Lessons Learned from Semiempirical Methods for the Li-Ion Battery Solid Electrolyte Interphase

Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial and compositional). Semiempirical methods have the potential to reduce the computational cost compared to the computationally costly DFT com...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 128; no. 8; pp. 3269 - 3280
Main Authors Bin Jassar, Mohammed, Michel, Carine, Abada, Sara, De Bruin, Theodorus, Tant, Sylvain, Nieto-Draghi, Carlos, Steinmann, Stephan N.
Format Journal Article
LanguageEnglish
Published American Chemical Society 29.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial and compositional). Semiempirical methods have the potential to reduce the computational cost compared to the computationally costly DFT computations. In this study, we have first assessed the performance of four semiempirical methods (GFN-xtb, GFN2-xtb, PM6-D3, and PM7-D3) to model major reactions for SEI formation and growth. We have included the decomposition reactions of the most used solvent (ethylene carbonate), most used salt (lithium hexafluoro­phosphate), and other electrolyte species like the co-solvent 1,3-dioxolane and the additive vinylene carbonate. We have found that PM7-D3 and GFN-xtb are the two best performing methods for the 32 tested reactions. Finally, we have performed PM7-D3 and GFN-xtb-based molecular dynamics for inorganic/organic interfaces. We have found that LiF is the most rigid salt, which barely reconstructs. In contrast, Li2O is subject to severe reconstruction at the GFN-xtb level of theory, but significantly less when using PM7-D3. Still, even at the PM7-D3 level of theory Li2O readily reacts with alkyl carbonates, leading to CO2 dissociation and thus the formation of surface carbonates. When in contact with Li2O, ethylene carbonate can undergo partial dehydrogenation reactions and ring openings. This suggests that Li2O is overly reactive to be in direct contact with such organic molecules. Rather, it is surrounded by a passivating (mono)­layer of Li2CO3. Indeed, our simulations suggest that for such a hybrid system (core of Li2O, shell of Li2CO3, solvated with ethylene carbonate) the organic solvent remains intact. Furthermore, for such a hybrid system GFN-xtb produces physically meaningful results, so that this method can be overall recommended.
AbstractList Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial and compositional). Semiempirical methods have the potential to reduce the computational cost compared to the computationally costly DFT computations. In this study, we have first assessed the performance of four semiempirical methods (GFN-xtb, GFN2-xtb, PM6-D3, and PM7-D3) to model major reactions for SEI formation and growth. We have included the decomposition reactions of the most used solvent (ethylene carbonate), most used salt (lithium hexafluoro­phosphate), and other electrolyte species like the co-solvent 1,3-dioxolane and the additive vinylene carbonate. We have found that PM7-D3 and GFN-xtb are the two best performing methods for the 32 tested reactions. Finally, we have performed PM7-D3 and GFN-xtb-based molecular dynamics for inorganic/organic interfaces. We have found that LiF is the most rigid salt, which barely reconstructs. In contrast, Li2O is subject to severe reconstruction at the GFN-xtb level of theory, but significantly less when using PM7-D3. Still, even at the PM7-D3 level of theory Li2O readily reacts with alkyl carbonates, leading to CO2 dissociation and thus the formation of surface carbonates. When in contact with Li2O, ethylene carbonate can undergo partial dehydrogenation reactions and ring openings. This suggests that Li2O is overly reactive to be in direct contact with such organic molecules. Rather, it is surrounded by a passivating (mono)­layer of Li2CO3. Indeed, our simulations suggest that for such a hybrid system (core of Li2O, shell of Li2CO3, solvated with ethylene carbonate) the organic solvent remains intact. Furthermore, for such a hybrid system GFN-xtb produces physically meaningful results, so that this method can be overall recommended.
Author Abada, Sara
De Bruin, Theodorus
Tant, Sylvain
Bin Jassar, Mohammed
Michel, Carine
Steinmann, Stephan N.
Nieto-Draghi, Carlos
AuthorAffiliation Stellantis Centre Technique Carrières-sous-Poissy
Laboratoire de Chimie UMR 5182
ENS de Lyon, CNRS
IFP Energies nouvelles
AuthorAffiliation_xml – name: IFP Energies nouvelles
– name: Stellantis Centre Technique Carrières-sous-Poissy
– name: Laboratoire de Chimie UMR 5182
– name: ENS de Lyon, CNRS
Author_xml – sequence: 1
  givenname: Mohammed
  orcidid: 0000-0002-1246-0819
  surname: Bin Jassar
  fullname: Bin Jassar, Mohammed
  organization: IFP Energies nouvelles
– sequence: 2
  givenname: Carine
  orcidid: 0000-0002-4501-7194
  surname: Michel
  fullname: Michel, Carine
  organization: ENS de Lyon, CNRS
– sequence: 3
  givenname: Sara
  surname: Abada
  fullname: Abada, Sara
  organization: IFP Energies nouvelles
– sequence: 4
  givenname: Theodorus
  orcidid: 0000-0001-6997-1786
  surname: De Bruin
  fullname: De Bruin, Theodorus
  organization: IFP Energies nouvelles
– sequence: 5
  givenname: Sylvain
  surname: Tant
  fullname: Tant, Sylvain
  organization: Stellantis Centre Technique Carrières-sous-Poissy
– sequence: 6
  givenname: Carlos
  orcidid: 0000-0001-5956-9259
  surname: Nieto-Draghi
  fullname: Nieto-Draghi, Carlos
  organization: IFP Energies nouvelles
– sequence: 7
  givenname: Stephan N.
  orcidid: 0000-0002-2777-356X
  surname: Steinmann
  fullname: Steinmann, Stephan N.
  email: stephan.steinmann@ens-lyon.fr
  organization: ENS de Lyon, CNRS
BookMark eNp9kL1OwzAURi1UJNrCzugHIMWOndgZoSqlUhBDYSXyX1RXiR3ZZujbk9KKAQmme6Xvnit9ZwYmzjsDwC1GC4xyfC9UXOwHpRZEIY5ZeQGmuCJ5xmhRTH52yq7ALMY9QgVBmEzBR21i9C7C2ojgjIZt8D3cmt6afrDBKtHBF5N2XkfY-gDTzsDaZhvv4KNIyYQD3PrOarjqjErBd4dk4MaNwbAT0VyDy1Z00dyc5xy8P63els9Z_breLB_qTOQcpcwgWnHCuNSYFjTXOSvbspItL6TmgjFcYsW1HItKqWhLCWcVp1JhInOaK03moDz9VcHHGEzbKJtEst6lIGzXYNQcLTWjpeZoqTlbGkH0CxyC7UU4_IfcnZDvxH8GNzb7-_wLBU9-pQ
CitedBy_id crossref_primary_10_1016_j_seta_2024_104013
crossref_primary_10_1002_adfm_202313188
crossref_primary_10_1021_acs_jpcc_4c06002
Cites_doi 10.1021/ja0164529
10.1016/j.jpowsour.2019.04.061
10.1021/jp0029109
10.1007/s00894-012-1667-x
10.1021/acsenergylett.2c02351
10.1021/jp210345b
10.1021/ct300849w
10.1021/ed048pA116.1
10.1002/jcc.21759
10.1021/acs.jctc.1c00921
10.1103/PhysRevB.13.5188
10.1038/s41524-018-0064-0
10.1016/0927-0256(96)00008-0
10.1103/PhysRevLett.77.3865
10.1021/acs.jpcc.6b08688
10.1021/acsami.1c20487
10.1063/1.3382344
10.1021/acs.chemrev.8b00239
10.1007/s00894-007-0233-4
10.1063/1.5135696
10.1021/ct100684s
10.1103/PhysRevB.58.7260
10.1021/acs.jctc.7b00118
10.1021/ct200602x
10.1063/1.4993215
10.1088/0953-8984/14/11/313
10.3390/batteries7040071
10.1002/wcms.1156
10.1103/PhysRevB.48.13115
10.1016/j.checat.2022.02.009
10.1016/j.mtener.2021.100730
10.1021/ct4001922
10.1103/PhysRevLett.78.1396
10.1002/jcc.21224
10.1021/acs.jctc.5b01047
10.1021/acsenergylett.2c00517
10.1016/j.cplett.2017.05.062
10.1039/D0CP00502A
10.1016/j.jpowsour.2015.11.100
10.1021/jp074167r
10.1021/acs.jctc.8b01176
10.1002/wcms.1493
10.1021/acscatal.2c00594
10.1021/acs.jctc.6b00432
10.1002/jcc.26017
10.1021/acs.jpclett.8b02750
10.1063/1.3545985
10.1002/wcms.81
10.1021/acsomega.0c02588
10.1103/PhysRevB.54.11169
10.1021/acsaem.3c00372
10.1016/j.electacta.2017.11.190
10.1103/PhysRevB.63.085108
10.1021/acs.jpcc.8b01839
10.1021/ja017073i
10.1039/c3ra23502e
10.1021/acs.jpca.8b05143
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.3c08176
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 3280
ExternalDocumentID 10_1021_acs_jpcc_3c08176
g02405176
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
ROL
ID FETCH-LOGICAL-a280t-e0498378bd14542d276f69bf85bd8a77161c8db102bbc4f4387984bc13b242cd3
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 00:17:26 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Fri Mar 01 03:36:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-e0498378bd14542d276f69bf85bd8a77161c8db102bbc4f4387984bc13b242cd3
ORCID 0000-0002-4501-7194
0000-0002-2777-356X
0000-0002-1246-0819
0000-0001-5956-9259
0000-0001-6997-1786
PageCount 12
ParticipantIDs crossref_citationtrail_10_1021_acs_jpcc_3c08176
crossref_primary_10_1021_acs_jpcc_3c08176
acs_journals_10_1021_acs_jpcc_3c08176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-29
PublicationDateYYYYMMDD 2024-02-29
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-29
  day: 29
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1021/ja0164529
– ident: ref36/cit36
  doi: 10.1016/j.jpowsour.2019.04.061
– ident: ref22/cit22
  doi: 10.1021/jp0029109
– ident: ref50/cit50
  doi: 10.1007/s00894-012-1667-x
– ident: ref35/cit35
  doi: 10.1021/acsenergylett.2c02351
– ident: ref8/cit8
  doi: 10.1021/jp210345b
– ident: ref30/cit30
  doi: 10.1021/ct300849w
– ident: ref20/cit20
  doi: 10.1021/ed048pA116.1
– ident: ref34/cit34
  doi: 10.1002/jcc.21759
– ident: ref39/cit39
  doi: 10.1021/acs.jctc.1c00921
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.13.5188
– ident: ref1/cit1
  doi: 10.1038/s41524-018-0064-0
– ident: ref45/cit45
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref9/cit9
  doi: 10.1021/acs.jpcc.6b08688
– ident: ref40/cit40
  doi: 10.1021/acsami.1c20487
– ident: ref33/cit33
  doi: 10.1063/1.3382344
– ident: ref51/cit51
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.8b00239
– ident: ref15/cit15
  doi: 10.1007/s00894-007-0233-4
– ident: ref58/cit58
  doi: 10.1063/1.5135696
– ident: ref21/cit21
  doi: 10.1021/ct100684s
– ident: ref23/cit23
  doi: 10.1103/PhysRevB.58.7260
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.7b00118
– ident: ref47/cit47
  doi: 10.1021/ct200602x
– ident: ref31/cit31
  doi: 10.1063/1.4993215
– ident: ref26/cit26
  doi: 10.1088/0953-8984/14/11/313
– ident: ref13/cit13
  doi: 10.3390/batteries7040071
– ident: ref24/cit24
  doi: 10.1002/wcms.1156
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.48.13115
– ident: ref55/cit55
  doi: 10.1016/j.checat.2022.02.009
– ident: ref7/cit7
  doi: 10.1016/j.mtener.2021.100730
– ident: ref29/cit29
  doi: 10.1021/ct4001922
– ident: ref43/cit43
  doi: 10.1103/PhysRevLett.78.1396
– ident: ref52/cit52
  doi: 10.1002/jcc.21224
– ident: ref11/cit11
  doi: 10.1021/acs.jctc.5b01047
– ident: ref5/cit5
  doi: 10.1021/acsenergylett.2c00517
– ident: ref14/cit14
  doi: 10.1016/j.cplett.2017.05.062
– ident: ref32/cit32
  doi: 10.1039/D0CP00502A
– ident: ref3/cit3
  doi: 10.1016/j.jpowsour.2015.11.100
– ident: ref27/cit27
  doi: 10.1021/jp074167r
– ident: ref18/cit18
  doi: 10.1021/acs.jctc.8b01176
– ident: ref19/cit19
  doi: 10.1002/wcms.1493
– ident: ref54/cit54
  doi: 10.1021/acscatal.2c00594
– ident: ref10/cit10
  doi: 10.1021/acs.jctc.6b00432
– ident: ref57/cit57
  doi: 10.1002/jcc.26017
– ident: ref56/cit56
  doi: 10.1021/acs.jpclett.8b02750
– ident: ref48/cit48
  doi: 10.1063/1.3545985
– ident: ref53/cit53
  doi: 10.1002/wcms.81
– ident: ref6/cit6
  doi: 10.1021/acsomega.0c02588
– ident: ref16/cit16
  doi: 10.1007/s00894-012-1667-x
– ident: ref44/cit44
  doi: 10.1103/PhysRevB.54.11169
– ident: ref41/cit41
  doi: 10.1021/acsaem.3c00372
– ident: ref59/cit59
  doi: 10.1016/j.electacta.2017.11.190
– ident: ref25/cit25
  doi: 10.1103/PhysRevB.63.085108
– ident: ref28/cit28
  doi: 10.1021/acs.jpcc.8b01839
– ident: ref37/cit37
  doi: 10.1021/ja017073i
– ident: ref4/cit4
  doi: 10.1039/c3ra23502e
– ident: ref12/cit12
  doi: 10.1021/acs.jpca.8b05143
SSID ssj0053013
Score 2.4625864
Snippet Studying the chemical reactivity related to the solid electrolyte interphase (SEI) in lithium-ion batteries is challenging due to system heterogeneity (spatial...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 3269
SubjectTerms C: Chemical and Catalytic Reactivity at Interfaces
Title Lessons Learned from Semiempirical Methods for the Li-Ion Battery Solid Electrolyte Interphase
URI http://dx.doi.org/10.1021/acs.jpcc.3c08176
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwRpSXPMDAkJA4dpyMVdWqoJalVOpEFD8iCiWtSDqUX8_FSaHipa5JbDnn831nnf19CF1q4iac-Z7FhJ9YBRemFSjuWIrHlHncEY7RjOzd-50BvRuy4RdNzvcKPnFvYpnZz1MpbU8CfHF_HW0QP-DFRqvR7C-iLgNH9coKMmSMlPKqJPlbDwUQyWwJiJYQpb1TShNlhoiwOEjyYs9yYcv3nzSNKwx2F21XiSVulJ6wh9Z0uo82mws9twP02IWgBj6GDaWqVri4WYL78F6_TkeGKQT3jJ50hiGTxZAZ4u7Iup2kuCThnOP-ZDxSuFUq54znucblmcUngMJDNGi3Hpodq1JXsGISOLmlYW9QsMkL5VJGiSLcT_xQJAETKog57KNcGSgBvyWEpAlMIw8DKqTrCYB1qbwjVEsnqT5GmEFUoEmYKKI09WgSx5K6MvYZdObRgNbRFRgmqlZHFpnCN3Ej8xCsFVXWqqObxZREsqIoL5Qyxv-0uP5sMS3pOf789mTFUZyiLQKZi7m3Hp6hWv420-eQeeTiwrjcB0io00I
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED7xGGDhjXjjAQaGlMax43RgQAXUQstSkJgI8SOiUNqKBKHyb_gr_DIuTgoIAWJBYnVi5-I7333W2d8BbBnqxoL7nsOlHzsZF6YTaFF2tIgY90RZlm3NyOapXztnxxf8YgSeh3dhUIgER0psEv-dXcDdzdpu-kqVPIVRTPjFOcoTM3jEXVqyVz9AlW5TenR4Vq05RSEBJ6JBOXUMwuCMOF1ql3FGNRV-7FdkHHCpg0jglsFVgZb4HSkVi1FiUQmYVK4nMYIp7eG4ozCO2Idm-7v9amvo7DmuDy9PXCNQZUwUmdCvJM7in0o-xL8PgexoGl7epsCeX7ktPaSypJ4-sUP-6zmagakCRpP93O5nYcR052CiOqxeNw-XDXThuKKIJZA1mmT3aEgLn5u7ftvyopCmrZ6dEMTtBHEwabSdeq9LcsrRAWn1Om1NDvM6QZ1Bakh-QvMaA_8CnP_J7y3CWLfXNUtAOPpAFldiTbVhHoujSDFXRT7HwTwWsGXYRkWEhS9IQpvmp25oG1E7YaGdZdgdWkKoCkL2rC5I54ceO289-jkZybfvrvxSik2YqJ01G2GjfnqyCpMUMZu9sV9Zg7H0_sGsI-ZK5Ya1egJXf21Cr995NII
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RKlEulPIQj5b6UA4csmwcO84eOKCFFVsWhLRF4kSIX2Jh2V2RILT8H_4Kv6tjJ4sQaisuSL06sTPxjGc-a-xvAH4YGlrB4yjgMraB48IMEi3qgRYZ45Goy7qvGXl0HB-csp9n_GwKHid3YVCIHEfKfRLfreqRthXDQLjt2q9GStUihZFMxNVZykMzvsedWr7T3kO1blLa2v_VPAiqYgJBRpN6ERiEwo48XeqQcUY1FbGNG9ImXOokE7htCFWiJX5HSsUsSi0aCZMqjCRGMaUjHPcDfHRZQrfH2212Jw6f4xqJyuQ1glXGRJUN_ZPELgaq_EUMfBHMWp_h6Xka_BmW69pdIWvq4RVD5H8_T_MwV8Fpslva_xeYMoMF-NScVLFbhPMOunJcWcQTyRpN3H0a0sXn5mbU8_wo5MhX0c4J4neCeJh0ekF7OCAl9eiYdIf9nib7Zb2g_rgwpDypeYkAYAlO3-X3lmF6MByYFSAcfSGzDaupNixiNssUC1UWcxwsYglbhU1URFr5hDz16X4apr4RtZNW2lmF7Yk1pKoiZnf1Qfr_6LH13GNUkpL89d21N0rxHWZO9lppp318uA6zFKGbv7jf-ArTxe2d-YbQq5Ab3vAJXLy3Bf0GM7o3BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lessons+Learned+from+Semiempirical+Methods+for+the+Li-Ion+Battery+Solid+Electrolyte+Interphase&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Bin+Jassar%2C+Mohammed&rft.au=Michel%2C+Carine&rft.au=Abada%2C+Sara&rft.au=De+Bruin%2C+Theodorus&rft.date=2024-02-29&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=128&rft.issue=8&rft.spage=3269&rft.epage=3280&rft_id=info:doi/10.1021%2Facs.jpcc.3c08176&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_3c08176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon