Fuel Production Systems for Remote Areas via an Aluminum Energy Vector

Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is often significantly more expensive than the purchase price. Here it is shown that newly developed solid aluminum metal fuel is suited for remot...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 32; no. 9; pp. 9033 - 9042
Main Author Morgan, Eric R
Format Journal Article
LanguageEnglish
Published American Chemical Society 20.09.2018
Online AccessGet full text

Cover

Loading…
Abstract Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is often significantly more expensive than the purchase price. Here it is shown that newly developed solid aluminum metal fuel is suited for remote production of liquid diesel fuels. On a volumetric basis, aluminum has more than twice the energy of diesel fuel, making it a superb structural energy vector for remote applications. Once aluminum is treated with gallium, water of nearly any purity is used to rapidly oxidize the aluminum metal which spontaneously evolves hydrogen and heat in roughly equal energetic quantities. The benign byproduct of the reaction could, in theory, be taken to an off-site facility and recycled back into aluminum using standard smelting processes or it could be left on-site as a high-value waste. The hydrogen can easily be used as a feedstock for diesel fuel, via Fischer–Tropsch (FT) reaction mechanisms, while the heat can be leveraged for other processes, including synthesis gas compression. It is shown that as long as a carbon source, such as diesel fuel, is already present, additional diesel can be made by recovering and recycling the CO2 in the diesel exhaust. The amount of new diesel that can be made is directly related to the fraction of available CO2 that is recovered, with 100% recovery being equivalent to doubling the diesel fuel. The volume of aluminum required to accomplish this is lower than simply bringing twice as much diesel and results in a 50% increase in volumetric energy density. That is, 50% fewer fuel convoys would be required for fuel delivery. Moreover, aluminum has the potential to be exploited as a structural fuel that can be used as pallets, containers, etc., before being consumed to produce diesel. Furthermore, FT diesel production via aluminum and CO2 can be achieved without sacrificing electrical power generation.
AbstractList Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is often significantly more expensive than the purchase price. Here it is shown that newly developed solid aluminum metal fuel is suited for remote production of liquid diesel fuels. On a volumetric basis, aluminum has more than twice the energy of diesel fuel, making it a superb structural energy vector for remote applications. Once aluminum is treated with gallium, water of nearly any purity is used to rapidly oxidize the aluminum metal which spontaneously evolves hydrogen and heat in roughly equal energetic quantities. The benign byproduct of the reaction could, in theory, be taken to an off-site facility and recycled back into aluminum using standard smelting processes or it could be left on-site as a high-value waste. The hydrogen can easily be used as a feedstock for diesel fuel, via Fischer–Tropsch (FT) reaction mechanisms, while the heat can be leveraged for other processes, including synthesis gas compression. It is shown that as long as a carbon source, such as diesel fuel, is already present, additional diesel can be made by recovering and recycling the CO2 in the diesel exhaust. The amount of new diesel that can be made is directly related to the fraction of available CO2 that is recovered, with 100% recovery being equivalent to doubling the diesel fuel. The volume of aluminum required to accomplish this is lower than simply bringing twice as much diesel and results in a 50% increase in volumetric energy density. That is, 50% fewer fuel convoys would be required for fuel delivery. Moreover, aluminum has the potential to be exploited as a structural fuel that can be used as pallets, containers, etc., before being consumed to produce diesel. Furthermore, FT diesel production via aluminum and CO2 can be achieved without sacrificing electrical power generation.
Author Morgan, Eric R
Author_xml – sequence: 1
  givenname: Eric R
  orcidid: 0000-0002-2433-6874
  surname: Morgan
  fullname: Morgan, Eric R
  email: Eric.Morgan@ll.mit.edu
BookMark eNqFkMtOwzAQRS1UJNrCN-AfSLEdO3GXUdUCUiUQr200iccoVWIjO0HK35PSLtixupt7Zq7Ogsycd0jILWcrzgS_gzqu0GH4HO2AbVzpinGpxQWZcyVYophYz8icaZ0nLBPyiixiPDDGslSrOdntJog-B2-Gum-8o69j7LGL1PpAX7DzPdIiIET63QAFR4t26Bo3dHT7-5N-YN37cE0uLbQRb865JO-77dvmIdk_3T9uin0CQmd9kioN1tYAVSankZZJMNoYmaccZCVQohQGwGTGKG6V5dUas1zp3EgmdF2lS5Kf7tbBxxjQll-h6SCMJWflUUc56Sj_6CjPOiYyPZHHwsEPwU07_6V-ANFTbSY
Cites_doi 10.1093/oso/9780195071993.001.0001
10.1016/j.ijhydene.2012.05.012
10.1039/C4CS00122B
10.1016/S0926-860X(99)00160-X
10.2514/3.48127
10.1016/S0920-5861(01)00453-9
10.1016/j.ijhydene.2013.09.070
10.4271/650052
10.1016/j.energy.2012.09.012
10.1016/j.jallcom.2016.08.151
10.1016/j.ijhydene.2011.01.127
10.4271/650050
10.1002/9781118878330
10.1021/jp046196x
10.1016/j.ijhydene.2010.08.089
10.1021/jp710674q
10.1081/CR-100101170
10.1039/tf9696500561
10.4271/650051
10.1073/pnas.1012253108
10.5040/9798400614408
10.1103/PhysRevLett.82.4866
10.1016/j.ijhydene.2011.08.073
10.1002/jctb.527
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.energyfuels.8b01482
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 9042
ExternalDocumentID 10_1021_acs_energyfuels_8b01482
b865408707
GroupedDBID 02
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
5VS
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
ID FETCH-LOGICAL-a286t-358affcaab64148f04ad8dd4731a4b2e4e42daad6dd51f5f1b9e67587d4028cb3
IEDL.DBID ACS
ISSN 0887-0624
IngestDate Fri Aug 23 04:48:48 EDT 2024
Thu Aug 27 13:42:05 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a286t-358affcaab64148f04ad8dd4731a4b2e4e42daad6dd51f5f1b9e67587d4028cb3
ORCID 0000-0002-2433-6874
PageCount 10
ParticipantIDs crossref_primary_10_1021_acs_energyfuels_8b01482
acs_journals_10_1021_acs_energyfuels_8b01482
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-09-20
PublicationDateYYYYMMDD 2018-09-20
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-20
  day: 20
PublicationDecade 2010
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Bartis J. T. (ref24/cit24) 2011
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
Avery W. H. (ref10/cit10) 1994
Suid L. H. (ref26/cit26) 1990
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref7/cit7
References_xml – ident: ref9/cit9
– volume-title: Renewable Energy From The Ocean: A Guide To OTEC
  year: 1994
  ident: ref10/cit10
  doi: 10.1093/oso/9780195071993.001.0001
  contributor:
    fullname: Avery W. H.
– ident: ref14/cit14
– ident: ref22/cit22
  doi: 10.1016/j.ijhydene.2012.05.012
– ident: ref25/cit25
– ident: ref34/cit34
  doi: 10.1039/C4CS00122B
– volume-title: Alternative Fuels for Military Applications
  year: 2011
  ident: ref24/cit24
  contributor:
    fullname: Bartis J. T.
– ident: ref30/cit30
  doi: 10.1016/S0926-860X(99)00160-X
– ident: ref18/cit18
  doi: 10.2514/3.48127
– ident: ref32/cit32
  doi: 10.1016/S0920-5861(01)00453-9
– ident: ref23/cit23
  doi: 10.1016/j.ijhydene.2013.09.070
– ident: ref35/cit35
– ident: ref11/cit11
– ident: ref19/cit19
– ident: ref5/cit5
  doi: 10.4271/650052
– ident: ref27/cit27
  doi: 10.1016/j.energy.2012.09.012
– ident: ref1/cit1
– ident: ref4/cit4
  doi: 10.1016/j.jallcom.2016.08.151
– ident: ref8/cit8
– ident: ref2/cit2
  doi: 10.1016/j.ijhydene.2011.01.127
– ident: ref3/cit3
– ident: ref7/cit7
  doi: 10.4271/650050
– ident: ref29/cit29
– ident: ref37/cit37
  doi: 10.1002/9781118878330
– ident: ref13/cit13
  doi: 10.1021/jp046196x
– ident: ref20/cit20
  doi: 10.1016/j.ijhydene.2010.08.089
– ident: ref31/cit31
  doi: 10.1021/jp710674q
– ident: ref16/cit16
– ident: ref36/cit36
  doi: 10.1081/CR-100101170
– ident: ref15/cit15
– ident: ref17/cit17
  doi: 10.1039/tf9696500561
– ident: ref6/cit6
  doi: 10.4271/650051
– ident: ref28/cit28
  doi: 10.1073/pnas.1012253108
– volume-title: The Army’s Nuclear Power Program: The Evolution of a Support Agency
  year: 1990
  ident: ref26/cit26
  doi: 10.5040/9798400614408
  contributor:
    fullname: Suid L. H.
– ident: ref12/cit12
  doi: 10.1103/PhysRevLett.82.4866
– ident: ref21/cit21
  doi: 10.1016/j.ijhydene.2011.08.073
– ident: ref33/cit33
  doi: 10.1002/jctb.527
SSID ssj0006385
Score 2.2917142
Snippet Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 9033
Title Fuel Production Systems for Remote Areas via an Aluminum Energy Vector
URI http://dx.doi.org/10.1021/acs.energyfuels.8b01482
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7LelAPPlbF9UUOHm1t07TNHpdlyyIosrqytzJNUljEKrb14K930ocUZFGvgU7CzGQenZkvhFyCGoEcOdoCx1UWN5VCQK9hCU_40glT4aVm3vn2Lpgt-M3SX_aIu6aCz9xrkLmtqzm4tER3YYvE_ARDq7vBTB-hiYYmD9_GF9XJb8E9nYDxtqVrPSHjlmTecUsd_xLtknk7pVO3lTzbZZHY8vMnaOPfj75Hdppok45r9dgnPZ0NyOakfeRtQLY7eIQHJIqQAL2vQWBRYLTBM6cY2dK5RqlqpKUhpx8roJDRMZq2VVa-0Gm1P32qagCHZBFNHyczq3lowQImgsLyfAFpKgGSgOMBU4eDEkrx0HOBJ0xzzZkCUIFSvpv6qZuMtEk0QoXZp5CJd0T62WumjwnF6AtTXhk6IjH-UQhgGlc0N1CDUrlDcoVciZuLksdVDZy5sVnssCpuWDUkTiuW-K2G3_jtk5P_7XBKtjAGqlpAmHNG-sV7qc8xziiSi0qzvgAQ5dD7
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamcRgceAwQ45kDRzr6SNvsOE2rBmwTgg2NU5U0qTQhCqItB349TteOCQkhuEaq49pu_LlOvgCcc9nhUcdUBjctaVDdKeSYNQzmMDcy_Zg5sT7vPBp7gym9nrmzGrDqLAwqkaKktGjif7ELWJd6TBXH4eIcs0abCf0vDBffNdfHqlyDot79cg3GqHIrjk_Ts2m1s-tnQTo7RelKdlpJM8EWPC4VLHaXPLXzTLSjj2_cjf95g23YLLEn6S6CZQdqKmlCo1dd-daEjRV2wl0IAhRAbheUsOg-UrKbE8S55E6hjxXKUjwl73NOeEK6uNDNk_yZ9Iv5yUPREdiDadCf9AZGee2CwW3mZYbjMh7HEefCo6hgbFIumZTUdyxOha2oorbkXHpSulbsxpboKF12-BJrURYJZx_qyUuiDoAgFsMCOPJNJnS2ZIzbCkcU1cSDkbRacIFWCcvPJg2LjrhthXpwxVRhaaoWmJV3wtcFGcdvjxz-bYYzaAwmo2E4vBrfHME6oqNic4htHkM9e8vVCSKQTJwWwfYJwenZZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KBR8HH1WxPvfg0dQ8NskWvJTaUF-lqJVeJGyyu1DEWEziwV_vbJqUIojodWBnN7O788jMfgNwykWbx21TGty0hEF1ppCj1TCYw9zY9BVzlH7vfDfw-iN6PXbHNbio3sLgIlLklBZJfH2rp0KVCAPWuabL4kmcytFytFik_4ehAl5ydRtv7Rh1H-Z6GE-WW-F8mp5Nq-qunxlpCxWnCxZqwdQEG_A8X2RRYfLSyrOoFX9-w2_871dswnrpg5LO7NBsQU0mDVjpVq3fGrC2gFK4DUGADMhwBg2L20hKlHOC_i65l7jXEnlJnpKPCSc8IR1UeJMkfyW9Yn7yVGQGdmAU9B67faNsv2Bwm3mZ4biMKxVzHnkUF6hMygUTgvqOxWlkSyqpLTgXnhCupVxlRW2pww9fYEzK4sjZhXrylsg9IOiTYSAc-yaLtNVkjNsSKZJqAMJYWE04Q6mE5fVJwyIzbluhJi6IKixF1QSz2qFwOgPl-G3I_t9mOIHl4WUQ3l4Nbg5gFZ2kokbENg-hnr3n8ggdkSw6Ls7bF7vl2-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuel+Production+Systems+for+Remote+Areas+via+an+Aluminum+Energy+Vector&rft.jtitle=Energy+%26+fuels&rft.au=Morgan%2C+Eric+R&rft.date=2018-09-20&rft.pub=American+Chemical+Society&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=32&rft.issue=9&rft.spage=9033&rft.epage=9042&rft_id=info:doi/10.1021%2Facs.energyfuels.8b01482&rft.externalDocID=b865408707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon