Breaking the Scaling Relationship in Water Oxidation Enabled by the Electron Buffering Effect of the Fullerene Network
The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship rem...
Saved in:
Published in | Journal of the American Chemical Society Vol. 147; no. 24; pp. 20600 - 20611 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.06.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm–2, outperforming graphene-supported Ir nanoclusters and commercial IrO x , attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET. |
---|---|
AbstractList | The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C
NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C
NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm
, outperforming graphene-supported Ir nanoclusters and commercial IrO
, attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C
NET. The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm-2, outperforming graphene-supported Ir nanoclusters and commercial IrOx, attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET.The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm-2, outperforming graphene-supported Ir nanoclusters and commercial IrOx, attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET. The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the energy-conversion efficiency of water electrolysis. For the conventional adsorbate evolution mechanism, breaking the scaling relationship remains challenging, as it is difficult to modulate the adsorption of multiple intermediates on a specific active site simultaneously. Herein, we utilize the electron buffering effect of a two-dimensional fullerene network (C60NET) to dynamically tune the electronic structure of the iridium (Ir) active site with the change of adsorbed intermediates, which can tailor the adsorption strength of intermediates from multistep reactions and break the adsorption-energy scaling relationships among *OOH, *O, and *OH. The C60NET-buffered Ir nanocluster catalyst exhibits excellent OER activity with a low overpotential of 237 mV and stability over 600 h at 10 mA cm–2, outperforming graphene-supported Ir nanoclusters and commercial IrO x , attributed to the breaking of the linear scaling relationship enabled by the unique ability to reversibly accept and donate electrons of C60NET. |
Author | Xiao, Yukun Yang, Shangfeng Li, Hexing Liu, Dongming Wang, Xing Da, Yumin Xi, Shibo Chen, Xiang Ma, Hao Chen, Wei Lum, Yanwei Wu, Yao Sun, Yuanmiao Fan, Lei Jin, Hongqiang Wang, Sibo Jiang, Rui He, Qian |
AuthorAffiliation | Department of Chemistry Agency for Science, Technology and Research (ASTAR) Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology National University of Singapore School of Materials Science and Engineering, Key Lab of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Department of Chemical and Biomolecular Engineering Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering Department of Material Science and Engineering, College of Design and Engineering The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of |
AuthorAffiliation_xml | – name: Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering – name: Department of Material Science and Engineering, College of Design and Engineering – name: The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis – name: Department of Chemistry – name: Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) – name: Department of Chemical and Biomolecular Engineering – name: Agency for Science, Technology and Research (ASTAR) – name: School of Materials Science and Engineering, Key Lab of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity – name: Department of Physics – name: Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology – name: National University of Singapore |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0002-8480-4203 surname: Chen fullname: Chen, Xiang organization: Department of Chemistry – sequence: 2 givenname: Hao surname: Ma fullname: Ma, Hao organization: Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology – sequence: 3 givenname: Xing surname: Wang fullname: Wang, Xing organization: Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering – sequence: 4 givenname: Hongqiang orcidid: 0009-0001-6171-5718 surname: Jin fullname: Jin, Hongqiang email: hqjin@nus.edu.sg organization: Department of Chemistry – sequence: 5 givenname: Yao surname: Wu fullname: Wu, Yao organization: Department of Material Science and Engineering, College of Design and Engineering – sequence: 6 givenname: Sibo surname: Wang fullname: Wang, Sibo organization: Department of Chemical and Biomolecular Engineering – sequence: 7 givenname: Yukun surname: Xiao fullname: Xiao, Yukun organization: Department of Chemistry – sequence: 8 givenname: Rui surname: Jiang fullname: Jiang, Rui organization: Department of Chemistry – sequence: 9 givenname: Yumin surname: Da fullname: Da, Yumin organization: Department of Chemistry – sequence: 10 givenname: Lei surname: Fan fullname: Fan, Lei organization: Department of Chemistry – sequence: 11 givenname: Yuanmiao orcidid: 0000-0003-4650-5226 surname: Sun fullname: Sun, Yuanmiao email: sunym@siat.ac.cn organization: Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology – sequence: 12 givenname: Shibo orcidid: 0000-0002-8521-3237 surname: Xi fullname: Xi, Shibo organization: Agency for Science, Technology and Research (ASTAR) – sequence: 13 givenname: Yanwei orcidid: 0000-0001-7261-2098 surname: Lum fullname: Lum, Yanwei organization: Department of Chemical and Biomolecular Engineering – sequence: 14 givenname: Qian surname: He fullname: He, Qian organization: Department of Material Science and Engineering, College of Design and Engineering – sequence: 15 givenname: Hexing orcidid: 0000-0002-3558-5227 surname: Li fullname: Li, Hexing organization: The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis – sequence: 16 givenname: Dongming surname: Liu fullname: Liu, Dongming organization: School of Materials Science and Engineering, Key Lab of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity – sequence: 17 givenname: Shangfeng orcidid: 0000-0002-6931-9613 surname: Yang fullname: Yang, Shangfeng email: sfyang@ustc.edu.cn organization: Hefei National Laboratory for Physical Sciences at Microscale, State Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering – sequence: 18 givenname: Wei orcidid: 0000-0002-1131-3585 surname: Chen fullname: Chen, Wei email: phycw@nus.edu.sg organization: National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40462764$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1PwzAMhiM0xD7gxhnlyIGOJG3W5cimDZAmJvEhjlWaOqxblo6kBfbvabcBF062Xz22Zb9d1LKFBYTOKelTwuj1Uirf54qEPI6PUIdyRgJO2aCFOoQQFsTDQdhGXe-XdRmxIT1B7YhEAxYPog76GDmQq9y-4XIB-ElJ0-SPYGSZF9Yv8g3OLX6VJTg8_8qznYwnVqYGMpxud20TA6p0tT6qtAbXTJjUiSpxoXfAtDIGHFjAD1B-Fm51io61NB7ODrGHXqaT5_FdMJvf3o9vZoFkw7AMWBwBCamWKQFWH0M11bHkIktZJjLNQZBUhCFLOSjCtCA6FpEUSoihVILysIcu93M3rnivwJfJOvcKjJEWisonIaOcx6z-XY1eHNAqXUOWbFy-lm6b_PyqBq72gHKF9w70L0JJ0liRNFYkByv-VjfisqicrQ_9H_0Gr8yJRg |
Cites_doi | 10.1126/science.adp6034 10.1002/aenm.202204346 10.1002/anie.202311352 10.1002/aenm.202400059 10.1016/j.elecom.2017.09.004 10.1007/s12274-022-4322-6 10.1038/s41929-019-0376-6 10.1016/j.electacta.2021.137902 10.1126/science.adg5193 10.1021/acsenergylett.4c00884 10.1002/aenm.202302438 10.1038/s41467-022-30766-x 10.1038/nchem.2695 10.1039/D0CY00540A 10.1126/science.abm9257 10.1039/D1EE01277K 10.1038/nmat4778 10.1038/s41557-024-01626-6 10.1016/S1872-2067(20)63543-4 10.1126/science.ado9938 10.1002/anie.202419352 10.1002/anie.202112398 10.1038/s41565-024-01807-x 10.1021/jacs.4c12705 10.1038/s41563-022-01380-5 10.1038/s41467-023-38126-z 10.1038/s41467-022-33847-z 10.1038/s41929-024-01165-w 10.1021/acsenergylett.4c00701 10.1021/acssuschemeng.4c05296 10.1002/adfm.202301557 10.1002/adma.202412950 10.1038/s41586-022-04771-5 10.1038/s41586-022-05401-w 10.1126/science.1211934 10.1016/j.matt.2019.09.011 10.1038/s41467-024-55150-9 10.1038/s41467-021-23390-8 10.1021/jacs.4c01379 10.1021/jacs.8b10002 10.1002/adfm.202112674 10.1038/s41929-025-01323-8 10.1038/s41929-024-01266-6 10.1002/anie.202406947 10.1038/s41467-023-37404-0 10.1021/jacs.4c05165 10.1002/idm2.12059 10.1038/s41563-021-01006-2 10.1016/j.xcrp.2022.100910 10.1002/adfm.202009245 10.1002/anie.201809689 10.1002/anie.202414149 10.1021/jacs.4c05070 10.1002/anie.202212341 10.1038/s41467-024-44815-0 10.1038/318162a0 10.1016/j.checat.2022.08.010 10.1002/sia.6225 10.1039/D3CS00010A 10.1002/adma.19940061004 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/jacs.5c03577 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 20611 |
ExternalDocumentID | 40462764 10_1021_jacs_5c03577 c905480242 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW YQT YZZ ZCA ~02 AAYWT AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a283t-274e031fab0e20021f1f7a59db2d9df5e90b9332b5ec02f90f794a9c998ac9153 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Wed Jul 02 02:46:59 EDT 2025 Fri Jun 20 01:35:25 EDT 2025 Sun Aug 03 02:38:43 EDT 2025 Thu Jun 19 03:11:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a283t-274e031fab0e20021f1f7a59db2d9df5e90b9332b5ec02f90f794a9c998ac9153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3558-5227 0000-0002-8480-4203 0000-0002-6931-9613 0000-0003-4650-5226 0009-0001-6171-5718 0000-0001-7261-2098 0000-0002-1131-3585 0000-0002-8521-3237 |
PMID | 40462764 |
PQID | 3215572357 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3215572357 pubmed_primary_40462764 crossref_primary_10_1021_jacs_5c03577 acs_journals_10_1021_jacs_5c03577 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-18 |
PublicationDateYYYYMMDD | 2025-06-18 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref15/cit15 doi: 10.1126/science.adp6034 – ident: ref33/cit33 doi: 10.1002/aenm.202204346 – ident: ref24/cit24 doi: 10.1002/anie.202311352 – ident: ref17/cit17 doi: 10.1002/aenm.202400059 – ident: ref49/cit49 doi: 10.1016/j.elecom.2017.09.004 – ident: ref27/cit27 doi: 10.1007/s12274-022-4322-6 – ident: ref5/cit5 doi: 10.1038/s41929-019-0376-6 – ident: ref50/cit50 doi: 10.1016/j.electacta.2021.137902 – ident: ref19/cit19 doi: 10.1126/science.adg5193 – ident: ref53/cit53 doi: 10.1021/acsenergylett.4c00884 – ident: ref28/cit28 doi: 10.1002/aenm.202302438 – ident: ref56/cit56 doi: 10.1038/s41467-022-30766-x – ident: ref7/cit7 doi: 10.1038/nchem.2695 – ident: ref40/cit40 doi: 10.1039/D0CY00540A – ident: ref31/cit31 doi: 10.1126/science.abm9257 – ident: ref10/cit10 doi: 10.1039/D1EE01277K – ident: ref4/cit4 doi: 10.1038/nmat4778 – ident: ref32/cit32 doi: 10.1038/s41557-024-01626-6 – ident: ref55/cit55 doi: 10.1016/S1872-2067(20)63543-4 – ident: ref3/cit3 doi: 10.1126/science.ado9938 – ident: ref59/cit59 doi: 10.1002/anie.202419352 – ident: ref34/cit34 doi: 10.1002/anie.202112398 – ident: ref42/cit42 doi: 10.1038/s41565-024-01807-x – ident: ref12/cit12 doi: 10.1021/jacs.4c12705 – ident: ref52/cit52 doi: 10.1038/s41563-022-01380-5 – ident: ref41/cit41 doi: 10.1038/s41467-023-38126-z – ident: ref21/cit21 doi: 10.1038/s41467-022-33847-z – ident: ref36/cit36 doi: 10.1038/s41929-024-01165-w – ident: ref9/cit9 doi: 10.1021/acsenergylett.4c00701 – ident: ref25/cit25 doi: 10.1021/acssuschemeng.4c05296 – ident: ref51/cit51 doi: 10.1002/adfm.202301557 – ident: ref8/cit8 doi: 10.1002/adma.202412950 – ident: ref22/cit22 doi: 10.1038/s41586-022-04771-5 – ident: ref23/cit23 doi: 10.1038/s41586-022-05401-w – ident: ref46/cit46 doi: 10.1126/science.1211934 – ident: ref6/cit6 doi: 10.1016/j.matt.2019.09.011 – ident: ref60/cit60 doi: 10.1038/s41467-024-55150-9 – ident: ref47/cit47 doi: 10.1038/s41467-021-23390-8 – ident: ref54/cit54 doi: 10.1021/jacs.4c01379 – ident: ref48/cit48 doi: 10.1021/jacs.8b10002 – ident: ref43/cit43 doi: 10.1002/adfm.202112674 – ident: ref57/cit57 doi: 10.1038/s41929-025-01323-8 – ident: ref1/cit1 doi: 10.1038/s41929-024-01266-6 – ident: ref18/cit18 doi: 10.1002/anie.202406947 – ident: ref30/cit30 doi: 10.1038/s41467-023-37404-0 – ident: ref38/cit38 doi: 10.1021/jacs.4c05165 – ident: ref11/cit11 doi: 10.1002/idm2.12059 – ident: ref20/cit20 doi: 10.1038/s41563-021-01006-2 – ident: ref35/cit35 doi: 10.1016/j.xcrp.2022.100910 – ident: ref45/cit45 doi: 10.1002/adfm.202009245 – ident: ref44/cit44 doi: 10.1002/anie.201809689 – ident: ref29/cit29 doi: 10.1002/anie.202414149 – ident: ref14/cit14 doi: 10.1021/jacs.4c05070 – ident: ref58/cit58 doi: 10.1002/anie.202212341 – ident: ref16/cit16 doi: 10.1038/s41467-024-44815-0 – ident: ref26/cit26 doi: 10.1038/318162a0 – ident: ref13/cit13 doi: 10.1016/j.checat.2022.08.010 – ident: ref37/cit37 doi: 10.1002/sia.6225 – ident: ref2/cit2 doi: 10.1039/D3CS00010A – ident: ref39/cit39 doi: 10.1002/adma.19940061004 |
SSID | ssj0004281 |
Score | 2.4858136 |
Snippet | The scaling relationship among reaction intermediates with strongly correlated adsorption energy in the oxygen evolution reaction (OER) severely restricts the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 20600 |
Title | Breaking the Scaling Relationship in Water Oxidation Enabled by the Electron Buffering Effect of the Fullerene Network |
URI | http://dx.doi.org/10.1021/jacs.5c03577 https://www.ncbi.nlm.nih.gov/pubmed/40462764 https://www.proquest.com/docview/3215572357 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA4uB724L3Ujgh6npDOTyeTYllYR1EMtehuSTIJFmBanFfXX-94sikrR2zAkIeTlJd_LWz5CzkLpnDGaeaEWBp9uGOhcwDxrrIwV7KHQ4nvH9U10OQyvHvjDV4DsTw--j_WBTN7khgVciEWy7EexQCOr3R185T_6cauGuSKOgirA_WdvvIBM_v0CmoMqi9ulv04u6hydMqjkqTmb6qZ5_12y8Y-Jb5C1CmDSdrkjNsmCzbbISrfmddsmLx3AifhATgH70QHICL8_g-IeRxM6yug9YNBnevs6KjmXaK_IsUqpfiu69Sr2HNqZIcEKjlDWQaZjVzRA07YgXqE3ZaD5Dhn2e3fdS69iX_AUQI6pB-aqBY13SjNbRHK4lhOKy1T7qUwdt5JpGQS-5tYw30nmQLWVNGC_KSPhIN0lS9k4s_uEssC0bATYR0sbcheoSMcyRNokHjklbIOcwlollfbkSeEY98Ewwb_VCjbIeS22ZFIW4pjT7rSWaQILi-4PldnxLE8CQDdcYHmfBtkrhf05Uog5uiIKD_4xk0Oy6iMJMBIYxUdkafo8s8eATKb6pNiWH-rJ3Ro |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB0heqCX0hZaln5gJDgGeZ04iQ89wHbRUmA5ACq31Pba6qpSFpFdKP0v_Sv9bZ1xkkUgIfWC1FtkJZZjP3ve2ON5AFuJ8t5aw6PEZJa2bjjOuZhHzjqVa8RQ4mi_43iYDs6TLxfyYgF-t3dhsBEV1lSFQ_y77AKUJggLpeWxzLImhvLQ3d6gh1Z9OviMw7ktxH7_rDeIGhGBSKPlnEbodTkErteGuxCQ4Ls-01KNjBipkZdOcYNOvTDSWS684h4RqpVFN0Rb1SVRCFzhnyHvEeTb7fZO765dirzbsussT-Mmrv5ha8nu2eq-3XuEzAajtr8Mf-bdEWJZfuzMpmbH_nqQKfK_7a-X8KKh02y3xv8rWHDla1jqtSp2K3C9h6yYjgMYMl12ioik53kI4PfxJRuX7Csy7it28nNcK0yxfrhRNmLmNnzWb7SC2N6M5GSohjrrM5v48AI58kFmhg3rsPpVOH-S334Di-WkdGvAeGy7LkWmZ5RLpI91anKVkEiUTL3OXAc2cWyKZq2oihAGINANo9JmxDqw3aKluKzTjjzy3mYLpQI7lg57dOkms6qIkcvJjJIZdeBtjbF5TQndSM7SZP0fWrIBS4Oz46Pi6GB4-A6eC5I_Jumm_D0sTq9m7gNysqn5GGYGg29PDa2_Hxs_aA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BTtwwEB0hKtFeWkpb2BZaI5VjkDeJk_jQAyy7gkK3lSgqt9R2bLGqlF2R3QL9m_4KX8aMkywCCakXpN6ixLEceybzxjOeB_Axls4Zo3kQ69TQ1g1HnYt4YI2VmUIZii3td3wZJvsn8edTcboAf9uzMDiICnuqfBCftHpSuKbCAJUKwgfC8EikaZNHeWivLtBLqz4d7OGSboXhoP-9tx80RAKBQus5DdDzsii8TmlufVKC67pUCVnosJCFE1ZyjY59qIU1PHSSO5RSJQ26IsrILhFD4F_-CUUIyb_b6R3fHr0Ms26LsNMsiZrc-vujJdtnqru27wFA6w3b4AVcz6fE57P82p5N9bb5c69a5H89Z8vwvIHVbKfWg5ewYMsVeNpr2exewe9dRMcUFmCIeNkxSiZdz1MBz0YTNirZD0Te5-zr5ahmmmJ9f7KsYPrKv9ZvOIPY7oxoZaiHuvozGzvfgBx6TzfDhnV6_Ws4eZTPfgOL5bi0a8B4ZLo2QcSnpY2Fi1SiMxkTWZRInEptBzZxbfLmn1HlPh0gRHeM7jYr1oGtVmLySV1-5IF2m6045TixFPRRpR3PqjxCTCdSKmrUgdVazuY9xXQyOU3it_8wkg-w9G1vkB8dDA_fwbOQWJCJwSlbh8Xp-cxuIDSb6vdeORj8fGzJugHIhEHr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breaking+the+Scaling+Relationship+in+Water+Oxidation+Enabled+by+the+Electron+Buffering+Effect+of+the+Fullerene+Network&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Chen%2C+Xiang&rft.au=Ma%2C+Hao&rft.au=Wang%2C+Xing&rft.au=Jin%2C+Hongqiang&rft.date=2025-06-18&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=147&rft.issue=24&rft.spage=20600&rft.epage=20611&rft_id=info:doi/10.1021%2Fjacs.5c03577&rft.externalDocID=c905480242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |