Multiphysics Modeling Framework to Predict Process-Microstructure-Property Relationship in Fusion-Based Metal Additive Manufacturing
Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over conventional manufacturing processes. Driven by the growing needs of diverse industrial sectors, this technology has seen significant advances on bo...
Saved in:
Published in | Accounts of materials research Vol. 5; no. 1; pp. 10 - 21 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
ShanghaiTech University and American Chemical Society
26.01.2024
|
Online Access | Get full text |
ISSN | 2643-6728 2643-6728 |
DOI | 10.1021/accountsmr.3c00108 |
Cover
Abstract | Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over conventional manufacturing processes. Driven by the growing needs of diverse industrial sectors, this technology has seen significant advances on both scientific and engineering fronts. Fusion-based processes are the mainstream techniques for AM of metallic materials. As the metals go through melting and solidification during the printing processes, the final microstructure and hence the properties of the printed components are highly sensitive to the printing conditions and can be very different from those of the feedstock. It is critical to understand the process-microstructure-property relationship for the accelerated optimization of the processing conditions and certification of the printed components. While experimentation has been used widely to acquire a mechanistic understanding of this subject matter, numerical modeling has become increasingly helpful in achieving the same purpose. In this Account, the authors review their ongoing collaborative effort to establish a multiphysics modeling framework to predict the process-microstructure-property relationship in fusion-based metal AM processes. The framework includes three individual modules to simulate the dominating physics that dictate the process dynamics and microstructure evolution during printing as well as the responses of the printed microstructure to specific mechanical loadings. The process model uses the material properties and processing conditions as the inputs and simulates the laser-material interaction, multiphase thermo-fluid flow, and fluid-driven powder motion. It has successfully revealed the physical causes of depression zone shape variation as well as powder motion during the laser powder bed fusion process. The microstructure model uses the thermal history of the printing process and the material chemistry as the inputs and predicts the nucleation and growth of multiple grains in the multipass and multilayer printing processes. It has been used to understand the effects of inoculation and thermal conditions on grain texture evolution. The property models use microstructure data from simulations, experimental measurements, or statistical analyses as the inputs and leverage various computational tools to predict the mechanical response of the AM materials. These models have been used to quantitatively evaluate the effects of grain structure, residual strain, and pore and void defects on their properties and performance. While this and many other modeling works have significantly grown our collective knowledge of the process-microstructure-property relationship in fusion-based metal AM processes, efforts should be further invested in developing advanced theories and algorithms for the governing physics, leveraging data-driven approaches, accelerating simulation speed, and calibrating/validating models with controlled experimental measurements, among other aspects. |
---|---|
AbstractList | Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over conventional manufacturing processes. Driven by the growing needs of diverse industrial sectors, this technology has seen significant advances on both scientific and engineering fronts. Fusion-based processes are the mainstream techniques for AM of metallic materials. As the metals go through melting and solidification during the printing processes, the final microstructure and hence the properties of the printed components are highly sensitive to the printing conditions and can be very different from those of the feedstock. It is critical to understand the process-microstructure-property relationship for the accelerated optimization of the processing conditions and certification of the printed components. While experimentation has been used widely to acquire a mechanistic understanding of this subject matter, numerical modeling has become increasingly helpful in achieving the same purpose. In this Account, the authors review their ongoing collaborative effort to establish a multiphysics modeling framework to predict the process-microstructure-property relationship in fusion-based metal AM processes. The framework includes three individual modules to simulate the dominating physics that dictate the process dynamics and microstructure evolution during printing as well as the responses of the printed microstructure to specific mechanical loadings. The process model uses the material properties and processing conditions as the inputs and simulates the laser-material interaction, multiphase thermo-fluid flow, and fluid-driven powder motion. It has successfully revealed the physical causes of depression zone shape variation as well as powder motion during the laser powder bed fusion process. The microstructure model uses the thermal history of the printing process and the material chemistry as the inputs and predicts the nucleation and growth of multiple grains in the multipass and multilayer printing processes. It has been used to understand the effects of inoculation and thermal conditions on grain texture evolution. The property models use microstructure data from simulations, experimental measurements, or statistical analyses as the inputs and leverage various computational tools to predict the mechanical response of the AM materials. These models have been used to quantitatively evaluate the effects of grain structure, residual strain, and pore and void defects on their properties and performance. While this and many other modeling works have significantly grown our collective knowledge of the process-microstructure-property relationship in fusion-based metal AM processes, efforts should be further invested in developing advanced theories and algorithms for the governing physics, leveraging data-driven approaches, accelerating simulation speed, and calibrating/validating models with controlled experimental measurements, among other aspects. |
Author | Spear, Ashley Tan, Wenda |
AuthorAffiliation | University of Michigan Department of Mechanical Engineering |
AuthorAffiliation_xml | – name: University of Michigan – name: Department of Mechanical Engineering |
Author_xml | – sequence: 1 givenname: Wenda orcidid: 0000-0002-5093-4990 surname: Tan fullname: Tan, Wenda email: wendatan@umich.edu organization: University of Michigan – sequence: 2 givenname: Ashley surname: Spear fullname: Spear, Ashley email: ashley.spear@utah.edu organization: Department of Mechanical Engineering |
BookMark | eNp9kM1OAjEUhRuDiYi8gKu-wGDbYf6WSERMmGiMried9laKQztpOxr2PriDkGhcsLo_yXfuPecSDYw1gNA1JRNKGL3hQtjOBL91k1gQQkl-hoYsncZRmrF88Ke_QGPvN4QQltCYJNkQfZVdE3S73nktPC6thEabN7xwfAuf1r3jYPGTA6lF6KsV4H1UauGsD64ToXMQ9esWXNjhZ2h40Nb4tW6xNnjR-X6KbrkHiUsIvMEzKXXQH4BLbjrF9wL9uSt0rnjjYXysI_S6uHuZL6PV4_3DfLaKOMvTEIkC8pQoASqmwKccaC3SjCvGKCRTFdeSZLXMiixnOcQ1ZTVVsk5JnYisKNIkHiF20N3_7x2oqnV6y92uoqTaR1n9Rlkdo-yh_B8kdPjxGRzXzWl0ckC58NXGds707k4B35JKlB8 |
CitedBy_id | crossref_primary_10_1007_s00170_024_14156_9 crossref_primary_10_1016_j_optlastec_2024_111700 crossref_primary_10_1115_1_4066575 crossref_primary_10_1016_j_jmapro_2024_11_066 |
Cites_doi | 10.1103/PhysRevApplied.11.064054 10.1016/j.matdes.2019.108084 10.1186/2193-9772-3-5 10.1007/s10704-019-00361-1 10.1016/j.pmatsci.2020.100703 10.1016/j.ijplas.2011.12.005 10.1146/annurev-conmatphys-031113-133846 10.1016/j.addma.2019.02.020 10.1016/j.cossms.2016.12.001 10.1007/s10704-020-00463-1 10.1088/0022-3727/46/5/055501 10.1007/s40192-021-00212-9 10.1016/j.addma.2021.102278 10.1016/j.ijmachtools.2021.103797 10.1088/1361-651X/aca2c9 10.1016/j.actamat.2021.117464 10.1016/j.commatsci.2020.109599 10.1177/0309324711405761 10.1088/1361-651X/aaf753 10.1146/annurev-matsci-070115-032158 10.1002/amp2.10021 10.1063/1.2400017 10.1016/j.matdes.2019.108385 10.1016/0001-6160(86)90056-8 10.1007/s11837-011-0116-0 10.1016/j.scriptamat.2017.01.025 10.1038/nature23894 10.1016/j.commatsci.2018.06.019 10.1098/rspa.1957.0133 10.1002/adem.201700102 10.1007/s40192-021-00211-w 10.1016/j.addma.2020.101362 10.1007/s10704-019-00366-w 10.1088/2515-7639/abca7b 10.1016/j.actamat.2018.05.036 10.1088/0022-3727/47/34/345501 10.1007/s11837-019-03913-x 10.1016/j.matdes.2017.11.021 10.1126/science.aav4687 10.1007/s40192-021-00218-3 |
ContentType | Journal Article |
Copyright | 2024 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved. |
Copyright_xml | – notice: 2024 Accounts of Materials Research. Co-published by ShanghaiTech University and American Chemical Society. All rights reserved. |
DBID | AAYXX CITATION |
DOI | 10.1021/accountsmr.3c00108 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2643-6728 |
EndPage | 21 |
ExternalDocumentID | 10_1021_accountsmr_3c00108 c398481039 |
GroupedDBID | ABQRX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a286t-c9e860fcef31ea4ae1bc67af221e54f3bd07bd797828e3b12b1fdb60b5c799653 |
IEDL.DBID | ACS |
ISSN | 2643-6728 |
IngestDate | Thu Apr 24 22:54:45 EDT 2025 Tue Jul 01 04:21:15 EDT 2025 Mon Jan 29 05:12:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a286t-c9e860fcef31ea4ae1bc67af221e54f3bd07bd797828e3b12b1fdb60b5c799653 |
ORCID | 0000-0002-5093-4990 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_accountsmr_3c00108 crossref_citationtrail_10_1021_accountsmr_3c00108 acs_journals_10_1021_accountsmr_3c00108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-26 |
PublicationDateYYYYMMDD | 2024-01-26 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Accounts of materials research |
PublicationTitleAlternate | Acc. Mater. Res |
PublicationYear | 2024 |
Publisher | ShanghaiTech University and American Chemical Society |
Publisher_xml | – name: ShanghaiTech University and American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 Pokharel R. (ref29/cit29) 2018 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1103/PhysRevApplied.11.064054 – ident: ref18/cit18 doi: 10.1016/j.matdes.2019.108084 – ident: ref32/cit32 doi: 10.1186/2193-9772-3-5 – ident: ref37/cit37 doi: 10.1007/s10704-019-00361-1 – ident: ref2/cit2 doi: 10.1016/j.pmatsci.2020.100703 – ident: ref21/cit21 doi: 10.1016/j.ijplas.2011.12.005 – ident: ref14/cit14 doi: 10.1146/annurev-conmatphys-031113-133846 – ident: ref22/cit22 doi: 10.1016/j.addma.2019.02.020 – ident: ref15/cit15 doi: 10.1016/j.cossms.2016.12.001 – ident: ref35/cit35 doi: 10.1007/s10704-020-00463-1 – ident: ref4/cit4 doi: 10.1088/0022-3727/46/5/055501 – ident: ref24/cit24 doi: 10.1007/s40192-021-00212-9 – ident: ref3/cit3 doi: 10.1016/j.addma.2021.102278 – ident: ref8/cit8 doi: 10.1016/j.ijmachtools.2021.103797 – ident: ref10/cit10 doi: 10.1088/1361-651X/aca2c9 – ident: ref39/cit39 doi: 10.1016/j.actamat.2021.117464 – ident: ref40/cit40 doi: 10.1016/j.commatsci.2020.109599 – ident: ref27/cit27 doi: 10.1177/0309324711405761 – ident: ref20/cit20 doi: 10.1088/1361-651X/aaf753 – ident: ref1/cit1 doi: 10.1146/annurev-matsci-070115-032158 – ident: ref33/cit33 doi: 10.1002/amp2.10021 – ident: ref26/cit26 doi: 10.1063/1.2400017 – ident: ref34/cit34 doi: 10.1016/j.matdes.2019.108385 – ident: ref12/cit12 doi: 10.1016/0001-6160(86)90056-8 – ident: ref28/cit28 doi: 10.1007/s11837-011-0116-0 – ident: ref30/cit30 doi: 10.1016/j.scriptamat.2017.01.025 – ident: ref13/cit13 doi: 10.1038/nature23894 – ident: ref11/cit11 doi: 10.1016/j.commatsci.2018.06.019 – start-page: 167 volume-title: Materials Discovery and Design: By Means of Data Science and Optimal Learning year: 2018 ident: ref29/cit29 – ident: ref31/cit31 doi: 10.1098/rspa.1957.0133 – ident: ref36/cit36 doi: 10.1002/adem.201700102 – ident: ref23/cit23 doi: 10.1007/s40192-021-00211-w – ident: ref7/cit7 doi: 10.1016/j.addma.2020.101362 – ident: ref38/cit38 doi: 10.1007/s10704-019-00366-w – ident: ref41/cit41 doi: 10.1088/2515-7639/abca7b – ident: ref19/cit19 doi: 10.1016/j.actamat.2018.05.036 – ident: ref5/cit5 doi: 10.1088/0022-3727/47/34/345501 – ident: ref17/cit17 doi: 10.1007/s11837-019-03913-x – ident: ref16/cit16 doi: 10.1016/j.matdes.2017.11.021 – ident: ref9/cit9 doi: 10.1126/science.aav4687 – ident: ref25/cit25 doi: 10.1007/s40192-021-00218-3 |
SSID | ssj0002513057 |
Score | 2.2850525 |
Snippet | Conspectus Additive Manufacturing (AM) technology produces three-dimensional components in a layer-by-layer fashion and offers numerous advantages over... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 10 |
Title | Multiphysics Modeling Framework to Predict Process-Microstructure-Property Relationship in Fusion-Based Metal Additive Manufacturing |
URI | http://dx.doi.org/10.1021/accountsmr.3c00108 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86L3rwW5xf5CB40Mw2bdPuqOIQoSKo4K3kJS841G5s3UHP_uEmbTcH6ti9KY-8F97n7_cIOQZrRm2FbYaizVno-D4BFDBuUIeR4dxTrqOb3ombp_D2OXpeIGf_dPC5fy6rrQnD90ErUC6FSRbJEhfWzlwgdPUwqahYT22N1-GjrZMPmIh5UqNk_v6N80dqOOWPphxLZ42kY3hONU_y2hoV0FKfv9ka55J5nazWESa9qExigyxgvklWpngHt8hXCbutihpD6tahOVA67YwHtWjRo_cD18IpaI0kYKmb3KvYZkcDZPeuiD8oPuhkmu6l26fdnHZGrv7GLq131DTFwomidTmhRFOZjxySooRGbpOnzvXj1Q2r1zEwyRNRMNXGRHhGoQl8lKFEH5SIpdWnj1FoAtBeDDq2aSlPMACfg280CA8iFdusKgp2SCPv5bhLaKwMhCY2EhIIpQ4SrjHAGDyEhEtQTXJiVZPVz2mYlZ1y7mc_95rV99ok_lh9mapZzd1yjbeZZ04nZ_oVp8eMr_fmlmWfLHMb8rgCDRcHpGFVgoc2ZCngqLTUbwjs7wE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEG58HNTDrk903dU-CB6kx6TznKPKDuMjIjiCt9DVXY2iRplkDnreH75dSRwHEdF7uimqK9Tz-4qxHXBm1NXYFRh3pQiJ7xNAg5AWTRhZKT1NHd3sPO5fhSfX0XWL4yYsjBOidDeVdRP_jV3A31fN8oTyYdgJNGUy6TSbddGIpH0NB0eX48KKc9jOhgkm7Xx9IOJEpi1Y5uNryC3pcsItTfiX3k82GEtWj5XcdUYVdPTLO9LGb4q-yH608SY_aAxkiU1hscwWJlgIV9i_GoTblDhKTsvRCKLOe69jW7x65BdDauhUvMUViIzm-Bru2dEQxQWV9IfVMx_P1t3cPvHbgvdGVI0Th85XGp5hRaIYU88r8UwVI8JV1EDJVXbV-zs46ot2OYNQMo0robuYxp7VaAMfVajQBx0nyr2uj1FoAzBeAiZxSapMMQBfgm8NxB5EOnE5VhSssZniscB1xhNtIbSJVZBCqEyQSoMBJuAhpFKB3mC7Tq15-3OVed03l37-pte81esG819fMdctxzmt2rj_9Mze-MxTw_Dxyde_vizLNpvrD7Kz_Oz4_HSTzUsXDFHpRsa_2Yx7HvzjgpkKtmrj_Q-kUPdi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA5eoOiD1bbipdU8CH0o2c5krvuo1sHbykIr7NuQk5yg2I7LzuyDPveHN2cmbpdSRHxPwiE54Vy_7zB2AE6N-hr7AtO-FDHxfQJoENKiiRMrZaCpoju4Sk-v4_NRMvKpC8LCOCFqd1LdFvHpV4-N9QwD4VfVDVCof016kaZoJl9ky1S3o5kNh8ffZ8kVZ7SdHhNU2tn7SKSZzD1g5v_HkGnS9ZxpmrMxxVs2mknXtpbc9aYN9PTjP8SNrxB_na15v5MfdoqywRawesdW59gI37PfLRi3S3XUnIakEVSdF0_tW7y558MJFXYa7vEFYkD9fB0H7XSCYkip_UnzwGc9dje3Y35b8WJKWTlx5Gym4QNsSBRj2r4lPlDVlPAVLWDyA7suTn4cnwo_pEEomaeN0H3M08BqtFGIKlYYgk4z5V45xCS2EZggA5O5YFXmGEEoIbQG0gASnblYK4k22VJ1X-EW45m2ENvMKsghVibKpcEIMwgQcqlAb7PP7mpL_8nqsq2fy7D8e6-lv9dtFj69ZKk91zmN3Pj57J4vsz3jjunjmdU7L5Zln70ZfivKy7Ori122Ip1PRBkcmX5kS-518JPzaRrYa_X3D20m-eU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiphysics+Modeling+Framework+to+Predict+Process-Microstructure-Property+Relationship+in+Fusion-Based+Metal+Additive+Manufacturing&rft.jtitle=Accounts+of+materials+research&rft.au=Tan%2C+Wenda&rft.au=Spear%2C+Ashley&rft.date=2024-01-26&rft.issn=2643-6728&rft.eissn=2643-6728&rft.volume=5&rft.issue=1&rft.spage=10&rft.epage=21&rft_id=info:doi/10.1021%2Faccountsmr.3c00108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_accountsmr_3c00108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-6728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-6728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-6728&client=summon |