Groundwater inverse modeling: Physics-informed neural network with disentangled constraints and errors

•A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding the results of our model.•KLE-PINN can easily investigate cases where BCs are unknown. This study combines a physics-informed neural network...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 640; p. 131703
Main Authors Ji, Yuzhe, Zha, Yuanyuan, Yeh, Tian-Chyi J., Shi, Liangsheng, Wang, Yanling
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding the results of our model.•KLE-PINN can easily investigate cases where BCs are unknown. This study combines a physics-informed neural network (PINN) and Karhunen-Loeve expansion (KLE) (i.e., KLE-PINN) to solve the groundwater inverse problem. The hydraulic head (u) distribution is approximated by a deep neural network (DNN), while the hydraulic conductivity (K) field is constructed by KLE with given prior geostatistical information. KLE-PINN is applied to investigate the inversion using data from a single pumping test, natural gradient flow (NG), and hydraulic tomography (HT). The results from these cases demonstrate that our inverse method is robust. Our error analysis endeavors to quantify the sources of error by using two custom reference indicators, eforward and ecoupling. Moreover, the study finds that the inversion using data from multiple pumping tests (HT) yields more accurate estimates, leads to faster training convergence, and maintains higher stability. In addition, by investigating cases with different outer boundary conditions (BCs), we find that KLE-PINN is more flexible. Precisely, in scenarios with missing BCs, our network still fits well with the observed data, and the estimates capture the approximate spatial pattern in the region where the observation wells are distributed. Even with incorrect BCs, our network still performs well because the observational data constraints are strongly enforced during training.
AbstractList •A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding the results of our model.•KLE-PINN can easily investigate cases where BCs are unknown. This study combines a physics-informed neural network (PINN) and Karhunen-Loeve expansion (KLE) (i.e., KLE-PINN) to solve the groundwater inverse problem. The hydraulic head (u) distribution is approximated by a deep neural network (DNN), while the hydraulic conductivity (K) field is constructed by KLE with given prior geostatistical information. KLE-PINN is applied to investigate the inversion using data from a single pumping test, natural gradient flow (NG), and hydraulic tomography (HT). The results from these cases demonstrate that our inverse method is robust. Our error analysis endeavors to quantify the sources of error by using two custom reference indicators, eforward and ecoupling. Moreover, the study finds that the inversion using data from multiple pumping tests (HT) yields more accurate estimates, leads to faster training convergence, and maintains higher stability. In addition, by investigating cases with different outer boundary conditions (BCs), we find that KLE-PINN is more flexible. Precisely, in scenarios with missing BCs, our network still fits well with the observed data, and the estimates capture the approximate spatial pattern in the region where the observation wells are distributed. Even with incorrect BCs, our network still performs well because the observational data constraints are strongly enforced during training.
ArticleNumber 131703
Author Shi, Liangsheng
Yeh, Tian-Chyi J.
Ji, Yuzhe
Zha, Yuanyuan
Wang, Yanling
Author_xml – sequence: 1
  givenname: Yuzhe
  orcidid: 0009-0000-4975-8507
  surname: Ji
  fullname: Ji, Yuzhe
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Yuanyuan
  orcidid: 0000-0003-4323-0730
  surname: Zha
  fullname: Zha, Yuanyuan
  email: zhayuan87@whu.edu.cn
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Tian-Chyi J.
  orcidid: 0000-0003-0826-5268
  surname: Yeh
  fullname: Yeh, Tian-Chyi J.
  organization: Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
– sequence: 4
  givenname: Liangsheng
  surname: Shi
  fullname: Shi, Liangsheng
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Yanling
  surname: Wang
  fullname: Wang, Yanling
  organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China
BookMark eNqFkM1uwjAQhH2gUoH2ESr5BZL6J4Skl6pC_ZOQ2kN7toy9BqfBrtYGxNs3CO7dy1x2RjPfhIxCDEDIHWclZ7y-78puc7QY-1IwUZVc8jmTIzJmTIiC1211TSYpdWw4Kasxca8Yd8EedAakPuwBE9BttND7sH6gn5tj8iYVPriIW7A0wA51P0g-RPyhB5831PoEIeuw7ocHE0PKqH3IiepgKSBGTDfkyuk-we1Fp-T75flr8VYsP17fF0_LQouG5cLWNW94C0Y0lpl565qG65moYGU1k5W1rB72zLio29ZoZuV85XilXeNq01pXySmZnXMNxpQQnPpFv9V4VJypEyDVqQsgdQKkzoAG3-PZB0O5vQdUyXgIBqxHMFnZ6P9J-AM-BHiR
Cites_doi 10.1029/2022WR031926
10.1002/2017WR020906
10.1016/j.advwatres.2014.06.008
10.1016/j.jcp.2020.109914
10.1029/2004WR003874
10.1016/j.advwatres.2020.103610
10.1007/s10040-021-02320-4
10.1002/2013WR014630
10.1029/2020WR027642
10.1111/j.1745-6584.2012.00914.x
10.1111/j.1745-6584.2008.00541.x
10.1016/j.jhydrol.2022.128828
10.3133/tm6A16
10.1016/j.advwatres.2022.104243
10.1029/2019WR026082
10.1016/j.jcp.2021.110768
10.1016/j.advwatres.2015.09.019
10.1016/j.advwatres.2012.08.001
10.1016/j.cageo.2019.104333
10.1016/j.jcp.2020.110079
10.1029/95WR01945
10.1016/j.jhydrol.2019.124092
10.1016/j.gsf.2016.11.017
10.1016/j.cageo.2012.03.011
10.1029/2000WR900114
10.1016/j.cma.2022.114823
10.1016/j.jcp.2018.10.045
10.1029/2019WR026731
10.1029/2011WR010616
10.1007/s10040-004-0404-7
10.4208/cicp.OA-2020-0086
10.1016/j.jhydrol.2021.127233
10.1016/j.jhydrol.2022.127911
10.1111/gwat.12879
10.5194/hess-26-4469-2022
10.1016/j.jcp.2003.09.015
10.1029/WR011i004p00563
10.1016/j.cma.2021.113741
10.1016/j.jhydrol.2007.05.011
10.1017/CBO9781139879323
10.1016/j.jhydrol.2020.124700
10.1029/2004WR003790
10.1111/gwat.12413
10.1029/2007WR006375
10.1016/j.advwatres.2017.09.029
10.1002/2017WR022148
10.1137/19M1274067
10.1137/20M1318043
10.1016/j.jhydrol.2018.11.064
10.1029/2004WR003717
10.24963/ijcai.2022/533
10.1016/j.advwatres.2021.103941
10.1016/j.neucom.2022.05.015
10.1016/j.jcp.2021.110318
10.1016/j.jcp.2022.111230
10.1111/j.1745-6584.2007.00374.x
10.1029/2011WR011756
10.1016/j.advwatres.2013.10.014
10.1029/2008WR007180
10.1016/j.jhydrol.2022.129018
10.1029/2018WR023528
10.1016/j.petrol.2021.109046
10.1002/2017WR021884
10.1029/2020WR028331
10.1016/j.cma.2020.113028
10.1038/s41586-019-0912-1
10.1115/1.4050542
10.1190/INT-2016-0198.1
10.1029/2022WR033241
10.1017/9781009049511
10.1029/95WR02869
10.1029/2010WR010367
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jhydrol.2024.131703
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2024_131703
S0022169424010990
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-a280t-d661819ec28d0c79f881a524ebda034dd06170512699ca0d37bf14af8f6c9df43
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Tue Jul 01 01:54:02 EDT 2025
Sat Sep 14 18:00:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Physics-informed neural network
Boundary conditions
Hydraulic tomography
Groundwater inversion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-d661819ec28d0c79f881a524ebda034dd06170512699ca0d37bf14af8f6c9df43
ORCID 0000-0003-0826-5268
0009-0000-4975-8507
0000-0003-4323-0730
ParticipantIDs crossref_primary_10_1016_j_jhydrol_2024_131703
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_131703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Zhang, Rong, Wang (b0345) 2021; 436
Haghighat, Raissi, Moure, Gomez, Juanes (b0095) 2021; 379
Harbaugh, A.W., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey Reston, VA, USA.
Wang, Perdikaris (b0285) 2021; 428
Berg, Illman (b0025) 2011; 47
Sagar, Yakowitz, Duckstein (b0245) 1975; 11
Tartakovsky, Marrero, Perdikaris, Tartakovsky, Barajas-Solano (b0260) 2020; 56
Wang, Shi, Hu, Song, Wang (b0290) 2023; 59
Moharir, Pande, Patil (b0225) 2017; 8
Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (b0240) 2019; 566
Wight, Zhao (b0315) 2021; 29
Kitanidis (b0145) 1995; 31
Liu, Yeh, Wang, Song, Lei, Wen, Wang, Hao (b0190) 2020; 56
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 32.
Zha, Yeh, Illman, Zeng, Zhang, Sun, Shi (b0385) 2018; 54
Chen, Wen, Jim Yeh, Andrew Lin, Wang, Huang, Ma, Yu, Lee (b0055) 2019; 569
Li, Tartakovsky (b0180) 2022; 462
Jardani, Vu, Fischer (b0135) 2022; 604
Xu, Wang, Zhang (b0340) 2021; 153
Yeh, T.-C.J., Khaleel, R., Carroll, K.C., 2015. Flow Through Heterogeneous Geologic Media. Cambridge University Press. doi: 10.1017/CBO9781139879323.
Laloy, Linde, Ruffino, Hérault, Gasso, Jacques (b0170) 2019
Zhu, Yeh (b0415) 2005; 41
Bandai, Ghezzehei (b0015) 2022; 26
Luo, Illman, Zha (b0200) 2022; 610
Wang, Zhang, Chang, Li (b0270) 2020; 584
Zha, Yeh, Mao, Yang, Lu (b0380) 2014; 71
He, Barajas-Solano, Tartakovsky, Tartakovsky (b0105) 2020; 141
Kontopoulos, Ahriz, Elyan, Arnold (b0155) 2020
Yeh, Lee, Hsu, Illman, Barrash, Cai, Daniels, Sudicky, Wan, Li (b0360) 2008; 44
Wang, Yu, Perdikaris (b0300) 2022; 449
Yeh, T.-C.J., Dong, Y., Ye, S., 2023. An Introduction to Solute Transport in Heterogeneous Geologic Media. Cambridge University Press, Cambridge. doi: 10.1017/9781009049511.
Illman, Craig, Liu (b0120) 2008; 46
Wang, Chang, Zhang (b0275) 2021; 126
Yeh, Liu (b0365) 2000; 36
McPhee, Reed, Zubizarreta (b0210) 2015
Bakker, Post, Langevin, Hughes, White, Starn, Fienen (b0005) 2016; 54
Bandai, Ghezzehei (b0010) 2021; 57
Tong, Illman, Berg, Luo (b0265) 2021; 29
Kitanidis, Lee (b0150) 2014; 50
Zhang, Zhu, Wang, Ju, Qian, Ye, Yang (b0405) 2022; 165
Carrera, Alcolea, Medina, Hidalgo, Slooten (b0050) 2005; 13
Zhou, Gómez-Hernández, Li (b0410) 2014; 63
Yeh, Jin, Hanna (b0370) 1996; 32
Wu, Yeh, Zhu, Lee, Hsu, Chen, Sancho (b0325) 2005; 41
Cai, Wang, Wang, Perdikaris, Karniadakis (b0035) 2021; 143
Huang, X., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Weng, B., Wang, M., Chu, H., Zhou, J., Yu, F., Hua, B., Chen, L., Dong, B., 2021. Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks. doi: 10.48550/arXiv.2111.01394.
Zhang, Lin, Li, Wu, Zeng (b0395) 2018; 54
Raissi, Perdikaris, Karniadakis (b0235) 2019; 378
Xiang, Yeh, Lee, Hsu, Wen (b0335) 2009; 45
Weglein (b0305) 2017; 5
Gao, Sun, Wang (b0080) 2021; 428
Guo, Zhao, Lu, Luo (b0090) 2023; 616
Jagtap, Kharazmi, Karniadakis (b0130) 2020; 365
Laloy, Hérault, Lee, Jacques, Linde (b0160) 2017; 110
Xiang, Peng, Liu, Yao (b0330) 2022; 496
Illman, Liu, Craig (b0115) 2007; 341
Mo, Zhu, Zabaras, Shi, Wu (b0215) 2019; 55
Goodfellow, Bengio, Courville (b0085) 2016
Li, Nowak, Cirpka (b0175) 2005; 41
Baydin, Pearlmutter, Radul, Siskind (b0020) 2018; 18
Mao, Yeh, Wan, Hsu, Lee, Wen (b0205) 2013; 52
Shadab, M.A., Luo, D., Shen, Y., Hiatt, E., Hesse, M.A., 2021. Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural Networks. doi: 10.48550/arXiv.2112.13792.
Wang, Kong, Hu, Xu (b0280) 2023; 617
Wen, Chen, Yeh, Wang, Huang, Tian, Yu (b0310) 2020; 58
Yu, Lu, Meng, Karniadakis (b0375) 2022; 393
Kang, Shi, Revil, Cao, Li, Lan, Wu (b0140) 2019; 578
Daolun, Luhang, Wenshu, Xuliang, Jieqing (b0060) 2021; 206
Mo, Zabaras, Shi, Wu (b0220) 2020; 56
Cardiff, Barrash (b0040) 2011; 47
Wang, Teng, Perdikaris (b0295) 2021; 43
Cardiff, Barrash, Kitanidis, Malama, Revil, Straface, Rizzo (b0045) 2009; 47
Berg, Illman (b0030) 2013; 51
Franke, O.L., Reilly, T.E., 1987. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems: results and implications of numerical experiments. Cent. Integr. data Anal. wisconsin Sci. Cent.
Lu, Meng, Mao, Karniadakis (b0195) 2021; 63
Linde, Renard, Mukerji, Caers (b0185) 2015; 86
Depina, Jain, Mar Valsson, Gotovac (b0065) 2022; 16
Song, Shi, Wang, Wang, Hu (b0255) 2022; 58
Irsa, Zhang (b0125) 2012; 48
Zhan, Dai, Soltanian, de Barros (b0390) 2022; 58
Emerick, Reynolds (b0070) 2013; 55
Zhang, Lu (b0400) 2004; 194
Wong, K.W., Fung, C.C., Ong, Y.S., Gedeon, T.D., 2005. Reservoir characterization using support vector machines, in: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). IEEE, pp. 354–359.
Laloy, Hérault, Jacques, Linde (b0165) 2018; 54
Goodfellow (10.1016/j.jhydrol.2024.131703_b0085) 2016
Bakker (10.1016/j.jhydrol.2024.131703_b0005) 2016; 54
Emerick (10.1016/j.jhydrol.2024.131703_b0070) 2013; 55
Zha (10.1016/j.jhydrol.2024.131703_b0385) 2018; 54
Mo (10.1016/j.jhydrol.2024.131703_b0215) 2019; 55
Wen (10.1016/j.jhydrol.2024.131703_b0310) 2020; 58
Wang (10.1016/j.jhydrol.2024.131703_b0300) 2022; 449
Raissi (10.1016/j.jhydrol.2024.131703_b0235) 2019; 378
Zhou (10.1016/j.jhydrol.2024.131703_b0410) 2014; 63
Cardiff (10.1016/j.jhydrol.2024.131703_b0045) 2009; 47
Cardiff (10.1016/j.jhydrol.2024.131703_b0040) 2011; 47
Song (10.1016/j.jhydrol.2024.131703_b0255) 2022; 58
Illman (10.1016/j.jhydrol.2024.131703_b0115) 2007; 341
Illman (10.1016/j.jhydrol.2024.131703_b0120) 2008; 46
