Optimizing Transfection Efficiency in CAR‑T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (L...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 7; no. 6; pp. 3746 - 3757
Main Authors Giulimondi, Francesca, Digiacomo, Luca, Renzi, Serena, Cassone, Chiara, Pirrottina, Andrea, Molfetta, Rosa, Palamà, Ilaria Elena, Maiorano, Gabriele, Gigli, Giuseppe, Amenitsch, Heinz, Pozzi, Daniela, Zingoni, Alessandra, Caracciolo, Giulio
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.
AbstractList The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.
Author Molfetta, Rosa
Giulimondi, Francesca
Zingoni, Alessandra
Caracciolo, Giulio
Amenitsch, Heinz
Renzi, Serena
Maiorano, Gabriele
Pirrottina, Andrea
Gigli, Giuseppe
Palamà, Ilaria Elena
Cassone, Chiara
Digiacomo, Luca
Pozzi, Daniela
AuthorAffiliation Department of Molecular Medicine
CNR-NANOTEC
Department of Medicine
Institute of Inorganic Chemistry
University of Salento
Sapienza University of Rome
Nanotechnology Institute
AuthorAffiliation_xml – name: Department of Medicine
– name: University of Salento
– name: Sapienza University of Rome
– name: Nanotechnology Institute
– name: CNR-NANOTEC
– name: Institute of Inorganic Chemistry
– name: Department of Molecular Medicine
Author_xml – sequence: 1
  givenname: Francesca
  surname: Giulimondi
  fullname: Giulimondi, Francesca
  organization: Sapienza University of Rome
– sequence: 2
  givenname: Luca
  surname: Digiacomo
  fullname: Digiacomo, Luca
  organization: Sapienza University of Rome
– sequence: 3
  givenname: Serena
  surname: Renzi
  fullname: Renzi, Serena
  organization: Sapienza University of Rome
– sequence: 4
  givenname: Chiara
  surname: Cassone
  fullname: Cassone, Chiara
  organization: Sapienza University of Rome
– sequence: 5
  givenname: Andrea
  surname: Pirrottina
  fullname: Pirrottina, Andrea
  organization: Sapienza University of Rome
– sequence: 6
  givenname: Rosa
  surname: Molfetta
  fullname: Molfetta, Rosa
  organization: Sapienza University of Rome
– sequence: 7
  givenname: Ilaria Elena
  orcidid: 0000-0003-4420-0680
  surname: Palamà
  fullname: Palamà, Ilaria Elena
  organization: CNR-NANOTEC
– sequence: 8
  givenname: Gabriele
  surname: Maiorano
  fullname: Maiorano, Gabriele
  organization: CNR-NANOTEC
– sequence: 9
  givenname: Giuseppe
  surname: Gigli
  fullname: Gigli, Giuseppe
  organization: University of Salento
– sequence: 10
  givenname: Heinz
  surname: Amenitsch
  fullname: Amenitsch, Heinz
  organization: Institute of Inorganic Chemistry
– sequence: 11
  givenname: Daniela
  surname: Pozzi
  fullname: Pozzi, Daniela
  organization: Sapienza University of Rome
– sequence: 12
  givenname: Alessandra
  surname: Zingoni
  fullname: Zingoni, Alessandra
  organization: Sapienza University of Rome
– sequence: 13
  givenname: Giulio
  orcidid: 0000-0002-8636-4475
  surname: Caracciolo
  fullname: Caracciolo, Giulio
  email: giulio.caracciolo@uniroma1.it
  organization: Sapienza University of Rome
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38775109$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1O3DAUha0KVCiw7RJ5iZAy-AfnZzlEtFQaQELTdXTt2DNGiR1sZwEL1FfoK_ZJyGimiA0rX0vfOdL5vqE9551G6DslM0oYvQAVQfazS0UIJfwLOmSiyLP8krG9D_cBOonxkRDCCOG0rL6iA14WhaCkOkSv90OyvX2xboWXAVw0WiXrHb42xiqrnXrG1uF6_vDvz98lrnXX4VtwowGVxrBJpXXw42qNb8cu2aHTeN721tmYAmyKIvYGL-xg2-wKom7xHTg_QEhWdToeo30DXdQnu_cI_f5xvaxvssX9z1_1fJEBK0XKNK90RSinUuWlKUDKaZcAKSDXykgA0LmksmorCkpIwUrKWmGmb0VZToEfobNt7xD806hjanob1TQGnPZjbDgRZc6LquATOtuiKvgYgzbNEGwP4bmhpNlob7bam532KXC66x5lr9t3_L_kCTjfAlOwefRjcNPUz9reAAYWkeg
Cites_doi 10.1016/j.addr.2016.01.022
10.1039/C7NR06437C
10.1038/s41598-017-13865-4
10.1053/j.gastro.2018.03.029
10.1039/D2NR01878K
10.1021/acs.accounts.9b00368
10.1159/000485501
10.1038/nnano.2015.330
10.1021/acsnano.6b06411
10.1007/s12274-022-4849-6
10.1073/pnas.84.21.7413
10.1021/bi9602019
10.1021/am900406b
10.1016/j.bbamem.2012.05.017
10.1002/bit.25503
10.1016/j.nantod.2022.101657
10.1021/acs.jpclett.1c03109
10.1002/ange.201203263
10.1038/nature22395
10.1042/bj20031253
10.1016/j.bbamem.2019.183159
10.1182/blood-2013-11-492231
10.1021/mp200374e
10.3322/caac.21763
10.1016/j.bbagen.2017.03.010
10.1016/j.jconrel.2021.01.005
10.1126/science.aar6711
10.1039/C7NR02977B
10.1021/acs.bioconjchem.0c00064
10.1016/j.omtm.2016.12.006
10.1007/s11912-021-01161-4
10.1002/smtd.201700375
10.1021/acsptsci.3c00185
10.1016/j.cis.2021.102366
10.1016/j.actbio.2016.07.031
10.1016/S0006-3495(02)73970-2
10.1016/j.jconrel.2018.02.043
10.1056/NEJMoa1407222
10.1021/ja107583h
10.1038/s41467-020-14527-2
10.3109/10611869509015954
10.1063/1.4922288
10.1038/s41565-019-0591-y
10.1021/ja204693f
10.1021/acs.nanolett.9b04246
10.1021/mp800049w
10.1007/s11060-019-03311-y
10.1038/srep25879
10.1038/nri1330
10.1039/C8NR03331E
10.1021/acsnano.1c07687
10.1056/NEJMra1706169
10.1038/38410
10.1016/j.omtm.2020.01.012
10.1038/sdata.2018.191
10.1016/j.bbamem.2013.11.014
10.1107/S090904959800137X
10.1016/j.nano.2016.08.019
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsabm.4c00103
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 3757
ExternalDocumentID 10_1021_acsabm_4c00103
38775109
a55866465
Genre Journal Article
GroupedDBID 53G
ABFRP
ABQRX
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a285t-e39e90131bc68f7abb4225ab5a6ecfbaaae6b1b9d91ac5b52812d5fd9191261a3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Sat Aug 17 04:52:30 EDT 2024
Fri Aug 23 03:40:00 EDT 2024
Fri Oct 18 09:16:52 EDT 2024
Tue Jun 25 16:50:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords gene delivery
cell transfection
lipid nanoparticles
CAR-T
lipoplexes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a285t-e39e90131bc68f7abb4225ab5a6ecfbaaae6b1b9d91ac5b52812d5fd9191261a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4420-0680
0000-0002-8636-4475
PMID 38775109
PQID 3058637973
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3058637973
crossref_primary_10_1021_acsabm_4c00103
pubmed_primary_38775109
acs_journals_10_1021_acsabm_4c00103
PublicationCentury 2000
PublicationDate 2024-05-22
PublicationDateYYYYMMDD 2024-05-22
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref25/cit25
  doi: 10.1016/j.addr.2016.01.022
– ident: ref46/cit46
  doi: 10.1039/C7NR06437C
– ident: ref18/cit18
  doi: 10.1038/s41598-017-13865-4
– ident: ref8/cit8
  doi: 10.1053/j.gastro.2018.03.029
– ident: ref49/cit49
  doi: 10.1039/D2NR01878K
– ident: ref24/cit24
  doi: 10.1021/acs.accounts.9b00368
– ident: ref42/cit42
  doi: 10.1159/000485501
– ident: ref51/cit51
  doi: 10.1038/nnano.2015.330
– ident: ref56/cit56
  doi: 10.1021/acsnano.6b06411
– ident: ref55/cit55
  doi: 10.1007/s12274-022-4849-6
– ident: ref22/cit22
  doi: 10.1073/pnas.84.21.7413
– ident: ref23/cit23
  doi: 10.1021/bi9602019
– ident: ref37/cit37
  doi: 10.1021/am900406b
– ident: ref27/cit27
  doi: 10.1016/j.bbamem.2012.05.017
– ident: ref15/cit15
  doi: 10.1002/bit.25503
– ident: ref54/cit54
  doi: 10.1016/j.nantod.2022.101657
– ident: ref41/cit41
  doi: 10.1021/acs.jpclett.1c03109
– ident: ref32/cit32
  doi: 10.1002/ange.201203263
– ident: ref3/cit3
  doi: 10.1038/nature22395
– ident: ref35/cit35
  doi: 10.1042/bj20031253
– ident: ref59/cit59
  doi: 10.1016/j.bbamem.2019.183159
– ident: ref7/cit7
  doi: 10.1182/blood-2013-11-492231
– ident: ref28/cit28
  doi: 10.1021/mp200374e
– ident: ref1/cit1
  doi: 10.3322/caac.21763
– ident: ref53/cit53
  doi: 10.1016/j.bbagen.2017.03.010
– ident: ref21/cit21
  doi: 10.1016/j.jconrel.2021.01.005
– ident: ref31/cit31
  doi: 10.1021/acs.jpclett.1c03109
– ident: ref6/cit6
  doi: 10.1126/science.aar6711
– ident: ref57/cit57
  doi: 10.1039/C7NR02977B
– ident: ref44/cit44
  doi: 10.1021/acs.bioconjchem.0c00064
– ident: ref13/cit13
  doi: 10.1016/j.omtm.2016.12.006
– ident: ref2/cit2
  doi: 10.1007/s11912-021-01161-4
– ident: ref29/cit29
  doi: 10.1002/smtd.201700375
– ident: ref36/cit36
  doi: 10.1021/acsptsci.3c00185
– ident: ref52/cit52
  doi: 10.1016/j.cis.2021.102366
– ident: ref19/cit19
  doi: 10.1016/j.actbio.2016.07.031
– ident: ref40/cit40
  doi: 10.1016/S0006-3495(02)73970-2
– ident: ref10/cit10
  doi: 10.1016/j.jconrel.2018.02.043
– ident: ref5/cit5
  doi: 10.1056/NEJMoa1407222
– ident: ref58/cit58
  doi: 10.1021/ja107583h
– ident: ref26/cit26
  doi: 10.1038/s41467-020-14527-2
– ident: ref34/cit34
  doi: 10.3109/10611869509015954
– ident: ref39/cit39
  doi: 10.1063/1.4922288
– ident: ref30/cit30
  doi: 10.1038/s41565-019-0591-y
– ident: ref11/cit11
  doi: 10.1021/ja204693f
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.9b04246
– ident: ref33/cit33
  doi: 10.1021/mp800049w
– ident: ref47/cit47
  doi: 10.1007/s11060-019-03311-y
– ident: ref45/cit45
  doi: 10.1038/srep25879
– ident: ref38/cit38
  doi: 10.1038/nri1330
– ident: ref48/cit48
  doi: 10.1039/C8NR03331E
– ident: ref50/cit50
  doi: 10.1021/acsnano.1c07687
– ident: ref4/cit4
  doi: 10.1056/NEJMra1706169
– ident: ref9/cit9
  doi: 10.1038/38410
– ident: ref16/cit16
  doi: 10.1016/j.omtm.2020.01.012
– ident: ref20/cit20
  doi: 10.1038/sdata.2018.191
– ident: ref43/cit43
  doi: 10.1016/j.bbamem.2013.11.014
– ident: ref17/cit17
  doi: 10.1107/S090904959800137X
– ident: ref14/cit14
  doi: 10.1016/j.nano.2016.08.019
SSID ssj0002003189
Score 2.3107228
Snippet The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 3746
Title Optimizing Transfection Efficiency in CAR‑T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles
URI http://dx.doi.org/10.1021/acsabm.4c00103
https://www.ncbi.nlm.nih.gov/pubmed/38775109
https://www.proquest.com/docview/3058637973/abstract/
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aL3rw_agvIgqetnaz3ezmWJeWIlRBW-htSbJZKLZbcbeXHsS_4F_0lzjJbqu1FD0GQgiTZOabzMw3CF1pThMqKbGE68dWTcYx6EHuWzJigsQ-VRHThcLte9rq1u56bu_7v-N3BJ_YN1ymXAwrNWlaEqyiNQJGUbtZ9eBp9ptCzOXUWFcDaAtANZkyNC4soe2QTOft0BJwaYxMcytnPEoNN6HOLXmujDNRkZNF5sY_97-NNgukiev51dhBKyrZRRs_-Af30NsDKIxhfwIDbIxWnpiV4IYhltBVmbif4KD--Pn-0cGBGgxwmydjXQ1hyhtx0eYHt4u8RDxPxpviUYx1e-zIugVzGWFQ5uClF8l4-6jbbHSCllU0ZLA48d3MUg5TTBP0CEn92ONCgJxdLlxOlYwF51xRYQsWMZtLV7gE0EPkxjBkNnhq3DlApWSUqCOEFdN06lVHKd-rMR2dq3LHpoBfFWAkIsvoEgQXFg8qDU2snNhhLs2wkGYZXU8PMXzJ2TmWzryYnnEID0hHRXiiRuM0BIXnU8djHsw5zA9_tpbjex4oLXb8r92coHUCkEfnFhByikrZ61idAWTJxLm5rV_CYOf9
link.rule.ids 315,786,790,2782,27107,27955,27956,57091,57141
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIAD-74ZgcQpLXFqJz5CBSpLAUGRuEW240gISBFpLxwQv8Av8iWMnbRsQoKjo8hyxuOZ58zMG4Aty2nCNaeeYlHq1XSaoh2UkacToWgacZMIWyjcPOWNq9rRNbsegGqvFgYXkeNMuQvif7AL-FV8JtV9paZdZ4JBGGYhujqLheqX_Z8q1OmohbwWR3uIrWmPqPHHFNYd6fyrO_oFYzpfczAB5_1VuhST20q3oyr66RuB4z8-YxLGS9xJdgtFmYIBk03D2Cc2whl4PkPzcX_zhAPiXFiRppWRfUczYWs0yU1G6rsXby-vLVI3d3ekKbOurY1wxY6kbPpDmmWWIvlKzZuTdkpss-zE20PnmRA07XhnL1PzZuHqYL9Vb3hlewZP0oh1PBMIIyxdj9I8SkOpFIqbScUkNzpVUkrDla9EInypmWIUsUTCUhwKH-9tMpiDoaydmQUgRlhy9Z3AmCisCRur25GBzxHNGkRMVC_CJgouLo9XHrvIOfXjQppxKc1F2O7tZfxQcHX8-uZGb6tjPE42RiIz0-7mMZq_iAehCPGd-UIH-nMFURiiCRNLf1rNOow0Ws2T-OTw9HgZRimCIZt1QOkKDHUeu2YVwUxHrTkFfgcXrfBo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Pb9MwFLegSIgd2AZsK2PMCCRO6RonduJjKa26QQuCVtotsh1bqtam1dJeekB8hX1FPsmeHbeioEpwdBRZjv3-_Jz33u8h9M5ymjDFSCBpaoJYGQN2UKSByrkkJmU657ZQuD9gvVF8dU2vfR23rYWBRZQwU-mC-Far57nxDAPhBTwXctqIletO8BA9okkYW21stb9vfqwQJ6cW9losHQC-Jmuyxr-msC5JldsuaQfOdP6mu4-Gm5W6NJObxnIhG2r1B4njf37KAXrq8SduVQJziB7o4hna-42V8Dn68QXMyHS8ggF2rqxK1ypwx9FN2FpNPC5wu_Xt18-7IW7ryQT3RbG0NRKu6BH75j-477MV8TZFb4lnBtum2XnwAZxojsHEw93dp-i9QKNuZ9juBb5NQyBISheBjrjmlrZHKpaaREgJW06FpIJpZaQQQjMZSp7zUCgqKQFMkVMDQx7C_U1ER6hWzAp9grDmlmS9GWmdJjG3MbumiEIGqFYDciKqjt7CxmVezcrMRdBJmFW7mfndrKP36_PM5hVnx84336yPOwO1srESUejZsszADKYsSngC7xxXcrCZK0qTBEwZf_lPqzlHj79-7GafLwefTtETApjIJh8Q8grVFrdLfQaYZiFfOxm-B8hT8uI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Transfection+Efficiency+in+CAR-T+Cell+Manufacturing+through+Multiple+Administrations+of+Lipid-Based+Nanoparticles&rft.jtitle=ACS+applied+bio+materials&rft.au=Giulimondi%2C+Francesca&rft.au=Digiacomo%2C+Luca&rft.au=Renzi%2C+Serena&rft.au=Cassone%2C+Chiara&rft.date=2024-05-22&rft.eissn=2576-6422&rft_id=info:doi/10.1021%2Facsabm.4c00103&rft_id=info%3Apmid%2F38775109&rft.externalDocID=38775109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon