Breaking the Scaling Relationship in Water Oxidation Enabled by the Electron Buffering Effect of the Fullerene Network

The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship rem...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 147; no. 24; pp. 20600 - 20611
Main Authors Chen, Xiang, Ma, Hao, Wang, Xing, Jin, Hongqiang, Wu, Yao, Wang, Sibo, Xiao, Yukun, Jiang, Rui, Da, Yumin, Fan, Lei, Sun, Yuanmiao, Xi, Shibo, Lum, Yanwei, He, Qian, Li, Hexing, Liu, Dongming, Yang, Shangfeng, Chen, Wei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.06.2025
Online AccessGet full text

Cover

Loading…
Abstract The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm–2, outperforming graphene-supported Ir nanoclusters and commercial IrO x , attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET.
AbstractList The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm , outperforming graphene-supported Ir nanoclusters and commercial IrO , attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C NET.
The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm-2, outperforming graphene-supported Ir nanoclusters and commercial IrOx, attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET.The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm-2, outperforming graphene-supported Ir nanoclusters and commercial IrOx, attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET.
The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm–2, outperforming graphene-supported Ir nanoclusters and commercial IrO x , attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET.
Author Xiao, Yukun
Yang, Shangfeng
Li, Hexing
Liu, Dongming
Wang, Xing
Da, Yumin
Xi, Shibo
Chen, Xiang
Ma, Hao
Chen, Wei
Lum, Yanwei
Wu, Yao
Sun, Yuanmiao
Fan, Lei
Jin, Hongqiang
Wang, Sibo
Jiang, Rui
He, Qian
AuthorAffiliation Department of Chemistry
Agency for Science, Technology and Research (ASTAR)
Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology
National University of Singapore
School of Materials Science and Engineering, Key Lab of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2)
Department of Chemical and Biomolecular Engineering
Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering
Department of Material Science and Engineering, College of Design and Engineering
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of
AuthorAffiliation_xml – name: Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering
– name: Department of Material Science and Engineering, College of Design and Engineering
– name: The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis
– name: Department of Chemistry
– name: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2)
– name: Department of Chemical and Biomolecular Engineering
– name: Agency for Science, Technology and Research (ASTAR)
– name: School of Materials Science and Engineering, Key Lab of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity
– name: Department of Physics
– name: Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology
– name: National University of Singapore
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0002-8480-4203
  surname: Chen
  fullname: Chen, Xiang
  organization: Department of Chemistry
– sequence: 2
  givenname: Hao
  surname: Ma
  fullname: Ma, Hao
  organization: Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology
– sequence: 3
  givenname: Xing
  surname: Wang
  fullname: Wang, Xing
  organization: Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering
– sequence: 4
  givenname: Hongqiang
  orcidid: 0009-0001-6171-5718
  surname: Jin
  fullname: Jin, Hongqiang
  email: hqjin@nus.edu.sg
  organization: Department of Chemistry
– sequence: 5
  givenname: Yao
  surname: Wu
  fullname: Wu, Yao
  organization: Department of Material Science and Engineering, College of Design and Engineering
– sequence: 6
  givenname: Sibo
  surname: Wang
  fullname: Wang, Sibo
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 7
  givenname: Yukun
  surname: Xiao
  fullname: Xiao, Yukun
  organization: Department of Chemistry
– sequence: 8
  givenname: Rui
  surname: Jiang
  fullname: Jiang, Rui
  organization: Department of Chemistry
– sequence: 9
  givenname: Yumin
  surname: Da
  fullname: Da, Yumin
  organization: Department of Chemistry
– sequence: 10
  givenname: Lei
  surname: Fan
  fullname: Fan, Lei
  organization: Department of Chemistry
– sequence: 11
  givenname: Yuanmiao
  orcidid: 0000-0003-4650-5226
  surname: Sun
  fullname: Sun, Yuanmiao
  email: sunym@siat.ac.cn
  organization: Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology
– sequence: 12
  givenname: Shibo
  orcidid: 0000-0002-8521-3237
  surname: Xi
  fullname: Xi, Shibo
  organization: Agency for Science, Technology and Research (ASTAR)
– sequence: 13
  givenname: Yanwei
  orcidid: 0000-0001-7261-2098
  surname: Lum
  fullname: Lum, Yanwei
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 14
  givenname: Qian
  surname: He
  fullname: He, Qian
  organization: Department of Material Science and Engineering, College of Design and Engineering
– sequence: 15
  givenname: Hexing
  orcidid: 0000-0002-3558-5227
  surname: Li
  fullname: Li, Hexing
  organization: The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis
– sequence: 16
  givenname: Dongming
  surname: Liu
  fullname: Liu, Dongming
  organization: School of Materials Science and Engineering, Key Lab of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity
– sequence: 17
  givenname: Shangfeng
  orcidid: 0000-0002-6931-9613
  surname: Yang
  fullname: Yang, Shangfeng
  email: sfyang@ustc.edu.cn
  organization: Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering
– sequence: 18
  givenname: Wei
  orcidid: 0000-0002-1131-3585
  surname: Chen
  fullname: Chen, Wei
  email: phycw@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40462764$$D View this record in MEDLINE/PubMed
BookMark eNptkU1PwzAMhiM0xD7gxhnlyIGOJG3W5cimDZAmJvEhjlWaOqxblo6kBfbvabcBF062Xz22Zb9d1LKFBYTOKelTwuj1Uirf54qEPI6PUIdyRgJO2aCFOoQQFsTDQdhGXe-XdRmxIT1B7YhEAxYPog76GDmQq9y-4XIB-ElJ0-SPYGSZF9Yv8g3OLX6VJTg8_8qznYwnVqYGMpxud20TA6p0tT6qtAbXTJjUiSpxoXfAtDIGHFjAD1B-Fm51io61NB7ODrGHXqaT5_FdMJvf3o9vZoFkw7AMWBwBCamWKQFWH0M11bHkIktZJjLNQZBUhCFLOSjCtCA6FpEUSoihVILysIcu93M3rnivwJfJOvcKjJEWisonIaOcx6z-XY1eHNAqXUOWbFy-lm6b_PyqBq72gHKF9w70L0JJ0liRNFYkByv-VjfisqicrQ_9H_0Gr8yJRg
Cites_doi 10.1126/science.adp6034
10.1002/aenm.202204346
10.1002/anie.202311352
10.1002/aenm.202400059
10.1016/j.elecom.2017.09.004
10.1007/s12274-022-4322-6
10.1038/s41929-019-0376-6
10.1016/j.electacta.2021.137902
10.1126/science.adg5193
10.1021/acsenergylett.4c00884
10.1002/aenm.202302438
10.1038/s41467-022-30766-x
10.1038/nchem.2695
10.1039/D0CY00540A
10.1126/science.abm9257
10.1039/D1EE01277K
10.1038/nmat4778
10.1038/s41557-024-01626-6
10.1016/S1872-2067(20)63543-4
10.1126/science.ado9938
10.1002/anie.202419352
10.1002/anie.202112398
10.1038/s41565-024-01807-x
10.1021/jacs.4c12705
10.1038/s41563-022-01380-5
10.1038/s41467-023-38126-z
10.1038/s41467-022-33847-z
10.1038/s41929-024-01165-w
10.1021/acsenergylett.4c00701
10.1021/acssuschemeng.4c05296
10.1002/adfm.202301557
10.1002/adma.202412950
10.1038/s41586-022-04771-5
10.1038/s41586-022-05401-w
10.1126/science.1211934
10.1016/j.matt.2019.09.011
10.1038/s41467-024-55150-9
10.1038/s41467-021-23390-8
10.1021/jacs.4c01379
10.1021/jacs.8b10002
10.1002/adfm.202112674
10.1038/s41929-025-01323-8
10.1038/s41929-024-01266-6
10.1002/anie.202406947
10.1038/s41467-023-37404-0
10.1021/jacs.4c05165
10.1002/idm2.12059
10.1038/s41563-021-01006-2
10.1016/j.xcrp.2022.100910
10.1002/adfm.202009245
10.1002/anie.201809689
10.1002/anie.202414149
10.1021/jacs.4c05070
10.1002/anie.202212341
10.1038/s41467-024-44815-0
10.1038/318162a0
10.1016/j.checat.2022.08.010
10.1002/sia.6225
10.1039/D3CS00010A
10.1002/adma.19940061004
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/jacs.5c03577
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 20611
ExternalDocumentID 40462764
10_1021_jacs_5c03577
c905480242
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
AAYWT
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-a283t-274e031fab0e20021f1f7a59db2d9df5e90b9332b5ec02f90f794a9c998ac9153
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Wed Jul 02 02:46:59 EDT 2025
Fri Jun 20 01:35:25 EDT 2025
Sun Aug 03 02:38:43 EDT 2025
Thu Jun 19 03:11:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a283t-274e031fab0e20021f1f7a59db2d9df5e90b9332b5ec02f90f794a9c998ac9153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3558-5227
0000-0002-8480-4203
0000-0002-6931-9613
0000-0003-4650-5226
0009-0001-6171-5718
0000-0001-7261-2098
0000-0002-1131-3585
0000-0002-8521-3237
PMID 40462764
PQID 3215572357
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3215572357
pubmed_primary_40462764
crossref_primary_10_1021_jacs_5c03577
acs_journals_10_1021_jacs_5c03577
PublicationCentury 2000
PublicationDate 2025-06-18
PublicationDateYYYYMMDD 2025-06-18
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1126/science.adp6034
– ident: ref33/cit33
  doi: 10.1002/aenm.202204346
– ident: ref24/cit24
  doi: 10.1002/anie.202311352
– ident: ref17/cit17
  doi: 10.1002/aenm.202400059
– ident: ref49/cit49
  doi: 10.1016/j.elecom.2017.09.004
– ident: ref27/cit27
  doi: 10.1007/s12274-022-4322-6
– ident: ref5/cit5
  doi: 10.1038/s41929-019-0376-6
– ident: ref50/cit50
  doi: 10.1016/j.electacta.2021.137902
– ident: ref19/cit19
  doi: 10.1126/science.adg5193
– ident: ref53/cit53
  doi: 10.1021/acsenergylett.4c00884
– ident: ref28/cit28
  doi: 10.1002/aenm.202302438
– ident: ref56/cit56
  doi: 10.1038/s41467-022-30766-x
– ident: ref7/cit7
  doi: 10.1038/nchem.2695
– ident: ref40/cit40
  doi: 10.1039/D0CY00540A
– ident: ref31/cit31
  doi: 10.1126/science.abm9257
– ident: ref10/cit10
  doi: 10.1039/D1EE01277K
– ident: ref4/cit4
  doi: 10.1038/nmat4778
– ident: ref32/cit32
  doi: 10.1038/s41557-024-01626-6
– ident: ref55/cit55
  doi: 10.1016/S1872-2067(20)63543-4
– ident: ref3/cit3
  doi: 10.1126/science.ado9938
– ident: ref59/cit59
  doi: 10.1002/anie.202419352
– ident: ref34/cit34
  doi: 10.1002/anie.202112398
– ident: ref42/cit42
  doi: 10.1038/s41565-024-01807-x
– ident: ref12/cit12
  doi: 10.1021/jacs.4c12705
– ident: ref52/cit52
  doi: 10.1038/s41563-022-01380-5
– ident: ref41/cit41
  doi: 10.1038/s41467-023-38126-z
– ident: ref21/cit21
  doi: 10.1038/s41467-022-33847-z
– ident: ref36/cit36
  doi: 10.1038/s41929-024-01165-w
– ident: ref9/cit9
  doi: 10.1021/acsenergylett.4c00701
– ident: ref25/cit25
  doi: 10.1021/acssuschemeng.4c05296
– ident: ref51/cit51
  doi: 10.1002/adfm.202301557
– ident: ref8/cit8
  doi: 10.1002/adma.202412950
– ident: ref22/cit22
  doi: 10.1038/s41586-022-04771-5
– ident: ref23/cit23
  doi: 10.1038/s41586-022-05401-w
– ident: ref46/cit46
  doi: 10.1126/science.1211934
– ident: ref6/cit6
  doi: 10.1016/j.matt.2019.09.011
– ident: ref60/cit60
  doi: 10.1038/s41467-024-55150-9
– ident: ref47/cit47
  doi: 10.1038/s41467-021-23390-8
– ident: ref54/cit54
  doi: 10.1021/jacs.4c01379
– ident: ref48/cit48
  doi: 10.1021/jacs.8b10002
– ident: ref43/cit43
  doi: 10.1002/adfm.202112674
– ident: ref57/cit57
  doi: 10.1038/s41929-025-01323-8
– ident: ref1/cit1
  doi: 10.1038/s41929-024-01266-6
– ident: ref18/cit18
  doi: 10.1002/anie.202406947
– ident: ref30/cit30
  doi: 10.1038/s41467-023-37404-0
– ident: ref38/cit38
  doi: 10.1021/jacs.4c05165
– ident: ref11/cit11
  doi: 10.1002/idm2.12059
– ident: ref20/cit20
  doi: 10.1038/s41563-021-01006-2
– ident: ref35/cit35
  doi: 10.1016/j.xcrp.2022.100910
– ident: ref45/cit45
  doi: 10.1002/adfm.202009245
– ident: ref44/cit44
  doi: 10.1002/anie.201809689
– ident: ref29/cit29
  doi: 10.1002/anie.202414149
– ident: ref14/cit14
  doi: 10.1021/jacs.4c05070
– ident: ref58/cit58
  doi: 10.1002/anie.202212341
– ident: ref16/cit16
  doi: 10.1038/s41467-024-44815-0
– ident: ref26/cit26
  doi: 10.1038/318162a0
– ident: ref13/cit13
  doi: 10.1016/j.checat.2022.08.010
– ident: ref37/cit37
  doi: 10.1002/sia.6225
– ident: ref2/cit2
  doi: 10.1039/D3CS00010A
– ident: ref39/cit39
  doi: 10.1002/adma.19940061004
SSID ssj0004281
Score 2.4858136
Snippet The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 20600
Title Breaking the Scaling Relationship in Water Oxidation Enabled by the Electron Buffering Effect of the Fullerene Network
URI http://dx.doi.org/10.1021/jacs.5c03577
https://www.ncbi.nlm.nih.gov/pubmed/40462764
https://www.proquest.com/docview/3215572357
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA4uB724L3Ujgh6npDOTyeTYllYR1EMtehuSTIJFmBanFfXX-94sikrR2zAkIeTlJd_LWz5CzkLpnDGaeaEWBp9uGOhcwDxrrIwV7KHQ4nvH9U10OQyvHvjDV4DsTw--j_WBTN7khgVciEWy7EexQCOr3R185T_6cauGuSKOgirA_WdvvIBM_v0CmoMqi9ulv04u6hydMqjkqTmb6qZ5_12y8Y-Jb5C1CmDSdrkjNsmCzbbISrfmddsmLx3AifhATgH70QHICL8_g-IeRxM6yug9YNBnevs6KjmXaK_IsUqpfiu69Sr2HNqZIcEKjlDWQaZjVzRA07YgXqE3ZaD5Dhn2e3fdS69iX_AUQI6pB-aqBY13SjNbRHK4lhOKy1T7qUwdt5JpGQS-5tYw30nmQLWVNGC_KSPhIN0lS9k4s_uEssC0bATYR0sbcheoSMcyRNokHjklbIOcwlollfbkSeEY98Ewwb_VCjbIeS22ZFIW4pjT7rSWaQILi-4PldnxLE8CQDdcYHmfBtkrhf05Uog5uiIKD_4xk0Oy6iMJMBIYxUdkafo8s8eATKb6pNiWH-rJ3Ro
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB0heqCX0hZaln5gJDgGeZ04iQ89wHbRUmA5ACq31Pba6qpSFpFdKP0v_Sv9bZ1xkkUgIfWC1FtkJZZjP3ve2ON5AFuJ8t5aw6PEZJa2bjjOuZhHzjqVa8RQ4mi_43iYDs6TLxfyYgF-t3dhsBEV1lSFQ_y77AKUJggLpeWxzLImhvLQ3d6gh1Z9OviMw7ktxH7_rDeIGhGBSKPlnEbodTkErteGuxCQ4Ls-01KNjBipkZdOcYNOvTDSWS684h4RqpVFN0Rb1SVRCFzhnyHvEeTb7fZO765dirzbsussT-Mmrv5ha8nu2eq-3XuEzAajtr8Mf-bdEWJZfuzMpmbH_nqQKfK_7a-X8KKh02y3xv8rWHDla1jqtSp2K3C9h6yYjgMYMl12ioik53kI4PfxJRuX7Csy7it28nNcK0yxfrhRNmLmNnzWb7SC2N6M5GSohjrrM5v48AI58kFmhg3rsPpVOH-S334Di-WkdGvAeGy7LkWmZ5RLpI91anKVkEiUTL3OXAc2cWyKZq2oihAGINANo9JmxDqw3aKluKzTjjzy3mYLpQI7lg57dOkms6qIkcvJjJIZdeBtjbF5TQndSM7SZP0fWrIBS4Oz46Pi6GB4-A6eC5I_Jumm_D0sTq9m7gNysqn5GGYGg29PDa2_Hxs_aA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BTtwwEB0hKtFeWkpb2BZaI5VjkDeJk_jQAyy7gkK3lSgqt9R2bLGqlF2R3QL9m_4KX8aMkywCCakXpN6ixLEceybzxjOeB_Axls4Zo3kQ69TQ1g1HnYt4YI2VmUIZii3td3wZJvsn8edTcboAf9uzMDiICnuqfBCftHpSuKbCAJUKwgfC8EikaZNHeWivLtBLqz4d7OGSboXhoP-9tx80RAKBQus5DdDzsii8TmlufVKC67pUCVnosJCFE1ZyjY59qIU1PHSSO5RSJQ26IsrILhFD4F_-CUUIyb_b6R3fHr0Ms26LsNMsiZrc-vujJdtnqru27wFA6w3b4AVcz6fE57P82p5N9bb5c69a5H89Z8vwvIHVbKfWg5ewYMsVeNpr2exewe9dRMcUFmCIeNkxSiZdz1MBz0YTNirZD0Te5-zr5ahmmmJ9f7KsYPrKv9ZvOIPY7oxoZaiHuvozGzvfgBx6TzfDhnV6_Ws4eZTPfgOL5bi0a8B4ZLo2QcSnpY2Fi1SiMxkTWZRInEptBzZxbfLmn1HlPh0gRHeM7jYr1oGtVmLySV1-5IF2m6045TixFPRRpR3PqjxCTCdSKmrUgdVazuY9xXQyOU3it_8wkg-w9G1vkB8dDA_fwbOQWJCJwSlbh8Xp-cxuIDSb6vdeORj8fGzJugHIhEHr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+the+Scaling+Relationship+in+Water+Oxidation+Enabled+by+the+Electron+Buffering+Effect+of+the+Fullerene+Network&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Chen%2C+Xiang&rft.au=Ma%2C+Hao&rft.au=Wang%2C+Xing&rft.au=Jin%2C+Hongqiang&rft.date=2025-06-18&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=147&rft.issue=24&rft.spage=20600&rft.epage=20611&rft_id=info:doi/10.1021%2Fjacs.5c03577&rft.externalDocID=c905480242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon