1674_1056_25_8_086301 crossref_primary_10_1002_celc_201801187 crossref_primary_10_1016_j_physb_2020_412700 crossref_primary_10_1016_j_aej_2023_07_044 crossref_primary_10_1038_ncomms6261 crossref_primary_10_3390_nano11123397 crossref_primary_10_1016_S1452_3981_23_14301_X crossref_primary_10_1016_j_carbon_2019_12_063 crossref_primary_10_1002_smll_202105292 crossref_primary_10_1016_j_matchemphys_2020_124138 crossref_primary_10_1021_acs_chemmater_5b01398 crossref_primary_10_1016_j_apmt_2020_100773 crossref_primary_10_1080_00268976_2019_1581291 crossref_primary_10_1007_s00894_024_06227_1 crossref_primary_10_1088_1757_899X_544_1_012004 crossref_primary_10_3390_ma8095297 crossref_primary_10_1016_j_est_2022_103996 crossref_primary_10_1039_C4NR00390J crossref_primary_10_1007_s12274_017_1531_5 crossref_primary_10_1142_S0217979216502088 crossref_primary_10_1088_1361_648X_ada70f crossref_primary_10_1021_acsaem_2c01621 |
Cites_doi | 10.1007/978-94-010-9598-3_32 10.1103/PhysRevB.74.224438 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.72.155121 10.1103/PhysRevB.75.125408 10.1039/c0jm00672f 10.1093/oso/9780198551683.001.0001 10.1103/PhysRevLett.88.015502 10.1103/PhysRevLett.106.105505 10.1088/0957-4484/21/11/115701 10.1063/1.1329672 10.1149/1.1391828 10.1016/j.cplett.2005.02.084 10.1063/1.1323224 10.1103/PhysRevB.45.13244 10.1021/am3000962 10.1103/PhysRevB.83.125411 10.1021/nl100865a 10.1038/35104644 10.1021/nl0731872 10.1143/JPSJ.79.094708 10.1021/nl801386m 10.1103/PhysRevB.70.125422 10.1103/PhysRevLett.93.187202 10.1063/1.2963976 10.1103/PhysRevB.75.125425 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.104.096804 10.1016/j.commatsci.2005.04.010 10.1021/nn102598m 10.1021/nn202710s 10.1021/nn900150y 10.1126/science.270.5236.590 10.1063/1.3582814 10.1038/nature02817 10.1103/PhysRevB.13.5188 10.1103/PhysRevLett.77.3865 10.1038/nnano.2010.53 10.1016/S0013-4686(99)00198-X 10.1103/PhysRevLett.96.046806 10.1016/0009-2614(86)80661-3 10.1103/PhysRevB.80.033407 10.1021/ja208232h 10.1103/PhysRevB.77.235430 10.1016/S0009-2614(00)00851-4 10.1103/PhysRevLett.88.075506 10.1038/nnano.2007.411 10.1103/PhysRevB.85.121402 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1021/jp304861d |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1932-7455 |
EndPage | 21787 |
ExternalDocumentID | 26544545 10_1021_jp304861d a606764508 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR VF5 VG9 VQA W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 186 6TJ ACRPL ADNMO ADXHL AEYZD AFFNX AGQPQ ANPPW ANTXH IQODW UQL ZCG |
ID | FETCH-LOGICAL-a289t-2a0cb0f55ec7031d4168c38e89cc3d63879db039cac463fcac4fd4c34f7081543 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Mon Jul 21 09:16:21 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Tue Jul 01 01:21:15 EDT 2025 Thu Aug 27 13:50:16 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | Point defects Vacancies Surface electron state Surface diffusion Electronic density of states Charge density Adsorption Graphene Density functional method Adatoms Divacancy Charge transfer Stone Wales defect |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a289t-2a0cb0f55ec7031d4168c38e89cc3d63879db039cac463fcac4fd4c34f7081543 |
PageCount | 8 |
ParticipantIDs | pascalfrancis_primary_26544545 crossref_citationtrail_10_1021_jp304861d crossref_primary_10_1021_jp304861d acs_journals_10_1021_jp304861d |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-18 |
PublicationDateYYYYMMDD | 2012-10-18 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Columbus, OH |
PublicationPlace_xml | – name: Columbus, OH |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Chan C. K. (ref11/cit11) 2008; 3 Medeiros P. V. C. (ref13/cit13) 2010; 21 Yazyev O. V. (ref21/cit21) 2007; 75 Fan X. F. (ref43/cit43) 2012; 4 Shimoda H. (ref6/cit6) 2001; 88 Wu G. T. (ref8/cit8) 1999; 146 Henkelman G. (ref40/cit40) 2000; 113 Dugaev V. K. (ref46/cit46) 2006; 74 Dahn J. R. (ref2/cit2) 1995; 270 Perdew J. P. (ref35/cit35) 1992; 45 Kotakoski J. (ref26/cit26) 2011; 106 Balandin A. A. (ref22/cit22) 2008; 8 Ugeda M. M. (ref29/cit29) 2012; 85 Kresse G. (ref33/cit33) 1999; 59 Zhao X. (ref17/cit17) 2011; 5 Henkelman G. (ref50/cit50) 2006; 36 Stone A. (ref38/cit38) 1986; 128 Sugawara K. (ref16/cit16) 2011; 1 Chan K. T. (ref41/cit41) 2008; 77 Zhang L. S. (ref19/cit19) 2010; 20 Perdew J. P. (ref36/cit36) 1996; 77 Kittel C. (ref42/cit42) 2005 Vozmediano M. A. H. (ref45/cit45) 2005; 72 Tarascon J. M. (ref3/cit3) 2001; 414 Gao B. (ref7/cit7) 2000; 327 Bade R. F. W. (ref49/cit49) 1990 Buiel E. (ref5/cit5) 1999; 45 Meyer J. C. (ref24/cit24) 2008; 8 Monkhorst H. J. (ref37/cit37) 1976; 13 Romero M. A. (ref14/cit14) 2011; 83 Uthaisar C. (ref32/cit32) 2010; 10 Lahiri J. (ref28/cit28) 2010; 5 Lehtinen P. O. (ref31/cit31) 2004; 93 Udomvech A. (ref10/cit10) 2005; 406 Meunier V. (ref9/cit9) 2002; 88 Banhart F. (ref23/cit23) 2011; 5 Ma J. (ref44/cit44) 2009; 80 Ataca C. (ref15/cit15) 2008; 93 Ugeda M. M. (ref27/cit27) 2010; 104 Henkelman G. (ref39/cit39) 2000; 113 Chockla A. M. (ref12/cit12) 2011; 133 Carlsson J. M. (ref30/cit30) 2006; 96 Wehling T. O. (ref47/cit47) 2007; 75 Kresse G. (ref34/cit34) 1996; 54 Khantha M. (ref18/cit18) 2004; 70 Toyoda A. (ref48/cit48) 2010; 79 Wang D. (ref20/cit20) 2009; 3 Hashimoto A. (ref25/cit25) 2004; 430 ref4/cit4 ref1/cit1 |
References_xml | – ident: ref4/cit4 doi: 10.1007/978-94-010-9598-3_32 – volume: 74 start-page: 224438 year: 2006 ident: ref46/cit46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.224438 – volume: 59 start-page: 1758 year: 1999 ident: ref33/cit33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 72 start-page: 155121 year: 2005 ident: ref45/cit45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.155121 – volume: 75 start-page: 125408 year: 2007 ident: ref21/cit21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.125408 – volume: 20 start-page: 5462 year: 2010 ident: ref19/cit19 publication-title: J. Mater. Chem. doi: 10.1039/c0jm00672f – volume-title: Atoms in Molecules: A Quantum Theory year: 1990 ident: ref49/cit49 doi: 10.1093/oso/9780198551683.001.0001 – volume: 88 start-page: 015502 year: 2001 ident: ref6/cit6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.015502 – volume: 106 start-page: 105505 year: 2011 ident: ref26/cit26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.105505 – volume: 21 start-page: 115701 year: 2010 ident: ref13/cit13 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/11/115701 – volume: 113 start-page: 9901 year: 2000 ident: ref39/cit39 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 146 start-page: 1696 year: 1999 ident: ref8/cit8 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1391828 – volume: 406 start-page: 161 year: 2005 ident: ref10/cit10 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2005.02.084 – volume: 113 start-page: 9978 year: 2000 ident: ref40/cit40 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume-title: Introduction to Solid Sate Physics year: 2005 ident: ref42/cit42 – volume: 45 start-page: 13244 year: 1992 ident: ref35/cit35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13244 – volume: 4 start-page: 2432 year: 2012 ident: ref43/cit43 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3000962 – volume: 83 start-page: 125411 year: 2011 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.125411 – volume: 10 start-page: 2838 year: 2010 ident: ref32/cit32 publication-title: Nano Lett. doi: 10.1021/nl100865a – volume: 414 start-page: 359 year: 2001 ident: ref3/cit3 publication-title: Nature doi: 10.1038/35104644 – volume: 8 start-page: 902 year: 2008 ident: ref22/cit22 publication-title: Nano Lett. doi: 10.1021/nl0731872 – volume: 79 start-page: 094708 year: 2010 ident: ref48/cit48 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.79.094708 – volume: 8 start-page: 3582 year: 2008 ident: ref24/cit24 publication-title: Nano Lett. doi: 10.1021/nl801386m – volume: 70 start-page: 125422 year: 2004 ident: ref18/cit18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.125422 – volume: 93 start-page: 187202 year: 2004 ident: ref31/cit31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.187202 – volume: 93 start-page: 043123 year: 2008 ident: ref15/cit15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2963976 – volume: 75 start-page: 125425 year: 2007 ident: ref47/cit47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.125425 – volume: 54 start-page: 11169 year: 1996 ident: ref34/cit34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 104 start-page: 096804 year: 2010 ident: ref27/cit27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.096804 – volume: 36 start-page: 354 year: 2006 ident: ref50/cit50 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 5 start-page: 26 year: 2011 ident: ref23/cit23 publication-title: ACS Nano doi: 10.1021/nn102598m – volume: 5 start-page: 8739 year: 2011 ident: ref17/cit17 publication-title: ACS Nano doi: 10.1021/nn202710s – volume: 3 start-page: 907 year: 2009 ident: ref20/cit20 publication-title: ACS Nano doi: 10.1021/nn900150y – ident: ref1/cit1 – volume: 270 start-page: 590 year: 1995 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.270.5236.590 – volume: 1 start-page: 022103 year: 2011 ident: ref16/cit16 publication-title: AIP Adv. doi: 10.1063/1.3582814 – volume: 430 start-page: 870 year: 2004 ident: ref25/cit25 publication-title: Nature doi: 10.1038/nature02817 – volume: 13 start-page: 5188 year: 1976 ident: ref37/cit37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 77 start-page: 3865 year: 1996 ident: ref36/cit36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 5 start-page: 326 year: 2010 ident: ref28/cit28 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.53 – volume: 45 start-page: 121 year: 1999 ident: ref5/cit5 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(99)00198-X – volume: 96 start-page: 046806 year: 2006 ident: ref30/cit30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.046806 – volume: 128 start-page: 501 year: 1986 ident: ref38/cit38 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(86)80661-3 – volume: 80 start-page: 033407 year: 2009 ident: ref44/cit44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.033407 – volume: 133 start-page: 20914 year: 2011 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208232h – volume: 77 start-page: 235430 year: 2008 ident: ref41/cit41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.235430 – volume: 327 start-page: 69 year: 2000 ident: ref7/cit7 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00851-4 – volume: 88 start-page: 075506 year: 2002 ident: ref9/cit9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.075506 – volume: 3 start-page: 31 year: 2008 ident: ref11/cit11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.411 – volume: 85 start-page: 121402 year: 2012 ident: ref29/cit29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.121402 |
SSID | ssj0053013 |
Score | 2.5343804 |
Snippet | To understand the effect of point defects on the Li adsorption on graphene, we have studied the adsorption and diffusion of lithium on graphene with divacancy... |
SourceID | pascalfrancis crossref acs |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 21780 |
SubjectTerms | Condensed matter: electronic structure, electrical, magnetic, and optical properties Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Physics Thin films and multilayers |
Title | First-Principles Study of Lithium Adsorption and Diffusion on Graphene with Point Defects |
URI | http://dx.doi.org/10.1021/jp304861d |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF5qPSiIb7E-yqIevKSmu5vXsbTWIioFLdRTye5mMT6S0iQH_fXOJk1psSoEcpnAMrs7880j3yB0YSmqdIHLUC4nBiNcGK7UdHfgragriGPmUyLuH-zegN0OrWEFnf9SwSfNq9cx1bRwTbmCVokNl1fjn_ZjaW4tOKG0KB0DVGTMKemD5j_VrkckC65nY-wnoAVVjK-Y8yndLdQp_8wpWkneGlnKG-LrJ1HjX8vdRptTTIlbxSHYQZUg2kVr7XKU2x567oYA8ox-mVhPsG4f_MSxwndh-hJmH7glk3iSmw_sRxJ3QqUynUjD8NxoUmuwiVgnbXE_DqMUd4K8D2QfDbrXT-2eMZ2pYPgQWqUG8U3BTWVZgdDM9RLwmCuoG7ieEFTCZXQ8yU3qCV8wmyr9UpIJypQD4MFi9ABVozgKDhEOKAN05SnT8SHMCIhHbOVwsAea6YgrWUN1UPpoeieSUV7uJhBulBqqoctyP0ZiykiuB2O8LxM9m4mOCxqOZUL1hU2dSRJbUw4x6-i_FR2jdQBERPumpnuCqukkC04BdKS8nh-6b6Wm0AA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT8IwEG8UHzAxfhvxAxvjgy_D0XZseyQgogIhERJ8Ilu7xvmxETYe9K_3ug8EQ6LJkr3clkt7vfu1d_0dQleGpFIluDRpuURjxOWaJRTdHUQranFi6kmXiG6v1h6yh5Exymhy1F0YUCKCP0VJEv-HXaB68zqhih2uKtbRBoAQoqy53njKva4BhkrTDDIgRsbMnEVo8VMVgXi0FIG2Jk4EgyHTLhYLoaW1k_YoSpRKKkreKrPYrfCvX3yN_9N6F21nCBPXU5PYQ2tesI-Kjbyx2wF6bvkA-bR-fsweYVVM-IlDiTt-_OLPPnBdROE0cSbYCQRu-lLO1LEahudOUVyDh8TqCBf3Qz-IcdNLqkIO0bB1O2i0tazDgubARivWiKNzV5eG4XHFYy8AnVmcWp5lc04FLE3TFq5Obe5wVqNSvaRgnDJpApQwGD1ChSAMvGOEPcoAa9lSNx3YdHjEJjVpuuAdFO-RK0UJlWGAxtkKicZJ8pvA5iMfoRK6zqdlzDN-ctUm432V6OVcdJKScqwSKi_N7VyS1BQBETNO_tLoAhXbg25n3LnvPZ6iTYBKREWtqnWGCvF05p0DHIndcmKH32j62GE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60ggriW3zWRTx4SU13N69jaa1vLWihnkqym8X4SEqTHvTXO5MmxYqgEMhlEobd2Zlvdna_IeTY0lxjgcvQbsAMwQJpuArp7iBacVcyx8y7RNze2RddcdWzekWiiHdhQIkU_pTmRXxc1QOlC4aB-unLgCNDXF3Nkjks16FFN5oPpee1wFj5uIoMqFEIp2QS-v4pRiGZTkWhpYGfwoDocSeLb-GlvULuJ4rlp0pea6MsqMnPH5yN_9d8lSwXSJM2xqaxRmbCeJ0sNMsGbxvkqR0B9DM65XZ7SvFQ4QdNNL2Jsudo9E4bKk2GuVOhfqxoK9J6hNtrFJ5zpLoGT0lxK5d2kijOaCvMT4dskm777LF5YRSdFgwfEq7MYL4pA1NbViiRz14BSnMld0PXk5IrWKKOpwKTe9KXwuYaX1oJyYV2AFJYgm-RSpzE4TahIReAuTxtOj4kHyHzmK2dALwE8h8FWu2QKgxSv1gpaT8vgjNIQsoR2iEn5dT0ZcFTju0y3n4TPZqIDsbkHL8JVafmdyLJbCQiEtbuXxodkvlOq92_uby73iOLgJgYBq-6u08q2XAUHgAqyYJqbopflIDa5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First-Principles+Study+of+Lithium+Adsorption+and+Diffusion+on+Graphene+with+Point+Defects&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=ZHOU%2C+Liu-Jiang&rft.au=HOU%2C+Z.+F&rft.au=WU%2C+Li-Ming&rft.date=2012-10-18&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.volume=116&rft.issue=41&rft.spage=21780&rft.epage=21787&rft_id=info:doi/10.1021%2Fjp304861d&rft.externalDBID=n%2Fa&rft.externalDocID=26544545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |