In Situ Synchrotron-Based Studies of IrO2(110)–TiO2(110) under Harsh Acidic Water Splitting Conditions: Anodic Stability and Radiation Damages
In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are comp...
Saved in:
Published in | Journal of physical chemistry. C Vol. 126; no. 48; pp. 20243 - 20250 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
08.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are complemented by ex situ scanning electron microscopy (SEM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) experiments. Even at an anodic current density of 250 mA·cm–2 during electrochemical water splitting, the IrO2(110)–TiO2(110) model electrode turned out to be stable against Ir dissolution. However, radiation-induced damages of the IrO2(110) film are observed: Part of the IrO2(110) film delaminates upon heavy exposure to the synchrotron beam, while subsequently the uncovered TiO2(110) is subject to further (photon-induced) corrosion. We propose that the X-ray photons induce oxygen vacancy formation by displacing O2– ions of TiO2 from regular to interstitial sites, while the potential drop across the TiO2(110) substrate leads to a migration of interstitial O2– ions from interface toward bulk TiO2. This reduction step at the interface between IrO2(110) and TiO2(110) weakens the adhesion of the epitaxially grown IrO2(110) film to the TiO2(110) substrate so that the strained IrO2(110) film is partially delaminated. Higher X-ray photon energies of 60–90 keV mitigate this degradation process. |
---|---|
AbstractList | In situ stability studies of an IrO2(110)-TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are complemented by ex situ scanning electron microscopy (SEM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) experiments. Even at an anodic current density of 250 mA·cm-2during electrochemical water splitting, the IrO2(110)-TiO2(110) model electrode turned out to be stable against Ir dissolution. However, radiation-induced damages of the IrO2(110) film are observed: Part of the IrO2(110) film delaminates upon heavy exposure to the synchrotron beam, while subsequently the uncovered TiO2(110) is subject to further (photon-induced) corrosion. We propose that the X-ray photons induce oxygen vacancy formation by displacing O2-ions of TiO2from regular to interstitial sites, while the potential drop across the TiO2(110) substrate leads to a migration of interstitial O2-ions from interface toward bulk TiO2. This reduction step at the interface between IrO2(110) and TiO2(110) weakens the adhesion of the epitaxially grown IrO2(110) film to the TiO2(110) substrate so that the strained IrO2(110) film is partially delaminated. Higher X-ray photon energies of 60-90 keV mitigate this degradation process. In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based techniques including surface X-ray diffraction (SXRD) and X-ray reflectometry (XRR) with a photon energy of 21.5 keV. These experiments are complemented by ex situ scanning electron microscopy (SEM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS) experiments. Even at an anodic current density of 250 mA·cm–2 during electrochemical water splitting, the IrO2(110)–TiO2(110) model electrode turned out to be stable against Ir dissolution. However, radiation-induced damages of the IrO2(110) film are observed: Part of the IrO2(110) film delaminates upon heavy exposure to the synchrotron beam, while subsequently the uncovered TiO2(110) is subject to further (photon-induced) corrosion. We propose that the X-ray photons induce oxygen vacancy formation by displacing O2– ions of TiO2 from regular to interstitial sites, while the potential drop across the TiO2(110) substrate leads to a migration of interstitial O2– ions from interface toward bulk TiO2. This reduction step at the interface between IrO2(110) and TiO2(110) weakens the adhesion of the epitaxially grown IrO2(110) film to the TiO2(110) substrate so that the strained IrO2(110) film is partially delaminated. Higher X-ray photon energies of 60–90 keV mitigate this degradation process. |
Author | Stierle, Andreas Weber, Tim Lundgren, Edvin Evertsson, Jonas Over, Herbert Abb, Marcel J. S. Vonk, Vedran |
AuthorAffiliation | Institute of Physical Chemistry Fachbereich Physik University Hamburg Center for Materials Research Synchrotron Radiation Research Justus Liebig University |
AuthorAffiliation_xml | – name: Fachbereich Physik University Hamburg – name: Justus Liebig University – name: Synchrotron Radiation Research – name: Center for Materials Research – name: Institute of Physical Chemistry |
Author_xml | – sequence: 1 givenname: Tim surname: Weber fullname: Weber, Tim organization: Justus Liebig University – sequence: 2 givenname: Vedran orcidid: 0000-0001-9854-1101 surname: Vonk fullname: Vonk, Vedran – sequence: 3 givenname: Marcel J. S. surname: Abb fullname: Abb, Marcel J. S. organization: Justus Liebig University – sequence: 4 givenname: Jonas surname: Evertsson fullname: Evertsson, Jonas organization: Institute of Physical Chemistry – sequence: 5 givenname: Andreas orcidid: 0000-0002-0303-6282 surname: Stierle fullname: Stierle, Andreas organization: Fachbereich Physik University Hamburg – sequence: 6 givenname: Edvin orcidid: 0000-0002-3692-6142 surname: Lundgren fullname: Lundgren, Edvin organization: Synchrotron Radiation Research – sequence: 7 givenname: Herbert orcidid: 0000-0001-7689-7385 surname: Over fullname: Over, Herbert email: over@uni-giessen.de organization: Justus Liebig University |
BackLink | https://lup.lub.lu.se/record/babf90f2-79fd-4872-b8ff-1531e1683f91$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/babf90f2-79fd-4872-b8ff-1531e1683f91$$DView record from Swedish Publication Index |
BookMark | eNqNUk2LFDEQbWQFd1fvHnNUcMZU0p_exnF1BwYW7BWPoZJOdjL0Jk2SRubmTxD2H_pLzOwO3gQPIUXl8d6ryrsozpx3uiheA10CZfAeVVzuJ6WWTNG6ZN2z4hw6zhZNWVVnf-uyeVFcxLintOIU-Hnxa-NIb9NM-oNTu-BT8G7xEaMeSJ_mwepIvCGbcMPeANC3v38-3NpTTWY36ECuMcQdWSk7WEW-Y8qtfhptStbdkbV3g03Wu_iBrJw_QvqE0ub3A0E3kK84WDwCyCe8xzsdXxbPDY5Rvzrdl8W3z1e36-vF9ubLZr3aLpC1kBYS2ka2vKIGZKcYVJzXvASAoUTTScM11Agt1I3Js7Km0i2amtVDqSrOuOSXBT7xxh96mqWYgr3HcBAerZh8SDiKoKPGoHZinEXUIqNGqx7NRiFRmo4aJprODKJsGyZka4zIRiBLt9x0kDW2_9QY5ykfeeL-T7p3T3T5r8Xez8HlBQmg4hgA8djMARCnAPA_Lu-oWg |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
CorporateAuthor | Synkrotronljusfysik Lunds universitet Naturvetenskapliga fakulteten LTH profilområden Profile areas and other strong research environments Fysiska institutionen Faculty of Engineering, LTH Lunds Tekniska Högskola Faculty of Science Lund University LTH Profile Area: Nanoscience and Semiconductor Technology Synchrotron Radiation Research LTH Profile areas Department of Physics Strategiska forskningsområden (SFO) LTH profilområde: Avancerade ljuskällor LTH Profile Area: Photon Science and Technology Strategic research areas (SRA) NanoLund: Centre for Nanoscience LTH profilområde: Nanovetenskap och halvledarteknologi Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Strategiska forskningsområden (SFO) – name: Synkrotronljusfysik – name: LTH Profile Area: Nanoscience and Semiconductor Technology – name: LTH Profile Area: Photon Science and Technology – name: LTH profilområde: Nanovetenskap och halvledarteknologi – name: Department of Physics – name: LTH profilområde: Avancerade ljuskällor – name: Synchrotron Radiation Research – name: Strategic research areas (SRA) – name: Lunds Tekniska Högskola – name: Faculty of Science – name: Lunds universitet – name: Faculty of Engineering, LTH – name: Profilområden och andra starka forskningsmiljöer – name: LTH Profile areas – name: LTH profilområden – name: Lund University – name: NanoLund: Centre for Nanoscience – name: Profile areas and other strong research environments – name: Fysiska institutionen |
DBID | ADTPV AOWAS D95 |
DOI | 10.1021/acs.jpcc.2c06429 |
DatabaseName | SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 20250 |
ExternalDocumentID | oai_portal_research_lu_se_publications_babf90f2_79fd_4872_b8ff_1531e1683f91 oai_lup_lub_lu_se_babf90f2_79fd_4872_b8ff_1531e1683f91 e0922219 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL UI2 UKR VF5 VG9 VQA W1F 186 53G 6TJ ABBLG ABJNI ABLBI ACRPL ADNMO ADTPV ADXHL AEYZD AFFNX AGQPQ ANPPW ANTXH AOWAS CUPRZ D95 EJD LG6 UQL ZCG |
ID | FETCH-LOGICAL-a281t-b187b8350f1b9c21533634111d4af9bf3e16a18167f005275e8af626d4c5323b3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Thu Aug 21 06:35:58 EDT 2025 Thu Jul 03 05:19:53 EDT 2025 Sat Dec 10 03:10:27 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a281t-b187b8350f1b9c21533634111d4af9bf3e16a18167f005275e8af626d4c5323b3 |
ORCID | 0000-0002-0303-6282 0000-0002-3692-6142 0000-0001-9854-1101 0000-0001-7689-7385 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_babf90f2_79fd_4872_b8ff_1531e1683f91 swepub_primary_oai_lup_lub_lu_se_babf90f2_79fd_4872_b8ff_1531e1683f91 acs_journals_10_1021_acs_jpcc_2c06429 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-08 |
PublicationDateYYYYMMDD | 2022-12-08 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0053013 |
Score | 2.427563 |
Snippet | In situ stability studies of an IrO2(110)–TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based... In situ stability studies of an IrO2(110)-TiO2(110) model electrode are carried out under acidic water electrolysis conditions, employing synchrotron-based... |
SourceID | swepub acs |
SourceType | Open Access Repository Publisher |
StartPage | 20243 |
SubjectTerms | C: Energy Conversion and Storage Chemical Sciences Condensed Matter Physics Condensed Matter Physics (including Material Physics, Nano Physics) Den kondenserade materiens fysik Den kondenserade materiens fysik (Här ingår: Materialfysik, nanofysik) Fysik Fysikalisk kemi Fysikalisk kemi (Här ingår: Yt- och kolloidkemi) Kemi Natural Sciences Naturvetenskap Physical Chemistry Physical Chemistry (including Surface- and Colloid Chemistry) Physical Sciences |
Title | In Situ Synchrotron-Based Studies of IrO2(110)–TiO2(110) under Harsh Acidic Water Splitting Conditions: Anodic Stability and Radiation Damages |
URI | http://dx.doi.org/10.1021/acs.jpcc.2c06429 https://lup.lub.lu.se/record/babf90f2-79fd-4872-b8ff-1531e1683f91 oai:portal.research.lu.se:publications/babf90f2-79fd-4872-b8ff-1531e1683f91 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODCG3XLQ3MACQ5Z1s7L5rYsrbZIgMS2ouJixY6tXaDJKskeyomfgMQ_5Jcwk7gClR72YClKrJHtjD3feMafGXtaWpsi8PWRT52JiH0kkkrYKPPJxGWOuHTovPO799n8OHl7kp78pcm5GMEX_GVh2_GXtbVjYQksq6vsmshwDhMMmi3OV90UFTUeIsiIGJMkDyHJyySQIbLtBW7Q3p4c3BouJmp7GkJKI_k63nRmbL__T9K4RVNvs5sBVsJ00IM77Iqr7rLrs_Pb3O6xn4cVLFbdBhZnlV02Ne2AR6_RhJUQUgmh9nDYfBDP0VS_-P3j19EqPAOdM2tgji7wEqZ2Va4sfEKI2sACEWyfNw2zmkLfpMKvYFrVVAVhbJ94ewZFVcJH4kCgCvCmOMU1rL3Pjg_2j2bzKNzGEBVC8i4yXOYG8drEc6OsIJyYoQnkvEwKr4yPHc8KxAtZ7mmvOU-dLDy6S2Vi01jEJn7Adqq6crsMXJ55hd8pSpmoUiljZZFIgjoIcPhkxJ7hUOowm1rdB8oF1_1LHF8dxnfE9odfqNcDNYcmsuxvmzUWg0W3DsGA8Wrihc6VLzW6Z0Ib6b3G9nNssYy94iP2-RI5g_-jA-nSMshb_7ObupXwvS0785DdEHS0glJl5CO20zUb9xgBT2ee9Jr-B9Ya_As |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKOZQL_6hbCvgAEhyyrJ0_m9uytNqFtkjdrai4WLFjaxdoskqyh_bEIyDxhjwJM4kXUNVDOUSKHGs0cSaebzzjz4Q8z42JAfi6wMVWB8g-EgjJTZC4aGATi1w6uN_58CgZn0TvT-PTDcLWe2FAiRok1W0S_y-7AHuNbV-WxvS5Qcwsb5CbgEU4GvVwNF1PvjHYa9glkgE4RlHqM5NXSUB_ZOpLFKGtW9m_Q47_KNRWk3ztrxrdNxeXuBr_S-O75LYHmXTYWcU9smGL-2RrtD7b7QH5MSnodNGs6PS8MPOqxPXw4C04tJz6wkJaOjqpPvKX4Lhf_fr-c7bw9xR3nVV0DAHxnA7NIl8Y-gkAa0WngGfbKmo6KjERjgb9hg6LErsAqG3LcM9pVuT0GBkRsAN9l53BjFY_JCf7e7PROPBnMwQZF6wJNBOpBvQ2cExLwxE1JuAQGcujzEntQsuSDNBDkjpceU5jKzIHwVMemTjkoQ4fkc2iLOw2oTZNnITnmLOMZC6lNiKLBAIfgDts0CMvYCiV_7dq1abNOVNtI4yv8uPbI3vdl1TLjqhDIXX2t9USLg2Xqi1AA-3kwHGVSpcrCNa40sI5Bfoz0FiETrIe-XyFnC4aUp6Cae7lLf9ZW72W8J1rvswzsjWeHR6og8nRh8fkFsdNF1hEI3bJZlOt7BOAQo1-2hr_b1yrBHs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkYALb8Ty9AEkOGRZO09zW7Zd7fIoiG2h4mLFL-22kERJ9lBO_AQk_iG_hJnEi1DVQzlYihxrNHHGns-e8WdCnhitYwC-LnCxVQGyjwSZ4DpIXDSyiUUuHTzv_G4vmR1Erw_jwy0Sb87CgBINSGq6ID6O6so4zzDAXmD9UaX1kGvEzeICuYhROzTs8WSxmYBjsNmwDyYDeIyi1Ecnz5KAPkk3p2hCO9cyvUY-_VWqyyg5Hq5bNdTfT_E1_rfW18lVDzbpuLeOG2TLFjfJ5cnmjrdb5Oe8oItVu6aLk0Iv6xL3xYNX4NgM9QmGtHR0Xr_nz8CBP__949f-yj9TPH1W0xksjJd0rFdmpelnAK41XQCu7bKp6aTEgDga9ks6LkpsAuC2S8c9oXlh6EdkRsAGdCf_BjNbc5scTHf3J7PA39EQ5DxjbaBYlipAcSPHlNAc0WMCjpExE-VOKBdaluSAIpLU4Q50Gtssd7CIMpGOQx6q8A7ZLsrC3iXUpokT8B5jl5EwQiid5VGGAAhgDxsNyFPoSunHWCO78DlnsquE_pW-fwdkt_-bsuoJOyRSaH9dV1AUFNlYgAjKiZHjMhXOSFi0caky5yToz0DjLHSCDciXM-T0qyLpqZiWXl71zx7ruYTfO-fHPCaXPuxM5dv53pv75ArHsxeYS5M9INttvbYPARG16lFn_38AxtAG_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Synchrotron-Based+Studies+of+IrO2%28110%29-TiO2%28110%29+under+Harsh+Acidic+Water+Splitting+Conditions&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Weber%2C+Tim&rft.au=Vonk%2C+Vedran&rft.au=Abb%2C+Marcel+J.S.&rft.au=Evertsson%2C+Jonas&rft.date=2022-12-08&rft.issn=1932-7447&rft.volume=126&rft.issue=48&rft.spage=20243&rft_id=info:doi/10.1021%2Facs.jpcc.2c06429&rft.externalDocID=oai_portal_research_lu_se_publications_babf90f2_79fd_4872_b8ff_1531e1683f91 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |