Optimization techniques and applications with examples

A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniquesin op...

Full description

Saved in:
Bibliographic Details
Main Author Yang, Xin-She
Format eBook Book
LanguageEnglish
Published Hoboken, N.J Wiley 2018
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition1
Subjects
Online AccessGet full text
ISBN9781119490548
1119490545
1119490626
9781119490623
DOI10.1002/9781119490616

Cover

Abstract A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniquesin optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book's exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: * Offers an accessible and state-of-the-art introduction to the main optimization techniques * Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques * Presents a balance of theory, algorithms, and implementation * Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniquesin optimization.
AbstractList A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniquesin optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author—a noted expert in the field—covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book's exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: * Offers an accessible and state-of-the-art introduction to the main optimization techniques * Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques * Presents a balance of theory, algorithms, and implementation * Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniquesin optimization.
A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and computer sciences Optimization Techniques and Applications with Examples introduces the fundamentals of all the commonly used techniques in optimization that encompass the broadness and diversity of the methods (traditional and new) and algorithms. The author a noted expert in the field covers a wide range of topics including mathematical foundations, optimization formulation, optimality conditions, algorithmic complexity, linear programming, convex optimization, and integer programming. In addition, the book discusses artificial neural network, clustering and classifications, constraint-handling, queueing theory, support vector machine and multi-objective optimization, evolutionary computation, nature-inspired algorithms and many other topics. Designed as a practical resource, all topics are explained in detail with step-by-step examples to show how each method works. The book s exercises test the acquired knowledge that can be potentially applied to real problem solving. By taking an informal approach to the subject, the author helps readers to rapidly acquire the basic knowledge in optimization, operational research, and applied data mining. This important resource: Offers an accessible and state-of-the-art introduction to the main optimization techniques Contains both traditional optimization techniques and the most current algorithms and swarm intelligence-based techniques Presents a balance of theory, algorithms, and implementation Includes more than 100 worked examples with step-by-step explanations Written for upper undergraduates and graduates in a standard course on optimization, operations research and data mining, Optimization Techniques and Applications with Examples is a highly accessible guide to understanding the fundamentals of all the commonly used techniques in optimization.
Author Yang, Xin-She
Author_xml – sequence: 1
  fullname: Yang, Xin-She
BackLink https://cir.nii.ac.jp/crid/1130282269001071488$$DView record in CiNii
BookMark eNqVkL1PwzAQxY2gCFo6MrFkQEIMhbuz48QjVOVDQuqCEFvkxg41TZNQB4r463E_EKwsd7r3fnq6uy7bq-rKMnaMcIEAdKmSFBGVUCBR7rDuzwDPu6z_a8Yi7bAuAaaAKkG5H0gQIgkAJAes7_0rhLgQEks4ZHLctG7uvnTr6ipqbT6t3Nu79ZGuTKSbpnT52vLR0rXTyH7qeVNaf8Q6hS697W97jz3djB6Hd4OH8e398OphoClFIQZGKGUmNAFT5NqYnIgmRUKJEqSDAAVJVFoITlwnHKTiRitVFBJ5QQY577HzTbD2M7v007psffZR2kldz3z25yf0DxZUYM82bLOoV_e22RrLbdUudJmNrodxDCKsGciTLWkXpX2ps22cijlicE83buVclrtVDSpQSiQVQPg5ijTl3_WxfyM
ContentType eBook
Book
DBID RYH
YSPEL
DEWEY 519.6
DOI 10.1002/9781119490616
DatabaseName CiNii Complete
Perlego
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Mathematics
EISBN 111949060X
9781119490609
1119490626
9781119490623
Edition 1
1st
ExternalDocumentID 9781119490623
9781119490609
EBC5504942
995311
BB2841949X
Genre Electronic books
GroupedDBID 20A
38.
3XM
AABBV
ABARN
ABQPQ
ACBYE
ACLGV
ADVEM
AERYV
AFOJC
AFPKT
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
BKCNH
CZZ
DDFSZ
DDKCW
GEOUK
IVUIE
JFSCD
KKBTI
LQKAK
LWYJN
LYPXV
MTLMD
RYH
W1A
WIIVT
YPLAZ
YSPEL
ZEEST
ACCPI
ID FETCH-LOGICAL-a28144-d499db2b0dfcaddc222bf727942acad0f2619a44323a730693da99ff613f2d133
ISBN 9781119490548
1119490545
1119490626
9781119490623
IngestDate Mon Feb 10 07:36:56 EST 2025
Fri Nov 08 05:40:58 EST 2024
Wed Sep 17 03:34:47 EDT 2025
Tue Sep 02 23:17:44 EDT 2025
Fri Jun 27 00:50:15 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2018019716
LCCallNum_Ident QA402.5 .Y364 2018
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a28144-d499db2b0dfcaddc222bf727942acad0f2619a44323a730693da99ff613f2d133
Notes Includes bibliographical references and index
OCLC 1044778107
PQID EBC5504942
PageCount 1 online resource
ParticipantIDs askewsholts_vlebooks_9781119490623
askewsholts_vlebooks_9781119490609
proquest_ebookcentral_EBC5504942
perlego_books_995311
nii_cinii_1130282269001071488
PublicationCentury 2000
PublicationDate 2018
2018-08-30
2018-09-24
PublicationDateYYYYMMDD 2018-01-01
2018-08-30
2018-09-24
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Hoboken, N.J
PublicationPlace_xml – name: Hoboken, N.J
– name: Newark
PublicationYear 2018
Publisher Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0002061560
Score 2.4106815
Snippet A guide to modern optimization applications and techniques in newly emerging areas spanning optimization, data science, machine intelligence, engineering, and...
SourceID askewsholts
proquest
perlego
nii
SourceType Aggregation Database
Publisher
SubjectTerms Mathematical optimization
TableOfContents 3.2.3 Steepest Descent Method -- 3.2.4 Line Search -- 3.2.5 Conjugate Gradient Method -- 3.2.6 Stochastic Gradient Descent -- 3.2.7 Subgradient Method -- 3.3 Gradient-Free Nelder-Mead Method -- 3.3.1 A Simplex -- 3.3.2 Nelder-Mead Downhill Simplex Method -- Exercises -- Bibliography -- Chapter 4 Constrained Optimization -- 4.1 Mathematical Formulation -- 4.2 Lagrange Multipliers -- 4.3 Slack Variables -- 4.4 Generalized Reduced GradientMethod -- 4.5 KKT Conditions -- 4.6 Penalty Method -- Exercises -- Bibliography -- Chapter 5 Optimization Techniques: Approximation Methods -- 5.1 BFGS Method -- 5.2 Trust-Region Method -- 5.2 Trust-Region Method -- 5.3 Sequential Quadratic Programming -- 5.3.1 Quadratic Programming -- 5.3.2 SQP Procedure -- 5.4 Convex Optimization -- 5.5 Equality Constrained Optimization -- 5.6 Barrier Functions -- 5.7 Interior-Point Methods -- 5.8 Stochastic and Robust Optimization -- Exercises -- Bibliography -- Part III Applied Optimization -- Chapter 6 Linear Programming -- 6.1 Introduction -- 6.2 Simplex Method -- 6.2.1 Slack Variables -- 6.2.2 Standard Formulation -- 6.2.3 Duality -- 6.3 Worked Example by Simplex Method -- 6.4 Interior-Point Method for LP -- Exercises -- Bibliography -- Chapter 7 Integer Programming -- 7.1 Integer Linear Programming -- 7.1.1 Review of LP -- 7.1.2 Integer LP -- 7.2 LP Relaxation -- 7.3 Branch and Bound -- 7.3.1 How to Branch -- 7.4 Mixed Integer Programming -- 7.5 Applications of LP, IP, and MIP -- 7.5.1 Transport Problem -- 7.5.2 Product Portfolio -- 7.5.3 Scheduling -- 7.5.4 Knapsack Problem -- 7.5.5 Traveling Salesman Problem -- Exercises -- Bibliography -- Chapter 8 Regression and Regularization -- 8.1 Sample Mean and Variance -- 8.2 Regression Analysis -- 8.2.1 Maximum Likelihood -- 8.2.2 Regression -- 8.2.3 Linearization -- 8.2.4 Generalized Linear Regression -- 8.2.5 Goodness of Fit
8.3 Nonlinear Least Squares -- 8.3.1 Gauss-Newton Algorithm -- 8.3.2 Levenberg-Marquardt Algorithm -- 8.3.3 Weighted Least Squares -- 8.4 Over-fitting and Information Criteria -- 8.5 Regularization and Lasso Method -- 8.6 Logistic Regression -- 8.7 Principal Component Analysis -- Exercises -- Bibliography -- Chapter 9 Machine Learning Algorithms -- 9.1 DataMining -- 9.1.1 Hierarchy Clustering -- 9.1.2 k-Means Clustering -- 9.1.3 DistanceMetric -- 9.2 DataMining for Big Data -- 9.2.1 Characteristics of Big Data -- 9.2.2 Statistical Nature of Big Data -- 9.2.3 Mining Big Data -- 9.3 Artificial Neural Networks -- 9.3.1 Neuron Model -- 9.3.2 Neural Networks -- 9.3.3 Back Propagation Algorithm -- 9.3.4 Loss Functions in ANN -- 9.3.5 Stochastic Gradient Descent -- 9.3.6 Restricted Boltzmann Machine -- 9.4 Support Vector Machines -- 9.4.1 Statistical Learning Theory -- 9.4.2 Linear Support Vector Machine -- 9.4.3 Kernel Functions and Nonlinear SVM -- 9.5 Deep Learning -- 9.5.1 Learning -- 9.5.2 Deep Neural Nets -- 9.5.3 Tuning of Hyper-Parameters -- Exercises -- Bibliography -- Chapter 10 Queueing Theory and Simulation -- 10.1 Introduction -- 10.1.1 Components of Queueing -- 10.1.2 Notations -- 10.2 Arrival Model -- 10.2.1 Poisson Distribution -- 10.2.2 Inter-arrival Time -- 10.3 Service Model -- 10.3.1 Exponential Distribution -- 10.3.2 Service Time Model -- 10.3.3 Erlang Distribution -- 10.4 Basic Queueing Model -- 10.4.1 M/M/1 Queue -- 10.4.2 M/M/s Queue -- 10.5 Little's Law -- 10.6 Queue Management and Optimization -- Exercises -- Bibliography -- Part IV Advanced Topics -- Chapter 11 Multiobjective Optimization -- 11.1 Introduction -- 11.2 Pareto Front and Pareto Optimality -- 11.3 Choice and Challenges -- 11.4 Transformation to Single Objective Optimization -- 11.4.1 Weighted SumMethod -- 11.4.2 Utility Function -- 11.5 The -Constraint Method
Intro -- Title Page -- Copyright Page -- Contents -- List of Figures -- List of Tables -- Preface -- Acknowledgements -- Acronyms -- Introduction -- Part I Fundamentals -- Chapter 1 Mathematical Foundations -- 1.1 Functions and Continuity -- 1.1.1 Functions -- 1.1.2 Continuity -- 1.1.3 Upper and Lower Bounds -- 1.2 Review of Calculus -- 1.2.1 Differentiation -- 1.2.2 Taylor Expansions -- 1.2.3 Partial Derivatives -- 1.2.4 Lipschitz Continuity -- 1.2.5 Integration -- 1.3 Vectors -- 1.3.1 Vector Algebra -- 1.3.2 Norms -- 1.3.3 2D Norms -- 1.4 Matrix Algebra -- 1.4.1 Matrices -- 1.4.2 Determinant -- 1.4.3 Rank of a Matrix -- 1.4.4 Frobenius Norm -- 1.5 Eigenvalues and Eigenvectors -- 1.5.1 Definiteness -- 1.5.2 Quadratic Form -- 1.6 Optimization and Optimality -- 1.6.1 Minimum and Maximum -- 1.6.2 Feasible Solution -- 1.6.3 Gradient and Hessian Matrix -- 1.6.4 Optimality Conditions -- 1.7 General Formulation of Optimization Problems -- Exercises -- Further Reading -- Chapter 2 Algorithms, Complexity, and Convexity -- 2.1 What Is an Algorithm? -- 2.2 Order Notations -- 2.3 Convergence Rate -- 2.4 Computational Complexity -- 2.4.1 Time and Space Complexity -- 2.4.2 Class P -- 2.4.3 Class NP -- 2.4.4 NP-Completeness -- 2.4.5 Complexity of Algorithms -- 2.5 Convexity -- 2.5.1 Linear and Affine Functions -- 2.5.2 Convex Functions -- 2.5.3 Subgradients -- 2.6 Stochastic Nature in Algorithms -- 2.6.1 Algorithms with Randomization -- 2.6.2 Random Variables -- 2.6.3 Poisson Distribution and Gaussian Distribution -- 2.6.4 Monte Carlo -- 2.6.5 Common Probability Distributions -- Exercises -- Bibliography -- Part II Optimization Techniques and Algorithms -- Chapter 3 Optimization -- 3.1 Unconstrained Optimization -- 3.1.1 Univariate Functions -- 3.1.2 Multivariate Functions -- 3.2 Gradient-Based Methods -- 3.2.1 Newton's Method -- 3.2.2 Convergence Analysis
11.6 Evolutionary Approaches -- 11.6.1 Metaheuristics -- 11.6.2 Non-Dominated Sorting Genetic Algorithm -- Exercises -- Bibliography -- Chapter 12 Constraint-Handling Techniques -- 12.1 Introduction and Overview -- 12.2 Method of Lagrange Multipliers -- 12.3 Barrier Function Method -- 12.4 Penalty Method -- 12.5 Equality Constraints via Tolerance -- 12.6 Feasibility Criteria -- 12.7 Stochastic Ranking -- 12.8 Multiobjective Constraint-Handling and Ranking -- Exercises -- Bibliography -- Part V Evolutionary Computation and Nature-Inspired Algorithms -- Chapter 13 Evolutionary Algorithms -- 13.1 Evolutionary Computation -- 13.2 Evolutionary Strategy -- 13.3 Genetic Algorithms -- 13.3.1 Basic Procedure -- 13.3.2 Choice of Parameters -- 13.4 Simulated Annealing -- 13.5 Differential Evolution -- Exercises -- Bibliography -- Chapter 14 Nature-Inspired Algorithms -- 14.1 Introduction to SI -- 14.2 Ant and Bee Algorithms -- 14.3 Particle Swarm Optimization -- 14.3.1 Accelerated PSO -- 14.3.2 Binary PSO -- 14.4 Firefly Algorithm -- 14.5 Cuckoo Search -- 14.5.1 CS Algorithm -- 14.5.2 Lévy Flight -- 14.5.3 Advantages of CS -- 14.6 Bat Algorithm -- 14.7 Flower Pollination Algorithm -- 14.8 Other Algorithms -- Exercises -- Bibliography -- Appendix A Notes on Software Packages -- A.1 Software Packages -- A.2 Matlab Codes in This Book -- A.3 Optimization Software -- A.4 DataMining Software -- A.5 Machine Learning Software -- Appendix B Problem Solutions -- Solutions for Chapter 1 -- Solutions for Chapter 2 -- Solutions for Chapter 3 -- Solutions for Chapter 4 -- Solutions for Chapter 5 -- Solutions for Chapter 6 -- Solutions for Chapter 7 -- Solutions for Chapter 8 -- Solutions for Chapter 9 -- Solutions for Chapter 10 -- Solutions for Chapter 11 -- Solutions for Chapter 12 -- Solutions for Chapter 13 -- Solutions for Chapter 14 -- Index -- EULA
Title Optimization techniques and applications with examples
URI https://cir.nii.ac.jp/crid/1130282269001071488
https://www.perlego.com/book/995311/optimization-techniques-and-applications-with-examples-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5504942
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781119490609&uid=none
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781119490623
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CcqEnfoqOMUUTtyngJI4bX4uK0CTGAZjKKbKdmFVAmGg3Tfvr9zk1aShIMC5W4ji28r3kvffZec9E-0wYEcGQhqmKipCb1IaZhUBMPzVZplIujIt3Pv0mTi7511E6mu8FWEeXTPWB-ftiXMl7pIo6yNVFyf6HZJtOUYFjyBclJIxywfltTmfCPcOHfucjKL80aVhn6ZbbS9Kzadbyj3I5gBvv-crPEY_GVXj-o2wT_yhbIP611njCBqG2JJfwwbIXdeMs1-q8nYgWclDXVm0wgMFy10fLtNzvZx1agYEcnjYTV7FzggSrd13y46U-d1Yzvk9misaHT8brUldNbqC9odmnE5jzajwG8fhZPtyW1_fPzGFt4y_WqOPiPtZpqaw2qNvK07hJoo13MMc7AN5BG-_A4R084r1F34-HF0cnod9wIlRxBmYZFuB_hY41K6yB4jdwnrSFhyd5rFDBrOObivMkThRUo5BJoaS0Fj6RjQvQ_W3qVPdVuUOBYKXLo8NMpBhPrNZC6zS1rOCgjFLwHn1uQZH_vq0Xxyd5Cy8m39AoTnq0BxhzM3Zl5Bai4fQJ6dh-H2Q369GmBzj3d0so3qhHwSPaed2t_xs4Hw6OQFs5nvnDKz3v0ur8xfxInenDr3IPPtpUf_JvzT8gjDCK
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Optimization+techniques+and+applications+with+examples&rft.au=Yang%2C+Xin-She&rft.date=2018-01-01&rft.pub=Wiley&rft.isbn=9781119490548&rft_id=info:doi/10.1002%2F9781119490616&rft.externalDocID=BB2841949X
thumbnail_l http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fwiley_hlvwyirv%2F9781119490623.jpg
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811194%2F9781119490609.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811194%2F9781119490623.jpg