In Situ/Operando Spectroscopic Techniques for Nonaqueous Lithium-Based Batteries

Nonaqueous lithium-based batteries have become a dominating stream of modern energy storage systems. Understanding the physicochemical processes and mechanisms of the electrode evolution and interfacial reactions in lithium batteries is highly desired to further improve their capabilities. Compared...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 128; no. 49; pp. 20693 - 20719
Main Authors Wang, Yuan, Dong, Yiqing, Li, Wanxia, Huang, Fanyang, Jie, Yulin, Chen, Yawei, Lei, Zhanwu, Zhu, Xingbao, Cao, Ruiguo, Jiao, Shuhong
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.12.2024
Online AccessGet full text
ISSN1932-7447
1932-7455
DOI10.1021/acs.jpcc.4c05893

Cover

Abstract Nonaqueous lithium-based batteries have become a dominating stream of modern energy storage systems. Understanding the physicochemical processes and mechanisms of the electrode evolution and interfacial reactions in lithium batteries is highly desired to further improve their capabilities. Compared with ex situ testing techniques, in situ/operando spectroscopic techniques are of significant importance in battery research because they can provide more dynamic and transient information under working conditions. Herein, in this review we systematically introduce various in situ/operando spectroscopic techniques for the research and development of nonaqueous Li batteries, including infrared (IR) spectroscopy, Raman scattering (Raman) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, sum frequency generation vibrational spectroscopy (SFG-VS) and X-ray absorption spectroscopy (XAS). The recent advances of these techniques, especially their applications in studying electrode materials and electrode–electrolyte interphases, have been comprehensively summarized. Finally, we propose future potential applications of these spectroscopic techniques for battery research.
AbstractList Nonaqueous lithium-based batteries have become a dominating stream of modern energy storage systems. Understanding the physicochemical processes and mechanisms of the electrode evolution and interfacial reactions in lithium batteries is highly desired to further improve their capabilities. Compared with ex situ testing techniques, in situ/operando spectroscopic techniques are of significant importance in battery research because they can provide more dynamic and transient information under working conditions. Herein, in this review we systematically introduce various in situ/operando spectroscopic techniques for the research and development of nonaqueous Li batteries, including infrared (IR) spectroscopy, Raman scattering (Raman) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, sum frequency generation vibrational spectroscopy (SFG-VS) and X-ray absorption spectroscopy (XAS). The recent advances of these techniques, especially their applications in studying electrode materials and electrode–electrolyte interphases, have been comprehensively summarized. Finally, we propose future potential applications of these spectroscopic techniques for battery research.
Author Chen, Yawei
Cao, Ruiguo
Jie, Yulin
Li, Wanxia
Wang, Yuan
Lei, Zhanwu
Jiao, Shuhong
Dong, Yiqing
Huang, Fanyang
Zhu, Xingbao
AuthorAffiliation Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering
University of Science and Technology of China
Hefei Gotion High-Tech Power Energy Co., Ltd
Key Laboratory of Precision and Intelligent Chemistry
AuthorAffiliation_xml – sequence: 0
  name: Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering
– sequence: 0
  name: University of Science and Technology of China
– sequence: 0
  name: Key Laboratory of Precision and Intelligent Chemistry
– sequence: 0
  name: Hefei Gotion High-Tech Power Energy Co., Ltd
Author_xml – sequence: 1
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: Key Laboratory of Precision and Intelligent Chemistry
– sequence: 2
  givenname: Yiqing
  surname: Dong
  fullname: Dong, Yiqing
  organization: Key Laboratory of Precision and Intelligent Chemistry
– sequence: 3
  givenname: Wanxia
  surname: Li
  fullname: Li, Wanxia
  organization: Key Laboratory of Precision and Intelligent Chemistry
– sequence: 4
  givenname: Fanyang
  surname: Huang
  fullname: Huang, Fanyang
  organization: Key Laboratory of Precision and Intelligent Chemistry
– sequence: 5
  givenname: Yulin
  surname: Jie
  fullname: Jie, Yulin
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Yawei
  surname: Chen
  fullname: Chen, Yawei
  organization: Key Laboratory of Precision and Intelligent Chemistry
– sequence: 7
  givenname: Zhanwu
  surname: Lei
  fullname: Lei, Zhanwu
  organization: Key Laboratory of Precision and Intelligent Chemistry
– sequence: 8
  givenname: Xingbao
  surname: Zhu
  fullname: Zhu, Xingbao
  organization: Hefei Gotion High-Tech Power Energy Co., Ltd
– sequence: 9
  givenname: Ruiguo
  orcidid: 0000-0002-3177-3917
  surname: Cao
  fullname: Cao, Ruiguo
  email: rgcao@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Shuhong
  orcidid: 0000-0003-0860-4151
  surname: Jiao
  fullname: Jiao, Shuhong
  email: jiaosh@ustc.edu.cn
  organization: Key Laboratory of Precision and Intelligent Chemistry
BookMark eNp9kEtPwzAMgCMEEtvgzrE_gG55tWuPbOIxaWJIG-fKdRMt05aUJD3w7-nYxAEJTrZlf5b9DcmldVYRcsfomFHOJoBhvGsRxxJpVpTiggxYKXg6lVl2-ZPL6TUZhrCjNBOUiQF5W9hkbWI3WbXKg21csm4VRu8CutZgslG4teajUyHRzievzkJfuC4kSxO3pjukMwiqSWYQo_JGhRtypWEf1O05jsj70-Nm_pIuV8-L-cMyBV7QmKoMQfJpgVzwUmc55FpirpkUGVBZa47Ac6p4WdZCQs4aJRoh65qJQuclajEi9LQX-1uDV7pqvTmA_6wYrY5Gqt5IdTRSnY30SP4LQRMhGmejB7P_D7w_gd8d13nbf_b3-Bf16npx
CitedBy_id crossref_primary_10_1002_aenm_202405253
crossref_primary_10_1021_acsapm_4c03958
crossref_primary_10_1021_acs_langmuir_4c05358
Cites_doi 10.1021/acs.jpcc.8b02506
10.1016/S0378-7753(00)00435-3
10.1021/acs.jpclett.0c01089
10.1149/1.2069032
10.1016/j.susc.2005.02.041
10.1002/smll.202312204
10.1002/anie.201209976
10.1002/anie.202216047
10.1021/acs.chemrev.7b00115
10.1021/jacs.5b12494
10.1038/s41560-018-0207-z
10.1002/advs.202104841
10.1002/aenm.201800348
10.1021/jacs.5b10333
10.1016/j.ensm.2017.09.001
10.1038/nmat2764
10.1002/aenm.202201631
10.1002/adfm.201910777
10.1016/j.jelechem.2016.09.006
10.1021/acsenergylett.1c00117
10.1016/S0009-2614(90)87124-A
10.1002/adma.202302828
10.1021/ja2021747
10.1002/smtd.201700332
10.1021/acs.jpcc.5b01290
10.1021/acs.jpcc.9b11677
10.1007/s40843-021-1689-4
10.1021/acs.jpcc.5b03396
10.1021/nl402239p
10.1002/jrs.4970
10.1039/C9CS00381A
10.1021/jacs.4c03680
10.1039/C9CS00883G
10.1016/j.joule.2020.06.016
10.1038/s41560-022-00993-z
10.1021/acs.chemrev.0c00275
10.1021/ja508982p
10.1016/j.joule.2021.12.018
10.1002/aenm.202200427
10.1021/acsenergylett.3c00917
10.1039/C5CS00540J
10.1002/adfm.202406770
10.1021/acscatal.0c04789
10.1007/s41918-022-00147-5
10.1002/adma.202002550
10.1021/acs.jpcc.0c06390
10.1149/2.0051607jes
10.1021/cr400573b
10.31635/rnwb.023.202300033
10.1021/acsenergylett.0c01545
10.1016/j.chempr.2024.01.001
10.1021/acs.chemrev.2c00251
10.1021/jacs.3c08313
10.1016/j.progsurf.2016.10.001
10.1021/acs.analchem.9b04124
10.1038/s41467-018-03114-1
10.1002/aenm.201802816
10.1016/j.ensm.2022.01.039
10.1007/s40843-014-0006-0
10.1073/pnas.1505438112
10.1038/s41586-019-1481-z
10.1021/ja030055b
10.1021/acs.nanolett.7b05246
10.1002/aenm.201702028
10.1021/acs.jpcc.3c01744
10.1007/s11244-018-1065-4
10.1021/acs.chemmater.9b00077
10.1039/C7CS00206H
10.1038/s43586-021-00083-6
10.1002/aenm.201700875
10.14102/j.cnki.0254-5861.2022-0083
10.1038/s41467-022-32139-w
10.1021/acsnano.4c04333
10.1016/j.jechem.2023.02.036
10.1016/j.jpowsour.2011.06.099
10.1002/sstr.202100170
10.1039/D3CS00151B
10.1038/s41586-023-06918-4
10.1038/s41578-021-00345-5
10.1021/acs.chemmater.8b03525
10.1016/j.elecom.2011.07.019
10.1021/acs.jpcc.1c06277
10.1021/acsenergylett.0c02584
10.1002/anie.202216189
10.1002/aenm.201700715
10.1038/nature08907
10.1021/jacs.0c06727
10.1016/j.joule.2020.05.016
10.1016/j.nanoen.2016.07.023
10.1038/s41560-023-01280-1
10.1038/s41565-020-0749-7
10.1021/jacs.3c07339
10.1126/sciadv.adi5108
10.1002/adfm.201200693
10.1002/adma.202211168
10.1002/adma.202005878
10.1038/s41467-020-15938-x
10.1002/tcr.201402039
10.1021/acs.jpcc.5b12279
10.1016/j.matt.2020.10.021
10.1038/s41563-023-01700-3
10.1002/smtd.202001194
10.1038/s41467-020-18423-7
10.1021/jp907146n
10.1016/j.joule.2023.08.007
10.1002/smll.202305429
10.1126/science.aav5842
10.1039/B2RP90018A
10.1021/acs.jpcc.7b12799
10.1021/acs.jpcc.3c02954
10.1038/nenergy.2016.132
10.1007/s40843-016-5047-8
10.1088/2515-7655/abf2db
10.1002/advs.202103632
10.1002/aenm.201702134
10.1002/batt.201900031
10.1002/smtd.202100322
10.1021/jacs.0c10270
10.1021/ja508794r
10.1002/aenm.202301216
10.1038/s41467-022-29103-z
10.1039/D4SC03242J
10.1039/C8EE01286E
10.1021/ed500324w
10.1038/ncomms15139
10.1038/s41560-024-01494-x
10.1021/acsami.9b21993
10.1021/jz1016526
10.1002/aenm.202203307
10.1002/aenm.201300950
10.1002/advs.201500213
10.1002/aenm.202302176
10.1002/aenm.201500285
10.3866/PKU.WHXB202005012
10.1039/C9TA09750C
10.1038/s41563-023-01679-x
10.3866/PKU.WHXB202205005
10.1038/s41467-023-35920-7
10.1126/sciadv.adj8889
10.1002/adma.201802200
10.1039/D1NR04009J
10.1002/aenm.202400190
10.1038/s41467-022-29761-z
10.1038/nchem.1646
10.1016/j.jechem.2020.11.020
10.1039/D1CS00450F
10.1038/s41467-023-39192-z
10.1021/acsenergylett.1c02425
10.1021/acs.jpcc.1c10753
10.1016/j.ensm.2021.04.045
10.1021/acsami.0c15500
10.1021/acsmaterialsau.2c00060
10.1002/aenm.201901864
10.1021/acs.chemrev.0c00767
10.1002/smtd.201900467
10.1039/D3CS00741C
10.1002/adfm.202302000
10.1021/acs.jpcc.5b05609
10.1038/natrevmats.2016.13
10.1016/j.mattod.2024.06.001
10.1007/s40843-019-9464-0
10.1016/j.mattod.2020.10.028
10.1002/aenm.201602060
10.1002/batt.202000259
10.1002/ange.202010531
10.1016/j.ensm.2019.05.038
10.1002/anie.201102357
10.1039/C9EE02543J
10.1002/anie.202217710
10.1021/acsnano.2c08581
10.1021/acs.nanolett.9b00179
10.1016/j.jpcs.2003.10.022
10.1007/s40820-024-01364-x
10.1149/1.1612011
10.1021/acs.energyfuels.3c02447
10.1021/jacs.7b07628
10.1002/adma.202109564
10.1002/anie.202219188
10.1063/5.0144635
10.1021/acs.nanolett.7b04688
10.1002/adma.201706496
10.1016/j.coelec.2023.101403
10.1016/j.ensm.2021.10.013
10.1016/j.jpowsour.2010.09.105
10.3866/PKU.WHXB202208008
10.1039/D0TA04005C
10.1039/D0CS01017K
10.1021/cr040379y
10.1016/j.joule.2019.05.026
10.1038/s44287-024-00069-y
10.1149/1945-7111/ac2088
10.1021/cm901452z
10.1002/batt.202000283
10.1002/anie.202013271
10.1039/D3CS00734K
10.1360/SSC-2023-0222
10.1002/adma.202405384
10.1021/acsenergylett.4c00453
10.1039/C6MH00072J
10.1038/s41570-020-0160-9
10.1002/anie.202400254
10.1016/j.chempr.2017.12.022
10.1149/2.1051816jes
10.1007/s40820-019-0277-x
10.1016/j.xcrp.2021.100660
10.1038/nchem.2101
10.1016/j.jpowsour.2024.234550
10.1021/jacs.8b08285
10.1007/s40820-022-00917-2
10.1002/adma.201707255
10.1038/s41560-024-01565-z
10.1063/5.0026283
10.1038/s41560-021-00841-6
10.1038/ncomms3568
10.1021/acs.chemmater.7b02589
10.1002/anie.202216450
10.1016/j.ensm.2024.103289
10.1021/acs.chemmater.7b04087
10.1016/j.surfrep.2009.12.001
10.1002/celc.201500218
10.1021/jacs.0c10258
10.1039/C9EE02803J
10.1021/acs.chemrev.2c00097
10.1002/aenm.201501010
10.1021/acs.jpcc.0c03929
10.1021/acs.nanolett.8b00298
10.1021/jacs.2c11807
10.1021/acsami.0c00789
10.1039/D0TA06455F
10.1002/eem2.12152
10.1126/sciadv.adf3609
10.1021/op300234k
10.1039/C7CS00180K
10.1007/s12274-021-4044-1
10.1007/s41918-022-00135-9
10.1021/acsami.2c21559
10.3866/PKU.WHXB202211057
10.1021/acsnano.3c09849
10.1021/jacs.2c02927
10.1002/celc.202201003
10.1149/2.0391902jes
10.1021/acsenergylett.2c02714
10.1038/s41560-022-01141-3
10.1021/ja8086278
10.1039/C7TA02100C
10.1063/1.1556092
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.4c05893
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 20719
ExternalDocumentID 10_1021_acs_jpcc_4c05893
a789103217
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
AAYXX
ABBLG
ABLBI
CITATION
ID FETCH-LOGICAL-a280t-e5ca4278c2329f56a6f4c6f1435a04bf2ca260e299b34a61de3d34bb138f69cf3
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 00:17:38 EDT 2025
Thu Apr 24 22:51:47 EDT 2025
Fri Dec 13 03:26:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-e5ca4278c2329f56a6f4c6f1435a04bf2ca260e299b34a61de3d34bb138f69cf3
ORCID 0000-0003-0860-4151
0000-0002-3177-3917
PageCount 27
ParticipantIDs crossref_primary_10_1021_acs_jpcc_4c05893
crossref_citationtrail_10_1021_acs_jpcc_4c05893
acs_journals_10_1021_acs_jpcc_4c05893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-12
PublicationDateYYYYMMDD 2024-12-12
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-12
  day: 12
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – sequence: 0
  name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref244/cit244
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref233/cit233
ref148/cit148
ref55/cit55
ref144/cit144
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref153/cit153
ref227/cit227
ref222/cit222
ref150/cit150
ref63/cit63
ref224/cit224
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref230/cit230
ref145/cit145
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref78/cit78
ref211/cit211
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref208/cit208
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref15/cit15
ref180/cit180
ref235/cit235
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref241/cit241
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref226/cit226
ref154/cit154
ref27/cit27
ref228/cit228
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref220/cit220
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref217/cit217
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref215/cit215
ref50/cit50
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref242/cit242
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref239/cit239
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
References_xml – ident: ref53/cit53
  doi: 10.1021/acs.jpcc.8b02506
– ident: ref141/cit141
  doi: 10.1016/S0378-7753(00)00435-3
– ident: ref111/cit111
  doi: 10.1021/acs.jpclett.0c01089
– ident: ref94/cit94
  doi: 10.1149/1.2069032
– ident: ref164/cit164
  doi: 10.1016/j.susc.2005.02.041
– ident: ref73/cit73
  doi: 10.1002/smll.202312204
– ident: ref167/cit167
  doi: 10.1002/anie.201209976
– ident: ref21/cit21
  doi: 10.1002/anie.202216047
– ident: ref11/cit11
  doi: 10.1021/acs.chemrev.7b00115
– ident: ref58/cit58
  doi: 10.1021/jacs.5b12494
– ident: ref227/cit227
  doi: 10.1038/s41560-018-0207-z
– ident: ref245/cit245
  doi: 10.1002/advs.202104841
– ident: ref24/cit24
  doi: 10.1002/aenm.201800348
– ident: ref176/cit176
  doi: 10.1021/jacs.5b10333
– ident: ref214/cit214
  doi: 10.1016/j.ensm.2017.09.001
– ident: ref148/cit148
  doi: 10.1038/nmat2764
– ident: ref63/cit63
  doi: 10.1002/aenm.202201631
– ident: ref75/cit75
  doi: 10.1002/adfm.201910777
– ident: ref168/cit168
  doi: 10.1016/j.jelechem.2016.09.006
– ident: ref64/cit64
  doi: 10.1021/acsenergylett.1c00117
– ident: ref165/cit165
  doi: 10.1016/S0009-2614(90)87124-A
– ident: ref186/cit186
  doi: 10.1002/adma.202302828
– ident: ref190/cit190
  doi: 10.1021/ja2021747
– ident: ref51/cit51
  doi: 10.1002/smtd.201700332
– ident: ref171/cit171
  doi: 10.1021/acs.jpcc.5b01290
– ident: ref107/cit107
  doi: 10.1021/acs.jpcc.9b11677
– ident: ref87/cit87
  doi: 10.1007/s40843-021-1689-4
– ident: ref132/cit132
  doi: 10.1021/acs.jpcc.5b03396
– ident: ref84/cit84
  doi: 10.1021/nl402239p
– ident: ref103/cit103
  doi: 10.1002/jrs.4970
– ident: ref34/cit34
  doi: 10.1039/C9CS00381A
– ident: ref237/cit237
  doi: 10.1021/jacs.4c03680
– ident: ref147/cit147
  doi: 10.1039/C9CS00883G
– ident: ref31/cit31
  doi: 10.1016/j.joule.2020.06.016
– ident: ref110/cit110
  doi: 10.1038/s41560-022-00993-z
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.0c00275
– ident: ref131/cit131
  doi: 10.1021/ja508982p
– ident: ref78/cit78
  doi: 10.1016/j.joule.2021.12.018
– ident: ref157/cit157
  doi: 10.1002/aenm.202200427
– ident: ref183/cit183
  doi: 10.1021/acsenergylett.3c00917
– ident: ref54/cit54
  doi: 10.1039/C5CS00540J
– ident: ref17/cit17
  doi: 10.1002/adfm.202406770
– ident: ref46/cit46
  doi: 10.1021/acscatal.0c04789
– ident: ref101/cit101
  doi: 10.1007/s41918-022-00147-5
– ident: ref238/cit238
  doi: 10.1002/adma.202002550
– ident: ref179/cit179
  doi: 10.1021/acs.jpcc.0c06390
– ident: ref151/cit151
  doi: 10.1149/2.0051607jes
– ident: ref188/cit188
  doi: 10.1021/cr400573b
– ident: ref121/cit121
  doi: 10.31635/rnwb.023.202300033
– ident: ref1/cit1
  doi: 10.1021/acsenergylett.0c01545
– ident: ref116/cit116
  doi: 10.1016/j.chempr.2024.01.001
– ident: ref19/cit19
  doi: 10.1021/acs.chemrev.2c00251
– ident: ref115/cit115
  doi: 10.1021/jacs.3c08313
– ident: ref158/cit158
  doi: 10.1016/j.progsurf.2016.10.001
– ident: ref212/cit212
  doi: 10.1021/acs.analchem.9b04124
– ident: ref81/cit81
  doi: 10.1038/s41467-018-03114-1
– ident: ref206/cit206
  doi: 10.1002/aenm.201802816
– ident: ref83/cit83
  doi: 10.1016/j.ensm.2022.01.039
– ident: ref120/cit120
  doi: 10.1007/s40843-014-0006-0
– ident: ref161/cit161
  doi: 10.1073/pnas.1505438112
– ident: ref149/cit149
  doi: 10.1038/s41586-019-1481-z
– ident: ref129/cit129
  doi: 10.1021/ja030055b
– ident: ref230/cit230
  doi: 10.1021/acs.nanolett.7b05246
– ident: ref70/cit70
  doi: 10.1002/aenm.201702028
– ident: ref172/cit172
  doi: 10.1021/acs.jpcc.3c01744
– ident: ref208/cit208
  doi: 10.1007/s11244-018-1065-4
– ident: ref36/cit36
  doi: 10.1021/acs.chemmater.9b00077
– ident: ref98/cit98
  doi: 10.1039/C7CS00206H
– ident: ref90/cit90
  doi: 10.1038/s43586-021-00083-6
– ident: ref25/cit25
  doi: 10.1002/aenm.201700875
– ident: ref60/cit60
  doi: 10.14102/j.cnki.0254-5861.2022-0083
– ident: ref122/cit122
  doi: 10.1038/s41467-022-32139-w
– ident: ref61/cit61
  doi: 10.1021/acsnano.4c04333
– ident: ref56/cit56
  doi: 10.1016/j.jechem.2023.02.036
– ident: ref191/cit191
  doi: 10.1016/j.jpowsour.2011.06.099
– ident: ref28/cit28
  doi: 10.1002/sstr.202100170
– ident: ref32/cit32
  doi: 10.1039/D3CS00151B
– ident: ref118/cit118
  doi: 10.1038/s41586-023-06918-4
– ident: ref6/cit6
  doi: 10.1038/s41578-021-00345-5
– ident: ref20/cit20
  doi: 10.1021/acs.chemmater.8b03525
– ident: ref145/cit145
  doi: 10.1016/j.elecom.2011.07.019
– ident: ref12/cit12
  doi: 10.1021/acs.jpcc.1c06277
– ident: ref3/cit3
  doi: 10.1021/acsenergylett.0c02584
– ident: ref79/cit79
  doi: 10.1002/anie.202216189
– ident: ref173/cit173
  doi: 10.1002/aenm.201700715
– ident: ref97/cit97
  doi: 10.1038/nature08907
– ident: ref134/cit134
  doi: 10.1021/jacs.0c06727
– ident: ref153/cit153
  doi: 10.1016/j.joule.2020.05.016
– ident: ref174/cit174
  doi: 10.1016/j.nanoen.2016.07.023
– ident: ref242/cit242
  doi: 10.1038/s41560-023-01280-1
– ident: ref139/cit139
  doi: 10.1038/s41565-020-0749-7
– ident: ref135/cit135
  doi: 10.1021/jacs.3c07339
– ident: ref123/cit123
  doi: 10.1126/sciadv.adi5108
– ident: ref201/cit201
  doi: 10.1002/adfm.201200693
– ident: ref182/cit182
  doi: 10.1002/adma.202211168
– ident: ref137/cit137
  doi: 10.1002/adma.202005878
– ident: ref140/cit140
  doi: 10.1038/s41467-020-15938-x
– ident: ref159/cit159
  doi: 10.1002/tcr.201402039
– ident: ref205/cit205
  doi: 10.1021/acs.jpcc.5b12279
– ident: ref14/cit14
  doi: 10.1016/j.matt.2020.10.021
– ident: ref241/cit241
  doi: 10.1038/s41563-023-01700-3
– ident: ref199/cit199
  doi: 10.1002/smtd.202001194
– ident: ref222/cit222
  doi: 10.1038/s41467-020-18423-7
– ident: ref166/cit166
  doi: 10.1021/jp907146n
– ident: ref16/cit16
  doi: 10.1016/j.joule.2023.08.007
– ident: ref65/cit65
  doi: 10.1002/smll.202305429
– ident: ref229/cit229
  doi: 10.1126/science.aav5842
– ident: ref127/cit127
  doi: 10.1039/B2RP90018A
– ident: ref239/cit239
  doi: 10.1021/acs.jpcc.7b12799
– ident: ref37/cit37
  doi: 10.1021/acs.jpcc.3c02954
– ident: ref27/cit27
  doi: 10.1038/nenergy.2016.132
– ident: ref29/cit29
  doi: 10.1007/s40843-016-5047-8
– ident: ref38/cit38
  doi: 10.1088/2515-7655/abf2db
– ident: ref89/cit89
  doi: 10.1002/advs.202103632
– ident: ref235/cit235
  doi: 10.1002/aenm.201702134
– ident: ref26/cit26
  doi: 10.1002/batt.201900031
– ident: ref92/cit92
  doi: 10.1002/smtd.202100322
– ident: ref156/cit156
  doi: 10.1021/jacs.0c10270
– ident: ref195/cit195
  doi: 10.1021/ja508794r
– ident: ref108/cit108
  doi: 10.1002/aenm.202301216
– ident: ref62/cit62
  doi: 10.1038/s41467-022-29103-z
– ident: ref243/cit243
  doi: 10.1039/D4SC03242J
– ident: ref9/cit9
  doi: 10.1039/C8EE01286E
– ident: ref130/cit130
  doi: 10.1021/ed500324w
– ident: ref232/cit232
  doi: 10.1038/ncomms15139
– ident: ref66/cit66
  doi: 10.1038/s41560-024-01494-x
– ident: ref185/cit185
  doi: 10.1021/acsami.9b21993
– ident: ref189/cit189
  doi: 10.1021/jz1016526
– ident: ref10/cit10
  doi: 10.1002/aenm.202203307
– ident: ref226/cit226
  doi: 10.1002/aenm.201300950
– ident: ref13/cit13
  doi: 10.1002/advs.201500213
– ident: ref99/cit99
  doi: 10.1002/aenm.202302176
– ident: ref215/cit215
  doi: 10.1002/aenm.201500285
– ident: ref30/cit30
  doi: 10.3866/PKU.WHXB202005012
– ident: ref233/cit233
  doi: 10.1039/C9TA09750C
– ident: ref224/cit224
  doi: 10.1038/s41563-023-01679-x
– ident: ref74/cit74
  doi: 10.3866/PKU.WHXB202205005
– ident: ref138/cit138
  doi: 10.1038/s41467-023-35920-7
– ident: ref155/cit155
  doi: 10.1126/sciadv.adj8889
– ident: ref197/cit197
  doi: 10.1002/adma.201802200
– ident: ref95/cit95
  doi: 10.1039/D1NR04009J
– ident: ref228/cit228
  doi: 10.1002/aenm.202400190
– ident: ref96/cit96
  doi: 10.1038/s41467-022-29761-z
– ident: ref125/cit125
  doi: 10.1038/nchem.1646
– ident: ref35/cit35
  doi: 10.1016/j.jechem.2020.11.020
– ident: ref76/cit76
  doi: 10.1039/D1CS00450F
– ident: ref100/cit100
  doi: 10.1038/s41467-023-39192-z
– ident: ref33/cit33
  doi: 10.1021/acsenergylett.1c02425
– ident: ref194/cit194
  doi: 10.1021/acs.jpcc.1c10753
– ident: ref209/cit209
  doi: 10.1016/j.ensm.2021.04.045
– ident: ref231/cit231
  doi: 10.1021/acsami.0c15500
– ident: ref211/cit211
  doi: 10.1021/acsmaterialsau.2c00060
– ident: ref236/cit236
  doi: 10.1002/aenm.201901864
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.0c00767
– ident: ref52/cit52
  doi: 10.1002/smtd.201900467
– ident: ref218/cit218
  doi: 10.1039/D3CS00741C
– ident: ref124/cit124
  doi: 10.1002/adfm.202302000
– ident: ref213/cit213
  doi: 10.1021/acs.jpcc.5b05609
– ident: ref7/cit7
  doi: 10.1038/natrevmats.2016.13
– ident: ref102/cit102
  doi: 10.1016/j.mattod.2024.06.001
– ident: ref175/cit175
  doi: 10.1007/s40843-019-9464-0
– ident: ref220/cit220
  doi: 10.1016/j.mattod.2020.10.028
– ident: ref178/cit178
  doi: 10.1002/aenm.201602060
– ident: ref71/cit71
  doi: 10.1002/batt.202000259
– ident: ref244/cit244
  doi: 10.1002/ange.202010531
– ident: ref88/cit88
  doi: 10.1016/j.ensm.2019.05.038
– ident: ref193/cit193
  doi: 10.1002/anie.201102357
– ident: ref72/cit72
  doi: 10.1039/C9EE02543J
– ident: ref82/cit82
  doi: 10.1002/anie.202217710
– ident: ref181/cit181
  doi: 10.1021/acsnano.2c08581
– ident: ref106/cit106
  doi: 10.1021/acs.nanolett.9b00179
– ident: ref143/cit143
  doi: 10.1016/j.jpcs.2003.10.022
– ident: ref117/cit117
  doi: 10.1007/s40820-024-01364-x
– ident: ref142/cit142
  doi: 10.1149/1.1612011
– ident: ref219/cit219
  doi: 10.1021/acs.energyfuels.3c02447
– ident: ref234/cit234
  doi: 10.1021/jacs.7b07628
– ident: ref225/cit225
  doi: 10.1002/adma.202109564
– ident: ref198/cit198
  doi: 10.1002/anie.202219188
– ident: ref246/cit246
  doi: 10.1063/5.0144635
– ident: ref169/cit169
  doi: 10.1021/acs.nanolett.7b04688
– ident: ref41/cit41
  doi: 10.1002/adma.201706496
– ident: ref47/cit47
  doi: 10.1016/j.coelec.2023.101403
– ident: ref210/cit210
  doi: 10.1016/j.ensm.2021.10.013
– ident: ref204/cit204
  doi: 10.1016/j.jpowsour.2010.09.105
– ident: ref44/cit44
  doi: 10.3866/PKU.WHXB202208008
– ident: ref154/cit154
  doi: 10.1039/D0TA04005C
– ident: ref184/cit184
  doi: 10.1039/D0CS01017K
– ident: ref160/cit160
  doi: 10.1021/cr040379y
– ident: ref105/cit105
  doi: 10.1016/j.joule.2019.05.026
– ident: ref43/cit43
  doi: 10.1038/s44287-024-00069-y
– ident: ref40/cit40
  doi: 10.1149/1945-7111/ac2088
– ident: ref8/cit8
  doi: 10.1021/cm901452z
– ident: ref55/cit55
  doi: 10.1002/batt.202000283
– ident: ref113/cit113
  doi: 10.1002/anie.202013271
– ident: ref42/cit42
  doi: 10.1039/D3CS00734K
– ident: ref45/cit45
  doi: 10.1360/SSC-2023-0222
– ident: ref67/cit67
  doi: 10.1002/adma.202405384
– ident: ref217/cit217
  doi: 10.1021/acsenergylett.4c00453
– ident: ref86/cit86
  doi: 10.1039/C6MH00072J
– ident: ref23/cit23
  doi: 10.1038/s41570-020-0160-9
– ident: ref80/cit80
  doi: 10.1002/anie.202400254
– ident: ref49/cit49
  doi: 10.1016/j.chempr.2017.12.022
– ident: ref57/cit57
  doi: 10.1149/2.1051816jes
– ident: ref200/cit200
  doi: 10.1007/s40820-019-0277-x
– ident: ref48/cit48
  doi: 10.1016/j.xcrp.2021.100660
– ident: ref126/cit126
  doi: 10.1038/nchem.2101
– ident: ref4/cit4
  doi: 10.1016/j.jpowsour.2024.234550
– ident: ref196/cit196
  doi: 10.1021/jacs.8b08285
– ident: ref15/cit15
  doi: 10.1007/s40820-022-00917-2
– ident: ref223/cit223
  doi: 10.1002/adma.201707255
– ident: ref240/cit240
  doi: 10.1038/s41560-024-01565-z
– ident: ref163/cit163
  doi: 10.1063/5.0026283
– ident: ref77/cit77
  doi: 10.1038/s41560-021-00841-6
– ident: ref202/cit202
  doi: 10.1038/ncomms3568
– ident: ref133/cit133
  doi: 10.1021/acs.chemmater.7b02589
– ident: ref109/cit109
  doi: 10.1002/anie.202216450
– ident: ref180/cit180
  doi: 10.1016/j.ensm.2024.103289
– ident: ref177/cit177
  doi: 10.1021/acs.chemmater.7b04087
– ident: ref162/cit162
  doi: 10.1016/j.surfrep.2009.12.001
– ident: ref39/cit39
  doi: 10.1002/celc.201500218
– ident: ref150/cit150
  doi: 10.1021/jacs.0c10258
– ident: ref18/cit18
  doi: 10.1039/C9EE02803J
– ident: ref114/cit114
  doi: 10.1021/acs.chemrev.2c00097
– ident: ref69/cit69
  doi: 10.1002/aenm.201501010
– ident: ref192/cit192
  doi: 10.1021/acs.jpcc.0c03929
– ident: ref170/cit170
  doi: 10.1021/acs.nanolett.8b00298
– ident: ref112/cit112
  doi: 10.1021/jacs.2c11807
– ident: ref146/cit146
  doi: 10.1021/acsami.0c00789
– ident: ref203/cit203
  doi: 10.1039/D0TA06455F
– ident: ref216/cit216
  doi: 10.1002/eem2.12152
– ident: ref68/cit68
  doi: 10.1126/sciadv.adf3609
– ident: ref128/cit128
  doi: 10.1021/op300234k
– ident: ref50/cit50
  doi: 10.1039/C7CS00180K
– ident: ref93/cit93
  doi: 10.1007/s12274-021-4044-1
– ident: ref22/cit22
  doi: 10.1007/s41918-022-00135-9
– ident: ref85/cit85
  doi: 10.1021/acsami.2c21559
– ident: ref221/cit221
  doi: 10.3866/PKU.WHXB202211057
– ident: ref187/cit187
  doi: 10.1021/acsnano.3c09849
– ident: ref152/cit152
  doi: 10.1021/jacs.2c02927
– ident: ref91/cit91
  doi: 10.1002/celc.202201003
– ident: ref104/cit104
  doi: 10.1149/2.0391902jes
– ident: ref119/cit119
  doi: 10.1021/acsenergylett.2c02714
– ident: ref59/cit59
  doi: 10.1038/s41560-022-01141-3
– ident: ref136/cit136
  doi: 10.1021/ja8086278
– ident: ref207/cit207
  doi: 10.1039/C7TA02100C
– ident: ref144/cit144
  doi: 10.1063/1.1556092
SSID ssj0053013
Score 2.4838898
SecondaryResourceType review_article
Snippet Nonaqueous lithium-based batteries have become a dominating stream of modern energy storage systems. Understanding the physicochemical processes and mechanisms...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 20693
Title In Situ/Operando Spectroscopic Techniques for Nonaqueous Lithium-Based Batteries
URI http://dx.doi.org/10.1021/acs.jpcc.4c05893
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oPejFt7G-sgc9eIAWdlnoURsbNdqYtE16I7sDRHxAI3Dx1zvLQxtf6RHCbjazA983zOb7CDlFTAQllGcAkmuDh0wYMrCUwZDdSxfTOirt2-6H4nrCb6fO9Esm53sH37Y6EjLzaQZgctAWeGyZrNgCs0zToP6o-eo6mKis6iAjY-TcrVuSv82ggQiyOSCaQ5TBRmVNlJVChPogybNZ5MqE958yjQssdpOs18SSXlSZsEWWwmSbrPYbP7cd8nCT0FGcF1oBHAEqSKn2ns-1mmU6i4GOGzXXjCKRpUOk6HiRFhm9i_PHuHg1LhHxAlopcmKBvUsmg6tx_9qo_RQMaXvd3AgdkNpZA5BF9SJHSBFxEJFmTLLLVWSDxOomRIBSjEthBSELGFfKYl4kehCxPdJK0iTcJxRpmgD9U84VAYdQycDDOgbnVEjnuj23Tc4wFH79PmR-2eq2Lb-8ifHx6_i0SafZBB9qUXLtjfHyz4jzzxGzSpDjz2cPFlzFIVmzkavoUyqWfURa-VsRHiPXyNVJmWQfLjHO6A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFD5BfMAX70a89kEffBiwtZTxiEQCCsQIJLwtbbfFeQHithd_vae7IDFq9HHN2py0Z_u-7nTfB3CBmKgkl7ahkFwbzKPcEK4pDYrsXjQwrf3Evm0w5N0Ju53WpwUw839hMIgQRwqTIv6nuoBZ1W1PC6UqTGknPLoG68hFLO3W0GqP8pdvHfOVpoVkJI6MNbLK5HcjaDxS4QoerQBLZwseliEl50meK3EkK-r9i1rjv2Lehs2MZpJWmhc7UPBmu1Bq5-5ue3Dfm5FREMVaDxzhyp0T7UQfaW3L-SJQZJxru4YEaS0ZImHHi3kckn4QPQbxq3GN-OeSVJ8Tt9v7MOncjNtdI3NXMIRl1yLDqyuhfTYUcqqmX-eC-0xxX_MnUWPSt5TAvY6HcCUpE9x0PepSJqVJbZ83lU8PoDibz7xDIEjauNKf6BrcZcqTwrVxV4NjSiR3tWajDJc4FU72dIROUvi2TCdpxPlxsvkpQzVfC0dlEuXaKePllx5Xyx6LVJ7jx3uP_hjFOZS640Hf6feGd8ewYSGL0edXTOsEitFb7J0iC4nkWZJ3H7qE10k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFL1BTNQXv4342Qd98GHA1q6DR0QJKBISwPC2tN0W8QMWt734670dGyFGjT6uWZub7nbndLc7B-ACMVFJLmuGQnJtMJ9yQ3imNCiye-FgWgepfdtDj7dH7G5sjwtg5__CYBARjhSlRXy9qkMvyBQGzIpufw6VKjOl3fDoCqzqqp12bGg0B_kL2MacpfNiMpJHxpysOvndCBqTVLSESUvg0tqCx0VY6ZmSl3ISy7L6-KLY-O-4t2Ezo5ukMc-PHSj4011Yb-Yub3vQ70zJYBInWhccYcubEe1IH2uNy1k4UWSYa7xGBOkt6SFxx4tZEpHuJH6aJG_GNeKgR-Y6nbjt3odR63bYbBuZy4IhrFo1NnxbCe23oZBb1QObCx4wxQPNo0SVycBSAvc8PsKWpExw0_OpR5mUJq0FvK4CegDF6WzqHwJB8saV_lTncI8pXwqvhrsbHFMiyavWnRJc4lS42SqJ3LQAbplu2ojz42bzU4JK_jxclUmVa8eM1196XC16hHOZjh_vPfpjFOew1r9pud1O7_4YNiwkM_oYi2mdQDF-T_xTJCOxPEtT7xPQ-dnM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ%2FOperando+Spectroscopic+Techniques+for+Nonaqueous+Lithium-Based+Batteries&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Wang%2C+Yuan&rft.au=Dong%2C+Yiqing&rft.au=Li%2C+Wanxia&rft.au=Huang%2C+Fanyang&rft.date=2024-12-12&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=128&rft.issue=49&rft.spage=20693&rft.epage=20719&rft_id=info:doi/10.1021%2Facs.jpcc.4c05893&rft.externalDocID=a789103217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon