In Situ Synchrotron-Based Studies of IrO2(110)–TiO2(110) under Harsh Acidic Water Splitting Conditions: Anodic Stability and Radiation Damages

In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are comp...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 126; no. 48; pp. 20243 - 20250
Main Authors Weber, Tim, Vonk, Vedran, Abb, Marcel J. S., Evertsson, Jonas, Stierle, Andreas, Lundgren, Edvin, Over, Herbert
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are complemented by ex situ scanning electron microscopy (SEM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) experiments. Even at an anodic current density of 250 mA·cm–2 during electrochemical water splitting, the IrO2(110)–TiO2(110) model electrode turned out to be stable against Ir dissolution. However, radiation-induced damages of the IrO2(110) film are observed: Part of the IrO2(110) film delaminates upon heavy exposure to the synchrotron beam, while subsequently the uncovered TiO2(110) is subject to further (photon-induced) corrosion. We propose that the X-ray photons induce oxygen vacancy formation by displacing O2– ions of TiO2 from regular to interstitial sites, while the potential drop across the TiO2(110) substrate leads to a migration of interstitial O2– ions from interface toward bulk TiO2. This reduction step at the interface between IrO2(110) and TiO2(110) weakens the adhesion of the epitaxially grown IrO2(110) film to the TiO2(110) substrate so that the strained IrO2(110) film is partially delaminated. Higher X-ray photon energies of 60–90 keV mitigate this degradation process.
AbstractList In situ stability studies of an IrO2(110)-TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are complemented by ex situ scanning electron microscopy (SEM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) experiments. Even at an anodic current density of 250 mA·cm-2during electrochemical water splitting, the IrO2(110)-TiO2(110) model electrode turned out to be stable against Ir dissolution. However, radiation-induced damages of the IrO2(110) film are observed: Part of the IrO2(110) film delaminates upon heavy exposure to the synchrotron beam, while subsequently the uncovered TiO2(110) is subject to further (photon-induced) corrosion. We propose that the X-ray photons induce oxygen vacancy formation by displacing O2-ions of TiO2from regular to interstitial sites, while the potential drop across the TiO2(110) substrate leads to a migration of interstitial O2-ions from interface toward bulk TiO2. This reduction step at the interface between IrO2(110) and TiO2(110) weakens the adhesion of the epitaxially grown IrO2(110) film to the TiO2(110) substrate so that the strained IrO2(110) film is partially delaminated. Higher X-ray photon energies of 60-90 keV mitigate this degradation process.
In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are complemented by ex situ scanning electron microscopy (SEM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) experiments. Even at an anodic current density of 250 mA·cm–2 during electrochemical water splitting, the IrO2(110)–TiO2(110) model electrode turned out to be stable against Ir dissolution. However, radiation-induced damages of the IrO2(110) film are observed: Part of the IrO2(110) film delaminates upon heavy exposure to the synchrotron beam, while subsequently the uncovered TiO2(110) is subject to further (photon-induced) corrosion. We propose that the X-ray photons induce oxygen vacancy formation by displacing O2– ions of TiO2 from regular to interstitial sites, while the potential drop across the TiO2(110) substrate leads to a migration of interstitial O2– ions from interface toward bulk TiO2. This reduction step at the interface between IrO2(110) and TiO2(110) weakens the adhesion of the epitaxially grown IrO2(110) film to the TiO2(110) substrate so that the strained IrO2(110) film is partially delaminated. Higher X-ray photon energies of 60–90 keV mitigate this degradation process.
Author Stierle, Andreas
Weber, Tim
Lundgren, Edvin
Evertsson, Jonas
Over, Herbert
Abb, Marcel J. S.
Vonk, Vedran
AuthorAffiliation Institute of Physical Chemistry
Fachbereich Physik University Hamburg
Center for Materials Research
Synchrotron Radiation Research
Justus Liebig University
AuthorAffiliation_xml – name: Fachbereich Physik University Hamburg
– name: Justus Liebig University
– name: Synchrotron Radiation Research
– name: Center for Materials Research
– name: Institute of Physical Chemistry
Author_xml – sequence: 1
  givenname: Tim
  surname: Weber
  fullname: Weber, Tim
  organization: Justus Liebig University
– sequence: 2
  givenname: Vedran
  orcidid: 0000-0001-9854-1101
  surname: Vonk
  fullname: Vonk, Vedran
– sequence: 3
  givenname: Marcel J. S.
  surname: Abb
  fullname: Abb, Marcel J. S.
  organization: Justus Liebig University
– sequence: 4
  givenname: Jonas
  surname: Evertsson
  fullname: Evertsson, Jonas
  organization: Institute of Physical Chemistry
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-0303-6282
  surname: Stierle
  fullname: Stierle, Andreas
  organization: Fachbereich Physik University Hamburg
– sequence: 6
  givenname: Edvin
  orcidid: 0000-0002-3692-6142
  surname: Lundgren
  fullname: Lundgren, Edvin
  organization: Synchrotron Radiation Research
– sequence: 7
  givenname: Herbert
  orcidid: 0000-0001-7689-7385
  surname: Over
  fullname: Over, Herbert
  email: over@uni-giessen.de
  organization: Justus Liebig University
BackLink https://lup.lub.lu.se/record/babf90f2-79fd-4872-b8ff-1531e1683f91$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/babf90f2-79fd-4872-b8ff-1531e1683f91$$DView record from Swedish Publication Index
BookMark eNqNUk2LFDEQbWQFd1fvHnNUcMZU0p_exnF1BwYW7BWPoZJOdjL0Jk2SRubmTxD2H_pLzOwO3gQPIUXl8d6ryrsozpx3uiheA10CZfAeVVzuJ6WWTNG6ZN2z4hw6zhZNWVVnf-uyeVFcxLintOIU-Hnxa-NIb9NM-oNTu-BT8G7xEaMeSJ_mwepIvCGbcMPeANC3v38-3NpTTWY36ECuMcQdWSk7WEW-Y8qtfhptStbdkbV3g03Wu_iBrJw_QvqE0ub3A0E3kK84WDwCyCe8xzsdXxbPDY5Rvzrdl8W3z1e36-vF9ubLZr3aLpC1kBYS2ka2vKIGZKcYVJzXvASAoUTTScM11Agt1I3Js7Km0i2amtVDqSrOuOSXBT7xxh96mqWYgr3HcBAerZh8SDiKoKPGoHZinEXUIqNGqx7NRiFRmo4aJprODKJsGyZka4zIRiBLt9x0kDW2_9QY5ykfeeL-T7p3T3T5r8Xez8HlBQmg4hgA8djMARCnAPA_Lu-oWg
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
CorporateAuthor Synkrotronljusfysik
Lunds universitet
Naturvetenskapliga fakulteten
LTH profilområden
Profile areas and other strong research environments
Fysiska institutionen
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Faculty of Science
Lund University
LTH Profile Area: Nanoscience and Semiconductor Technology
Synchrotron Radiation Research
LTH Profile areas
Department of Physics
Strategiska forskningsområden (SFO)
LTH profilområde: Avancerade ljuskällor
LTH Profile Area: Photon Science and Technology
Strategic research areas (SRA)
NanoLund: Centre for Nanoscience
LTH profilområde: Nanovetenskap och halvledarteknologi
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Synkrotronljusfysik
– name: LTH Profile Area: Nanoscience and Semiconductor Technology
– name: LTH Profile Area: Photon Science and Technology
– name: LTH profilområde: Nanovetenskap och halvledarteknologi
– name: Department of Physics
– name: LTH profilområde: Avancerade ljuskällor
– name: Synchrotron Radiation Research
– name: Strategic research areas (SRA)
– name: Lunds Tekniska Högskola
– name: Faculty of Science
– name: Lunds universitet
– name: Faculty of Engineering, LTH
– name: Profilområden och andra starka forskningsmiljöer
– name: LTH Profile areas
– name: LTH profilområden
– name: Lund University
– name: NanoLund: Centre for Nanoscience
– name: Profile areas and other strong research environments
– name: Fysiska institutionen
DBID ADTPV
AOWAS
D95
DOI 10.1021/acs.jpcc.2c06429
DatabaseName SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 20250
ExternalDocumentID oai_portal_research_lu_se_publications_babf90f2_79fd_4872_b8ff_1531e1683f91
oai_lup_lub_lu_se_babf90f2_79fd_4872_b8ff_1531e1683f91
e0922219
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
186
53G
6TJ
ABBLG
ABJNI
ABLBI
ACRPL
ADNMO
ADTPV
ADXHL
AEYZD
AFFNX
AGQPQ
ANPPW
ANTXH
AOWAS
CUPRZ
D95
EJD
LG6
UQL
ZCG
ID FETCH-LOGICAL-a281t-b187b8350f1b9c21533634111d4af9bf3e16a18167f005275e8af626d4c5323b3
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Thu Aug 21 06:35:58 EDT 2025
Thu Jul 03 05:19:53 EDT 2025
Sat Dec 10 03:10:27 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a281t-b187b8350f1b9c21533634111d4af9bf3e16a18167f005275e8af626d4c5323b3
ORCID 0000-0002-0303-6282
0000-0002-3692-6142
0000-0001-9854-1101
0000-0001-7689-7385
PageCount 8
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_babf90f2_79fd_4872_b8ff_1531e1683f91
swepub_primary_oai_lup_lub_lu_se_babf90f2_79fd_4872_b8ff_1531e1683f91
acs_journals_10_1021_acs_jpcc_2c06429
PublicationCentury 2000
PublicationDate 2022-12-08
PublicationDateYYYYMMDD 2022-12-08
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-08
  day: 08
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0053013
Score 2.427563
Snippet In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based...
In situ stability studies of an IrO2(110)-TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based...
SourceID swepub
acs
SourceType Open Access Repository
Publisher
StartPage 20243
SubjectTerms C: Energy Conversion and Storage
Chemical Sciences
Condensed Matter Physics
Condensed Matter Physics (including Material Physics, Nano Physics)
Den kondenserade materiens fysik
Den kondenserade materiens fysik (Här ingår: Materialfysik, nanofysik)
Fysik
Fysikalisk kemi
Fysikalisk kemi (Här ingår: Yt- och kolloidkemi)
Kemi
Natural Sciences
Naturvetenskap
Physical Chemistry
Physical Chemistry (including Surface- and Colloid Chemistry)
Physical Sciences
Title In Situ Synchrotron-Based Studies of IrO2(110)–TiO2(110) under Harsh Acidic Water Splitting Conditions: Anodic Stability and Radiation Damages
URI http://dx.doi.org/10.1021/acs.jpcc.2c06429
https://lup.lub.lu.se/record/babf90f2-79fd-4872-b8ff-1531e1683f91
oai:portal.research.lu.se:publications/babf90f2-79fd-4872-b8ff-1531e1683f91
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODCG3XLQ3MACQ5Z1s7L5rYsrbZIgMS2ouJixY6tXaDJKskeyomfgMQ_5Jcwk7gClR72YClKrJHtjD3feMafGXtaWpsi8PWRT52JiH0kkkrYKPPJxGWOuHTovPO799n8OHl7kp78pcm5GMEX_GVh2_GXtbVjYQksq6vsmshwDhMMmi3OV90UFTUeIsiIGJMkDyHJyySQIbLtBW7Q3p4c3BouJmp7GkJKI_k63nRmbL__T9K4RVNvs5sBVsJ00IM77Iqr7rLrs_Pb3O6xn4cVLFbdBhZnlV02Ne2AR6_RhJUQUgmh9nDYfBDP0VS_-P3j19EqPAOdM2tgji7wEqZ2Va4sfEKI2sACEWyfNw2zmkLfpMKvYFrVVAVhbJ94ewZFVcJH4kCgCvCmOMU1rL3Pjg_2j2bzKNzGEBVC8i4yXOYG8drEc6OsIJyYoQnkvEwKr4yPHc8KxAtZ7mmvOU-dLDy6S2Vi01jEJn7Adqq6crsMXJ55hd8pSpmoUiljZZFIgjoIcPhkxJ7hUOowm1rdB8oF1_1LHF8dxnfE9odfqNcDNYcmsuxvmzUWg0W3DsGA8Wrihc6VLzW6Z0Ib6b3G9nNssYy94iP2-RI5g_-jA-nSMshb_7ObupXwvS0785DdEHS0glJl5CO20zUb9xgBT2ee9Jr-B9Ya_As
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKOZQL_6hbCvgAEhyyrJ0_m9uytNqFtkjdrai4WLFjaxdoskqyh_bEIyDxhjwJM4kXUNVDOUSKHGs0cSaebzzjz4Q8z42JAfi6wMVWB8g-EgjJTZC4aGATi1w6uN_58CgZn0TvT-PTDcLWe2FAiRok1W0S_y-7AHuNbV-WxvS5Qcwsb5CbgEU4GvVwNF1PvjHYa9glkgE4RlHqM5NXSUB_ZOpLFKGtW9m_Q47_KNRWk3ztrxrdNxeXuBr_S-O75LYHmXTYWcU9smGL-2RrtD7b7QH5MSnodNGs6PS8MPOqxPXw4C04tJz6wkJaOjqpPvKX4Lhf_fr-c7bw9xR3nVV0DAHxnA7NIl8Y-gkAa0WngGfbKmo6KjERjgb9hg6LErsAqG3LcM9pVuT0GBkRsAN9l53BjFY_JCf7e7PROPBnMwQZF6wJNBOpBvQ2cExLwxE1JuAQGcujzEntQsuSDNBDkjpceU5jKzIHwVMemTjkoQ4fkc2iLOw2oTZNnITnmLOMZC6lNiKLBAIfgDts0CMvYCiV_7dq1abNOVNtI4yv8uPbI3vdl1TLjqhDIXX2t9USLg2Xqi1AA-3kwHGVSpcrCNa40sI5Bfoz0FiETrIe-XyFnC4aUp6Cae7lLf9ZW72W8J1rvswzsjWeHR6og8nRh8fkFsdNF1hEI3bJZlOt7BOAQo1-2hr_b1yrBHs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYALb8Ty9AEkOGRZO09zW7Zd7fIoiG2h4mLFL-22kERJ9lBO_AQk_iG_hJnEi1DVQzlYihxrNHHGns-e8WdCnhitYwC-LnCxVQGyjwSZ4DpIXDSyiUUuHTzv_G4vmR1Erw_jwy0Sb87CgBINSGq6ID6O6so4zzDAXmD9UaX1kGvEzeICuYhROzTs8WSxmYBjsNmwDyYDeIyi1Ecnz5KAPkk3p2hCO9cyvUY-_VWqyyg5Hq5bNdTfT_E1_rfW18lVDzbpuLeOG2TLFjfJ5cnmjrdb5Oe8oItVu6aLk0Iv6xL3xYNX4NgM9QmGtHR0Xr_nz8CBP__949f-yj9TPH1W0xksjJd0rFdmpelnAK41XQCu7bKp6aTEgDga9ks6LkpsAuC2S8c9oXlh6EdkRsAGdCf_BjNbc5scTHf3J7PA39EQ5DxjbaBYlipAcSPHlNAc0WMCjpExE-VOKBdaluSAIpLU4Q50Gtssd7CIMpGOQx6q8A7ZLsrC3iXUpokT8B5jl5EwQiid5VGGAAhgDxsNyFPoSunHWCO78DlnsquE_pW-fwdkt_-bsuoJOyRSaH9dV1AUFNlYgAjKiZHjMhXOSFi0caky5yToz0DjLHSCDciXM-T0qyLpqZiWXl71zx7ruYTfO-fHPCaXPuxM5dv53pv75ArHsxeYS5M9INttvbYPARG16lFn_38AxtAG_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Synchrotron-Based+Studies+of+IrO2%28110%29-TiO2%28110%29+under+Harsh+Acidic+Water+Splitting+Conditions&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Weber%2C+Tim&rft.au=Vonk%2C+Vedran&rft.au=Abb%2C+Marcel+J.S.&rft.au=Evertsson%2C+Jonas&rft.date=2022-12-08&rft.issn=1932-7447&rft.volume=126&rft.issue=48&rft.spage=20243&rft_id=info:doi/10.1021%2Facs.jpcc.2c06429&rft.externalDocID=oai_portal_research_lu_se_publications_babf90f2_79fd_4872_b8ff_1531e1683f91
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon