Lessons Learned from Semiempirical Methods for the Li-Ion Battery Solid Electrolyte Interphase
Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial and compositional). Semiempirical methods have the potential to reduce the computational cost compared to the computationally costly DFT com...
Saved in:
Published in | Journal of physical chemistry. C Vol. 128; no. 8; pp. 3269 - 3280 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
29.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial and compositional). Semiempirical methods have the potential to reduce the computational cost compared to the computationally costly DFT computations. In this study, we have first assessed the performance of four semiempirical methods (GFN-xtb, GFN2-xtb, PM6-D3, and PM7-D3) to model major reactions for SEI formation and growth. We have included the decomposition reactions of the most used solvent (ethylene carbonate), most used salt (lithium hexafluorophosphate), and other electrolyte species like the co-solvent 1,3-dioxolane and the additive vinylene carbonate. We have found that PM7-D3 and GFN-xtb are the two best performing methods for the 32 tested reactions. Finally, we have performed PM7-D3 and GFN-xtb-based molecular dynamics for inorganic/organic interfaces. We have found that LiF is the most rigid salt, which barely reconstructs. In contrast, Li2O is subject to severe reconstruction at the GFN-xtb level of theory, but significantly less when using PM7-D3. Still, even at the PM7-D3 level of theory Li2O readily reacts with alkyl carbonates, leading to CO2 dissociation and thus the formation of surface carbonates. When in contact with Li2O, ethylene carbonate can undergo partial dehydrogenation reactions and ring openings. This suggests that Li2O is overly reactive to be in direct contact with such organic molecules. Rather, it is surrounded by a passivating (mono)layer of Li2CO3. Indeed, our simulations suggest that for such a hybrid system (core of Li2O, shell of Li2CO3, solvated with ethylene carbonate) the organic solvent remains intact. Furthermore, for such a hybrid system GFN-xtb produces physically meaningful results, so that this method can be overall recommended. |
---|---|
AbstractList | Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial and compositional). Semiempirical methods have the potential to reduce the computational cost compared to the computationally costly DFT computations. In this study, we have first assessed the performance of four semiempirical methods (GFN-xtb, GFN2-xtb, PM6-D3, and PM7-D3) to model major reactions for SEI formation and growth. We have included the decomposition reactions of the most used solvent (ethylene carbonate), most used salt (lithium hexafluorophosphate), and other electrolyte species like the co-solvent 1,3-dioxolane and the additive vinylene carbonate. We have found that PM7-D3 and GFN-xtb are the two best performing methods for the 32 tested reactions. Finally, we have performed PM7-D3 and GFN-xtb-based molecular dynamics for inorganic/organic interfaces. We have found that LiF is the most rigid salt, which barely reconstructs. In contrast, Li2O is subject to severe reconstruction at the GFN-xtb level of theory, but significantly less when using PM7-D3. Still, even at the PM7-D3 level of theory Li2O readily reacts with alkyl carbonates, leading to CO2 dissociation and thus the formation of surface carbonates. When in contact with Li2O, ethylene carbonate can undergo partial dehydrogenation reactions and ring openings. This suggests that Li2O is overly reactive to be in direct contact with such organic molecules. Rather, it is surrounded by a passivating (mono)layer of Li2CO3. Indeed, our simulations suggest that for such a hybrid system (core of Li2O, shell of Li2CO3, solvated with ethylene carbonate) the organic solvent remains intact. Furthermore, for such a hybrid system GFN-xtb produces physically meaningful results, so that this method can be overall recommended. |
Author | Abada, Sara De Bruin, Theodorus Tant, Sylvain Bin Jassar, Mohammed Michel, Carine Steinmann, Stephan N. Nieto-Draghi, Carlos |
AuthorAffiliation | Stellantis Centre Technique Carrières-sous-Poissy Laboratoire de Chimie UMR 5182 ENS de Lyon, CNRS IFP Energies nouvelles |
AuthorAffiliation_xml | – name: IFP Energies nouvelles – name: Stellantis Centre Technique Carrières-sous-Poissy – name: Laboratoire de Chimie UMR 5182 – name: ENS de Lyon, CNRS |
Author_xml | – sequence: 1 givenname: Mohammed orcidid: 0000-0002-1246-0819 surname: Bin Jassar fullname: Bin Jassar, Mohammed organization: IFP Energies nouvelles – sequence: 2 givenname: Carine orcidid: 0000-0002-4501-7194 surname: Michel fullname: Michel, Carine organization: ENS de Lyon, CNRS – sequence: 3 givenname: Sara surname: Abada fullname: Abada, Sara organization: IFP Energies nouvelles – sequence: 4 givenname: Theodorus orcidid: 0000-0001-6997-1786 surname: De Bruin fullname: De Bruin, Theodorus organization: IFP Energies nouvelles – sequence: 5 givenname: Sylvain surname: Tant fullname: Tant, Sylvain organization: Stellantis Centre Technique Carrières-sous-Poissy – sequence: 6 givenname: Carlos orcidid: 0000-0001-5956-9259 surname: Nieto-Draghi fullname: Nieto-Draghi, Carlos organization: IFP Energies nouvelles – sequence: 7 givenname: Stephan N. orcidid: 0000-0002-2777-356X surname: Steinmann fullname: Steinmann, Stephan N. email: stephan.steinmann@ens-lyon.fr organization: ENS de Lyon, CNRS |
BookMark | eNp9kL1OwzAURi1UJNrCzugHIMWOndgZoSqlUhBDYSXyX1RXiR3ZZujbk9KKAQmme6Xvnit9ZwYmzjsDwC1GC4xyfC9UXOwHpRZEIY5ZeQGmuCJ5xmhRTH52yq7ALMY9QgVBmEzBR21i9C7C2ojgjIZt8D3cmt6afrDBKtHBF5N2XkfY-gDTzsDaZhvv4KNIyYQD3PrOarjqjErBd4dk4MaNwbAT0VyDy1Z00dyc5xy8P63els9Z_breLB_qTOQcpcwgWnHCuNSYFjTXOSvbspItL6TmgjFcYsW1HItKqWhLCWcVp1JhInOaK03moDz9VcHHGEzbKJtEst6lIGzXYNQcLTWjpeZoqTlbGkH0CxyC7UU4_IfcnZDvxH8GNzb7-_wLBU9-pQ |
CitedBy_id | crossref_primary_10_1016_j_seta_2024_104013 crossref_primary_10_1002_adfm_202313188 crossref_primary_10_1021_acs_jpcc_4c06002 |
Cites_doi | 10.1021/ja0164529 10.1016/j.jpowsour.2019.04.061 10.1021/jp0029109 10.1007/s00894-012-1667-x 10.1021/acsenergylett.2c02351 10.1021/jp210345b 10.1021/ct300849w 10.1021/ed048pA116.1 10.1002/jcc.21759 10.1021/acs.jctc.1c00921 10.1103/PhysRevB.13.5188 10.1038/s41524-018-0064-0 10.1016/0927-0256(96)00008-0 10.1103/PhysRevLett.77.3865 10.1021/acs.jpcc.6b08688 10.1021/acsami.1c20487 10.1063/1.3382344 10.1021/acs.chemrev.8b00239 10.1007/s00894-007-0233-4 10.1063/1.5135696 10.1021/ct100684s 10.1103/PhysRevB.58.7260 10.1021/acs.jctc.7b00118 10.1021/ct200602x 10.1063/1.4993215 10.1088/0953-8984/14/11/313 10.3390/batteries7040071 10.1002/wcms.1156 10.1103/PhysRevB.48.13115 10.1016/j.checat.2022.02.009 10.1016/j.mtener.2021.100730 10.1021/ct4001922 10.1103/PhysRevLett.78.1396 10.1002/jcc.21224 10.1021/acs.jctc.5b01047 10.1021/acsenergylett.2c00517 10.1016/j.cplett.2017.05.062 10.1039/D0CP00502A 10.1016/j.jpowsour.2015.11.100 10.1021/jp074167r 10.1021/acs.jctc.8b01176 10.1002/wcms.1493 10.1021/acscatal.2c00594 10.1021/acs.jctc.6b00432 10.1002/jcc.26017 10.1021/acs.jpclett.8b02750 10.1063/1.3545985 10.1002/wcms.81 10.1021/acsomega.0c02588 10.1103/PhysRevB.54.11169 10.1021/acsaem.3c00372 10.1016/j.electacta.2017.11.190 10.1103/PhysRevB.63.085108 10.1021/acs.jpcc.8b01839 10.1021/ja017073i 10.1039/c3ra23502e 10.1021/acs.jpca.8b05143 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.jpcc.3c08176 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 3280 |
ExternalDocumentID | 10_1021_acs_jpcc_3c08176 g02405176 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABBLG ABLBI CITATION CUPRZ ROL |
ID | FETCH-LOGICAL-a280t-e0498378bd14542d276f69bf85bd8a77161c8db102bbc4f4387984bc13b242cd3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 00:17:26 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Fri Mar 01 03:36:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-e0498378bd14542d276f69bf85bd8a77161c8db102bbc4f4387984bc13b242cd3 |
ORCID | 0000-0002-4501-7194 0000-0002-2777-356X 0000-0002-1246-0819 0000-0001-5956-9259 0000-0001-6997-1786 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1021_acs_jpcc_3c08176 crossref_primary_10_1021_acs_jpcc_3c08176 acs_journals_10_1021_acs_jpcc_3c08176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-29 |
PublicationDateYYYYMMDD | 2024-02-29 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1021/ja0164529 – ident: ref36/cit36 doi: 10.1016/j.jpowsour.2019.04.061 – ident: ref22/cit22 doi: 10.1021/jp0029109 – ident: ref50/cit50 doi: 10.1007/s00894-012-1667-x – ident: ref35/cit35 doi: 10.1021/acsenergylett.2c02351 – ident: ref8/cit8 doi: 10.1021/jp210345b – ident: ref30/cit30 doi: 10.1021/ct300849w – ident: ref20/cit20 doi: 10.1021/ed048pA116.1 – ident: ref34/cit34 doi: 10.1002/jcc.21759 – ident: ref39/cit39 doi: 10.1021/acs.jctc.1c00921 – ident: ref49/cit49 doi: 10.1103/PhysRevB.13.5188 – ident: ref1/cit1 doi: 10.1038/s41524-018-0064-0 – ident: ref45/cit45 doi: 10.1016/0927-0256(96)00008-0 – ident: ref42/cit42 doi: 10.1103/PhysRevLett.77.3865 – ident: ref9/cit9 doi: 10.1021/acs.jpcc.6b08688 – ident: ref40/cit40 doi: 10.1021/acsami.1c20487 – ident: ref33/cit33 doi: 10.1063/1.3382344 – ident: ref51/cit51 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.8b00239 – ident: ref15/cit15 doi: 10.1007/s00894-007-0233-4 – ident: ref58/cit58 doi: 10.1063/1.5135696 – ident: ref21/cit21 doi: 10.1021/ct100684s – ident: ref23/cit23 doi: 10.1103/PhysRevB.58.7260 – ident: ref17/cit17 doi: 10.1021/acs.jctc.7b00118 – ident: ref47/cit47 doi: 10.1021/ct200602x – ident: ref31/cit31 doi: 10.1063/1.4993215 – ident: ref26/cit26 doi: 10.1088/0953-8984/14/11/313 – ident: ref13/cit13 doi: 10.3390/batteries7040071 – ident: ref24/cit24 doi: 10.1002/wcms.1156 – ident: ref46/cit46 doi: 10.1103/PhysRevB.48.13115 – ident: ref55/cit55 doi: 10.1016/j.checat.2022.02.009 – ident: ref7/cit7 doi: 10.1016/j.mtener.2021.100730 – ident: ref29/cit29 doi: 10.1021/ct4001922 – ident: ref43/cit43 doi: 10.1103/PhysRevLett.78.1396 – ident: ref52/cit52 doi: 10.1002/jcc.21224 – ident: ref11/cit11 doi: 10.1021/acs.jctc.5b01047 – ident: ref5/cit5 doi: 10.1021/acsenergylett.2c00517 – ident: ref14/cit14 doi: 10.1016/j.cplett.2017.05.062 – ident: ref32/cit32 doi: 10.1039/D0CP00502A – ident: ref3/cit3 doi: 10.1016/j.jpowsour.2015.11.100 – ident: ref27/cit27 doi: 10.1021/jp074167r – ident: ref18/cit18 doi: 10.1021/acs.jctc.8b01176 – ident: ref19/cit19 doi: 10.1002/wcms.1493 – ident: ref54/cit54 doi: 10.1021/acscatal.2c00594 – ident: ref10/cit10 doi: 10.1021/acs.jctc.6b00432 – ident: ref57/cit57 doi: 10.1002/jcc.26017 – ident: ref56/cit56 doi: 10.1021/acs.jpclett.8b02750 – ident: ref48/cit48 doi: 10.1063/1.3545985 – ident: ref53/cit53 doi: 10.1002/wcms.81 – ident: ref6/cit6 doi: 10.1021/acsomega.0c02588 – ident: ref16/cit16 doi: 10.1007/s00894-012-1667-x – ident: ref44/cit44 doi: 10.1103/PhysRevB.54.11169 – ident: ref41/cit41 doi: 10.1021/acsaem.3c00372 – ident: ref59/cit59 doi: 10.1016/j.electacta.2017.11.190 – ident: ref25/cit25 doi: 10.1103/PhysRevB.63.085108 – ident: ref28/cit28 doi: 10.1021/acs.jpcc.8b01839 – ident: ref37/cit37 doi: 10.1021/ja017073i – ident: ref4/cit4 doi: 10.1039/c3ra23502e – ident: ref12/cit12 doi: 10.1021/acs.jpca.8b05143 |
SSID | ssj0053013 |
Score | 2.4625864 |
Snippet | Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3269 |
SubjectTerms | C: Chemical and Catalytic Reactivity at Interfaces |
Title | Lessons Learned from Semiempirical Methods for the Li-Ion Battery Solid Electrolyte Interphase |
URI | http://dx.doi.org/10.1021/acs.jpcc.3c08176 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwRpSXPMDAkJA4dpyMVdWqoJalVOpEFD8iCiWtSDqUX8_FSaHipa5JbDnn831nnf19CF1q4iac-Z7FhJ9YBRemFSjuWIrHlHncEY7RjOzd-50BvRuy4RdNzvcKPnFvYpnZz1MpbU8CfHF_HW0QP-DFRqvR7C-iLgNH9coKMmSMlPKqJPlbDwUQyWwJiJYQpb1TShNlhoiwOEjyYs9yYcv3nzSNKwx2F21XiSVulJ6wh9Z0uo82mws9twP02IWgBj6GDaWqVri4WYL78F6_TkeGKQT3jJ50hiGTxZAZ4u7Iup2kuCThnOP-ZDxSuFUq54znucblmcUngMJDNGi3Hpodq1JXsGISOLmlYW9QsMkL5VJGiSLcT_xQJAETKog57KNcGSgBvyWEpAlMIw8DKqTrCYB1qbwjVEsnqT5GmEFUoEmYKKI09WgSx5K6MvYZdObRgNbRFRgmqlZHFpnCN3Ej8xCsFVXWqqObxZREsqIoL5Qyxv-0uP5sMS3pOf789mTFUZyiLQKZi7m3Hp6hWv420-eQeeTiwrjcB0io00I |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED7xGGDhjXjjAQaGlMax43RgQAXUQstSkJgI8SOiUNqKBKHyb_gr_DIuTgoIAWJBYnVi5-I7333W2d8BbBnqxoL7nsOlHzsZF6YTaFF2tIgY90RZlm3NyOapXztnxxf8YgSeh3dhUIgER0psEv-dXcDdzdpu-kqVPIVRTPjFOcoTM3jEXVqyVz9AlW5TenR4Vq05RSEBJ6JBOXUMwuCMOF1ql3FGNRV-7FdkHHCpg0jglsFVgZb4HSkVi1FiUQmYVK4nMYIp7eG4ozCO2Idm-7v9amvo7DmuDy9PXCNQZUwUmdCvJM7in0o-xL8PgexoGl7epsCeX7ktPaSypJ4-sUP-6zmagakCRpP93O5nYcR052CiOqxeNw-XDXThuKKIJZA1mmT3aEgLn5u7ftvyopCmrZ6dEMTtBHEwabSdeq9LcsrRAWn1Om1NDvM6QZ1Bakh-QvMaA_8CnP_J7y3CWLfXNUtAOPpAFldiTbVhHoujSDFXRT7HwTwWsGXYRkWEhS9IQpvmp25oG1E7YaGdZdgdWkKoCkL2rC5I54ceO289-jkZybfvrvxSik2YqJ01G2GjfnqyCpMUMZu9sV9Zg7H0_sGsI-ZK5Ya1egJXf21Cr995NII |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RKlEulPIQj5b6UA4csmwcO84eOKCFFVsWhLRF4kSIX2Jh2V2RILT8H_4Kv6tjJ4sQaisuSL06sTPxjGc-a-xvAH4YGlrB4yjgMraB48IMEi3qgRYZ45Goy7qvGXl0HB-csp9n_GwKHid3YVCIHEfKfRLfreqRthXDQLjt2q9GStUihZFMxNVZykMzvsedWr7T3kO1blLa2v_VPAiqYgJBRpN6ERiEwo48XeqQcUY1FbGNG9ImXOokE7htCFWiJX5HSsUsSi0aCZMqjCRGMaUjHPcDfHRZQrfH2212Jw6f4xqJyuQ1glXGRJUN_ZPELgaq_EUMfBHMWp_h6Xka_BmW69pdIWvq4RVD5H8_T_MwV8Fpslva_xeYMoMF-NScVLFbhPMOunJcWcQTyRpN3H0a0sXn5mbU8_wo5MhX0c4J4neCeJh0ekF7OCAl9eiYdIf9nib7Zb2g_rgwpDypeYkAYAlO3-X3lmF6MByYFSAcfSGzDaupNixiNssUC1UWcxwsYglbhU1URFr5hDz16X4apr4RtZNW2lmF7Yk1pKoiZnf1Qfr_6LH13GNUkpL89d21N0rxHWZO9lppp318uA6zFKGbv7jf-ArTxe2d-YbQq5Ab3vAJXLy3Bf0GM7o3BQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lessons+Learned+from+Semiempirical+Methods+for+the+Li-Ion+Battery+Solid+Electrolyte+Interphase&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Bin+Jassar%2C+Mohammed&rft.au=Michel%2C+Carine&rft.au=Abada%2C+Sara&rft.au=De+Bruin%2C+Theodorus&rft.date=2024-02-29&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=128&rft.issue=8&rft.spage=3269&rft.epage=3280&rft_id=info:doi/10.1021%2Facs.jpcc.3c08176&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_3c08176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |