Multiphysics Modeling Framework to Predict Process-Microstructure-Property Relationship in Fusion-Based Metal Additive Manufacturing

Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over conventional manufacturing processes. Driven by the growing needs of diverse industrial sectors, this technology has seen significant advances on bo...

Full description

Saved in:
Bibliographic Details
Published inAccounts of materials research Vol. 5; no. 1; pp. 10 - 21
Main Authors Tan, Wenda, Spear, Ashley
Format Journal Article
LanguageEnglish
Published ShanghaiTech University and American Chemical Society 26.01.2024
Online AccessGet full text
ISSN2643-6728
2643-6728
DOI10.1021/accountsmr.3c00108

Cover

Abstract Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over conventional manufacturing processes. Driven by the growing needs of diverse industrial sectors, this technology has seen significant advances on both scientific and engineering fronts. Fusion-based processes are the mainstream techniques for AM of metallic materials. As the metals go through melting and solidification during the printing processes, the final microstructure and hence the properties of the printed components are highly sensitive to the printing conditions and can be very different from those of the feedstock. It is critical to understand the process-microstructure-property relationship for the accelerated optimization of the processing conditions and certification of the printed components. While experimentation has been used widely to acquire a mechanistic understanding of this subject matter, numerical modeling has become increasingly helpful in achieving the same purpose. In this Account, the authors review their ongoing collaborative effort to establish a multiphysics modeling framework to predict the process-microstructure-property relationship in fusion-based metal AM processes. The framework includes three individual modules to simulate the dominating physics that dictate the process dynamics and microstructure evolution during printing as well as the responses of the printed microstructure to specific mechanical loadings. The process model uses the material properties and processing conditions as the inputs and simulates the laser-material interaction, multiphase thermo-fluid flow, and fluid-driven powder motion. It has successfully revealed the physical causes of depression zone shape variation as well as powder motion during the laser powder bed fusion process. The microstructure model uses the thermal history of the printing process and the material chemistry as the inputs and predicts the nucleation and growth of multiple grains in the multipass and multilayer printing processes. It has been used to understand the effects of inoculation and thermal conditions on grain texture evolution. The property models use microstructure data from simulations, experimental measurements, or statistical analyses as the inputs and leverage various computational tools to predict the mechanical response of the AM materials. These models have been used to quantitatively evaluate the effects of grain structure, residual strain, and pore and void defects on their properties and performance. While this and many other modeling works have significantly grown our collective knowledge of the process-microstructure-property relationship in fusion-based metal AM processes, efforts should be further invested in developing advanced theories and algorithms for the governing physics, leveraging data-driven approaches, accelerating simulation speed, and calibrating/validating models with controlled experimental measurements, among other aspects.
AbstractList Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over conventional manufacturing processes. Driven by the growing needs of diverse industrial sectors, this technology has seen significant advances on both scientific and engineering fronts. Fusion-based processes are the mainstream techniques for AM of metallic materials. As the metals go through melting and solidification during the printing processes, the final microstructure and hence the properties of the printed components are highly sensitive to the printing conditions and can be very different from those of the feedstock. It is critical to understand the process-microstructure-property relationship for the accelerated optimization of the processing conditions and certification of the printed components. While experimentation has been used widely to acquire a mechanistic understanding of this subject matter, numerical modeling has become increasingly helpful in achieving the same purpose. In this Account, the authors review their ongoing collaborative effort to establish a multiphysics modeling framework to predict the process-microstructure-property relationship in fusion-based metal AM processes. The framework includes three individual modules to simulate the dominating physics that dictate the process dynamics and microstructure evolution during printing as well as the responses of the printed microstructure to specific mechanical loadings. The process model uses the material properties and processing conditions as the inputs and simulates the laser-material interaction, multiphase thermo-fluid flow, and fluid-driven powder motion. It has successfully revealed the physical causes of depression zone shape variation as well as powder motion during the laser powder bed fusion process. The microstructure model uses the thermal history of the printing process and the material chemistry as the inputs and predicts the nucleation and growth of multiple grains in the multipass and multilayer printing processes. It has been used to understand the effects of inoculation and thermal conditions on grain texture evolution. The property models use microstructure data from simulations, experimental measurements, or statistical analyses as the inputs and leverage various computational tools to predict the mechanical response of the AM materials. These models have been used to quantitatively evaluate the effects of grain structure, residual strain, and pore and void defects on their properties and performance. While this and many other modeling works have significantly grown our collective knowledge of the process-microstructure-property relationship in fusion-based metal AM processes, efforts should be further invested in developing advanced theories and algorithms for the governing physics, leveraging data-driven approaches, accelerating simulation speed, and calibrating/validating models with controlled experimental measurements, among other aspects.
Author Spear, Ashley
Tan, Wenda
AuthorAffiliation University of Michigan
Department of Mechanical Engineering
AuthorAffiliation_xml – name: University of Michigan
– name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Wenda
  orcidid: 0000-0002-5093-4990
  surname: Tan
  fullname: Tan, Wenda
  email: wendatan@umich.edu
  organization: University of Michigan
– sequence: 2
  givenname: Ashley
  surname: Spear
  fullname: Spear, Ashley
  email: ashley.spear@utah.edu
  organization: Department of Mechanical Engineering
BookMark eNp9kM1OAjEUhRuDiYi8gKu-wGDbYf6WSERMmGiMried9laKQztpOxr2PriDkGhcsLo_yXfuPecSDYw1gNA1JRNKGL3hQtjOBL91k1gQQkl-hoYsncZRmrF88Ke_QGPvN4QQltCYJNkQfZVdE3S73nktPC6thEabN7xwfAuf1r3jYPGTA6lF6KsV4H1UauGsD64ToXMQ9esWXNjhZ2h40Nb4tW6xNnjR-X6KbrkHiUsIvMEzKXXQH4BLbjrF9wL9uSt0rnjjYXysI_S6uHuZL6PV4_3DfLaKOMvTEIkC8pQoASqmwKccaC3SjCvGKCRTFdeSZLXMiixnOcQ1ZTVVsk5JnYisKNIkHiF20N3_7x2oqnV6y92uoqTaR1n9Rlkdo-yh_B8kdPjxGRzXzWl0ckC58NXGds707k4B35JKlB8
CitedBy_id crossref_primary_10_1007_s00170_024_14156_9
crossref_primary_10_1016_j_optlastec_2024_111700
crossref_primary_10_1115_1_4066575
crossref_primary_10_1016_j_jmapro_2024_11_066
Cites_doi 10.1103/PhysRevApplied.11.064054
10.1016/j.matdes.2019.108084
10.1186/2193-9772-3-5
10.1007/s10704-019-00361-1
10.1016/j.pmatsci.2020.100703
10.1016/j.ijplas.2011.12.005
10.1146/annurev-conmatphys-031113-133846
10.1016/j.addma.2019.02.020
10.1016/j.cossms.2016.12.001
10.1007/s10704-020-00463-1
10.1088/0022-3727/46/5/055501
10.1007/s40192-021-00212-9
10.1016/j.addma.2021.102278
10.1016/j.ijmachtools.2021.103797
10.1088/1361-651X/aca2c9
10.1016/j.actamat.2021.117464
10.1016/j.commatsci.2020.109599
10.1177/0309324711405761
10.1088/1361-651X/aaf753
10.1146/annurev-matsci-070115-032158
10.1002/amp2.10021
10.1063/1.2400017
10.1016/j.matdes.2019.108385
10.1016/0001-6160(86)90056-8
10.1007/s11837-011-0116-0
10.1016/j.scriptamat.2017.01.025
10.1038/nature23894
10.1016/j.commatsci.2018.06.019
10.1098/rspa.1957.0133
10.1002/adem.201700102
10.1007/s40192-021-00211-w
10.1016/j.addma.2020.101362
10.1007/s10704-019-00366-w
10.1088/2515-7639/abca7b
10.1016/j.actamat.2018.05.036
10.1088/0022-3727/47/34/345501
10.1007/s11837-019-03913-x
10.1016/j.matdes.2017.11.021
10.1126/science.aav4687
10.1007/s40192-021-00218-3
ContentType Journal Article
Copyright 2024 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved.
Copyright_xml – notice: 2024 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved.
DBID AAYXX
CITATION
DOI 10.1021/accountsmr.3c00108
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2643-6728
EndPage 21
ExternalDocumentID 10_1021_accountsmr_3c00108
c398481039
GroupedDBID ABQRX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a286t-c9e860fcef31ea4ae1bc67af221e54f3bd07bd797828e3b12b1fdb60b5c799653
IEDL.DBID ACS
ISSN 2643-6728
IngestDate Thu Apr 24 22:54:45 EDT 2025
Tue Jul 01 04:21:15 EDT 2025
Mon Jan 29 05:12:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a286t-c9e860fcef31ea4ae1bc67af221e54f3bd07bd797828e3b12b1fdb60b5c799653
ORCID 0000-0002-5093-4990
PageCount 12
ParticipantIDs crossref_primary_10_1021_accountsmr_3c00108
crossref_citationtrail_10_1021_accountsmr_3c00108
acs_journals_10_1021_accountsmr_3c00108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-26
PublicationDateYYYYMMDD 2024-01-26
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-26
  day: 26
PublicationDecade 2020
PublicationTitle Accounts of materials research
PublicationTitleAlternate Acc. Mater. Res
PublicationYear 2024
Publisher ShanghaiTech University and American Chemical Society
Publisher_xml – name: ShanghaiTech University and American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
Pokharel R. (ref29/cit29) 2018
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1103/PhysRevApplied.11.064054
– ident: ref18/cit18
  doi: 10.1016/j.matdes.2019.108084
– ident: ref32/cit32
  doi: 10.1186/2193-9772-3-5
– ident: ref37/cit37
  doi: 10.1007/s10704-019-00361-1
– ident: ref2/cit2
  doi: 10.1016/j.pmatsci.2020.100703
– ident: ref21/cit21
  doi: 10.1016/j.ijplas.2011.12.005
– ident: ref14/cit14
  doi: 10.1146/annurev-conmatphys-031113-133846
– ident: ref22/cit22
  doi: 10.1016/j.addma.2019.02.020
– ident: ref15/cit15
  doi: 10.1016/j.cossms.2016.12.001
– ident: ref35/cit35
  doi: 10.1007/s10704-020-00463-1
– ident: ref4/cit4
  doi: 10.1088/0022-3727/46/5/055501
– ident: ref24/cit24
  doi: 10.1007/s40192-021-00212-9
– ident: ref3/cit3
  doi: 10.1016/j.addma.2021.102278
– ident: ref8/cit8
  doi: 10.1016/j.ijmachtools.2021.103797
– ident: ref10/cit10
  doi: 10.1088/1361-651X/aca2c9
– ident: ref39/cit39
  doi: 10.1016/j.actamat.2021.117464
– ident: ref40/cit40
  doi: 10.1016/j.commatsci.2020.109599
– ident: ref27/cit27
  doi: 10.1177/0309324711405761
– ident: ref20/cit20
  doi: 10.1088/1361-651X/aaf753
– ident: ref1/cit1
  doi: 10.1146/annurev-matsci-070115-032158
– ident: ref33/cit33
  doi: 10.1002/amp2.10021
– ident: ref26/cit26
  doi: 10.1063/1.2400017
– ident: ref34/cit34
  doi: 10.1016/j.matdes.2019.108385
– ident: ref12/cit12
  doi: 10.1016/0001-6160(86)90056-8
– ident: ref28/cit28
  doi: 10.1007/s11837-011-0116-0
– ident: ref30/cit30
  doi: 10.1016/j.scriptamat.2017.01.025
– ident: ref13/cit13
  doi: 10.1038/nature23894
– ident: ref11/cit11
  doi: 10.1016/j.commatsci.2018.06.019
– start-page: 167
  volume-title: Materials Discovery and Design: By Means of Data Science and Optimal Learning
  year: 2018
  ident: ref29/cit29
– ident: ref31/cit31
  doi: 10.1098/rspa.1957.0133
– ident: ref36/cit36
  doi: 10.1002/adem.201700102
– ident: ref23/cit23
  doi: 10.1007/s40192-021-00211-w
– ident: ref7/cit7
  doi: 10.1016/j.addma.2020.101362
– ident: ref38/cit38
  doi: 10.1007/s10704-019-00366-w
– ident: ref41/cit41
  doi: 10.1088/2515-7639/abca7b
– ident: ref19/cit19
  doi: 10.1016/j.actamat.2018.05.036
– ident: ref5/cit5
  doi: 10.1088/0022-3727/47/34/345501
– ident: ref17/cit17
  doi: 10.1007/s11837-019-03913-x
– ident: ref16/cit16
  doi: 10.1016/j.matdes.2017.11.021
– ident: ref9/cit9
  doi: 10.1126/science.aav4687
– ident: ref25/cit25
  doi: 10.1007/s40192-021-00218-3
SSID ssj0002513057
Score 2.2850525
Snippet Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 10
Title Multiphysics Modeling Framework to Predict Process-Microstructure-Property Relationship in Fusion-Based Metal Additive Manufacturing
URI http://dx.doi.org/10.1021/accountsmr.3c00108
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86L3rwW5xf5CB40Mw2bdPuqOIQoSKo4K3kJS841G5s3UHP_uEmbTcH6ti9KY-8F97n7_cIOQZrRm2FbYaizVno-D4BFDBuUIeR4dxTrqOb3ombp_D2OXpeIGf_dPC5fy6rrQnD90ErUC6FSRbJEhfWzlwgdPUwqahYT22N1-GjrZMPmIh5UqNk_v6N80dqOOWPphxLZ42kY3hONU_y2hoV0FKfv9ka55J5nazWESa9qExigyxgvklWpngHt8hXCbutihpD6tahOVA67YwHtWjRo_cD18IpaI0kYKmb3KvYZkcDZPeuiD8oPuhkmu6l26fdnHZGrv7GLq131DTFwomidTmhRFOZjxySooRGbpOnzvXj1Q2r1zEwyRNRMNXGRHhGoQl8lKFEH5SIpdWnj1FoAtBeDDq2aSlPMACfg280CA8iFdusKgp2SCPv5bhLaKwMhCY2EhIIpQ4SrjHAGDyEhEtQTXJiVZPVz2mYlZ1y7mc_95rV99ok_lh9mapZzd1yjbeZZ04nZ_oVp8eMr_fmlmWfLHMb8rgCDRcHpGFVgoc2ZCngqLTUbwjs7wE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEG58HNTDrk903dU-CB6kx6TznKPKDuMjIjiCt9DVXY2iRplkDnreH75dSRwHEdF7uimqK9Tz-4qxHXBm1NXYFRh3pQiJ7xNAg5AWTRhZKT1NHd3sPO5fhSfX0XWL4yYsjBOidDeVdRP_jV3A31fN8oTyYdgJNGUy6TSbddGIpH0NB0eX48KKc9jOhgkm7Xx9IOJEpi1Y5uNryC3pcsItTfiX3k82GEtWj5XcdUYVdPTLO9LGb4q-yH608SY_aAxkiU1hscwWJlgIV9i_GoTblDhKTsvRCKLOe69jW7x65BdDauhUvMUViIzm-Bru2dEQxQWV9IfVMx_P1t3cPvHbgvdGVI0Th85XGp5hRaIYU88r8UwVI8JV1EDJVXbV-zs46ot2OYNQMo0robuYxp7VaAMfVajQBx0nyr2uj1FoAzBeAiZxSapMMQBfgm8NxB5EOnE5VhSssZniscB1xhNtIbSJVZBCqEyQSoMBJuAhpFKB3mC7Tq15-3OVed03l37-pte81esG819fMdctxzmt2rj_9Mze-MxTw_Dxyde_vizLNpvrD7Kz_Oz4_HSTzUsXDFHpRsa_2Yx7HvzjgpkKtmrj_Q-kUPdi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA5eoOiD1bbipdU8CH0o2c5krvuo1sHbykIr7NuQk5yg2I7LzuyDPveHN2cmbpdSRHxPwiE54Vy_7zB2AE6N-hr7AtO-FDHxfQJoENKiiRMrZaCpoju4Sk-v4_NRMvKpC8LCOCFqd1LdFvHpV4-N9QwD4VfVDVCof016kaZoJl9ky1S3o5kNh8ffZ8kVZ7SdHhNU2tn7SKSZzD1g5v_HkGnS9ZxpmrMxxVs2mknXtpbc9aYN9PTjP8SNrxB_na15v5MfdoqywRawesdW59gI37PfLRi3S3XUnIakEVSdF0_tW7y558MJFXYa7vEFYkD9fB0H7XSCYkip_UnzwGc9dje3Y35b8WJKWTlx5Gym4QNsSBRj2r4lPlDVlPAVLWDyA7suTn4cnwo_pEEomaeN0H3M08BqtFGIKlYYgk4z5V45xCS2EZggA5O5YFXmGEEoIbQG0gASnblYK4k22VJ1X-EW45m2ENvMKsghVibKpcEIMwgQcqlAb7PP7mpL_8nqsq2fy7D8e6-lv9dtFj69ZKk91zmN3Pj57J4vsz3jjunjmdU7L5Zln70ZfivKy7Ori122Ip1PRBkcmX5kS-518JPzaRrYa_X3D20m-eU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiphysics+Modeling+Framework+to+Predict+Process-Microstructure-Property+Relationship+in+Fusion-Based+Metal+Additive+Manufacturing&rft.jtitle=Accounts+of+materials+research&rft.au=Tan%2C+Wenda&rft.au=Spear%2C+Ashley&rft.date=2024-01-26&rft.issn=2643-6728&rft.eissn=2643-6728&rft.volume=5&rft.issue=1&rft.spage=10&rft.epage=21&rft_id=info:doi/10.1021%2Faccountsmr.3c00108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_accountsmr_3c00108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-6728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-6728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-6728&client=summon