Wang (10.1016/j.jhydrol.2024.131703_b0270) 2020; 584
Yu (10.1016/j.jhydrol.2024.131703_b0375) 2022; 393
Zhu (10.1016/j.jhydrol.2024.131703_b0415) 2005; 41
Carrera (10.1016/j.jhydrol.2024.131703_b0050) 2005; 13
Wang (10.1016/j.jhydrol.2024.131703_b0295) 2021; 43
Yeh (10.1016/j.jhydrol.2024.131703_b0360) 2008; 44
10.1016/j.jhydrol.2024.131703_b0100
Jagtap (10.1016/j.jhydrol.2024.131703_b0130) 2020; 365
Laloy (10.1016/j.jhydrol.2024.131703_b0165) 2018; 54
Linde (10.1016/j.jhydrol.2024.131703_b0185) 2015; 86
Jardani (10.1016/j.jhydrol.2024.131703_b0135) 2022; 604
Kontopoulos (10.1016/j.jhydrol.2024.131703_b0155) 2020
Wang (10.1016/j.jhydrol.2024.131703_b0290) 2023; 59
Liu (10.1016/j.jhydrol.2024.131703_b0190) 2020; 56
Cai (10.1016/j.jhydrol.2024.131703_b0035) 2021; 143
Tong (10.1016/j.jhydrol.2024.131703_b0265) 2021; 29
Wang (10.1016/j.jhydrol.2024.131703_b0285) 2021; 428
Irsa (10.1016/j.jhydrol.2024.131703_b0125) 2012; 48
Moharir (10.1016/j.jhydrol.2024.131703_b0225) 2017; 8
Wu (10.1016/j.jhydrol.2024.131703_b0325) 2005; 41
Zhang (10.1016/j.jhydrol.2024.131703_b0400) 2004; 194
Laloy (10.1016/j.jhydrol.2024.131703_b0170) 2019
Reichstein (10.1016/j.jhydrol.2024.131703_b0240) 2019; 566
Luo (10.1016/j.jhydrol.2024.131703_b0200) 2022; 610
Yeh (10.1016/j.jhydrol.2024.131703_b0365) 2000; 36
He (10.1016/j.jhydrol.2024.131703_b0105) 2020; 141
10.1016/j.jhydrol.2024.131703_b0250
Tartakovsky (10.1016/j.jhydrol.2024.131703_b0260) 2020; 56
Wight (10.1016/j.jhydrol.2024.131703_b0315) 2021; 29
Guo (10.1016/j.jhydrol.2024.131703_b0090) 2023; 616
Kitanidis (10.1016/j.jhydrol.2024.131703_b0145) 1995; 31
Berg (10.1016/j.jhydrol.2024.131703_b0025) 2011; 47
Li (10.1016/j.jhydrol.2024.131703_b0175) 2005; 41
Zhang (10.1016/j.jhydrol.2024.131703_b0395) 2018; 54
Mo (10.1016/j.jhydrol.2024.131703_b0220) 2020; 56
McPhee (10.1016/j.jhydrol.2024.131703_b0210) 2015
Haghighat (10.1016/j.jhydrol.2024.131703_b0095) 2021; 379
Mao (10.1016/j.jhydrol.2024.131703_b0205) 2013; 52
Xiang (10.1016/j.jhydrol.2024.131703_b0335) 2009; 45
Laloy (10.1016/j.jhydrol.2024.131703_b0160) 2017; 110
Kang (10.1016/j.jhydrol.2024.131703_b0140) 2019; 578
Lu (10.1016/j.jhydrol.2024.131703_b0195) 2021; 63
Xu (10.1016/j.jhydrol.2024.131703_b0340) 2021; 153
Zhan (10.1016/j.jhydrol.2024.131703_b0390) 2022; 58
Bandai (10.1016/j.jhydrol.2024.131703_b0015) 2022; 26
Sagar (10.1016/j.jhydrol.2024.131703_b0245) 1975; 11
Zhang (10.1016/j.jhydrol.2024.131703_b0405) 2022; 165
Daolun (10.1016/j.jhydrol.2024.131703_b0060) 2021; 206
Depina (10.1016/j.jhydrol.2024.131703_b0065) 2022; 16
10.1016/j.jhydrol.2024.131703_b0320
Li (10.1016/j.jhydrol.2024.131703_b0180) 2022; 462
Xu (10.1016/j.jhydrol.2024.131703_b0345) 2021; 436
Zha (10.1016/j.jhydrol.2024.131703_b0380) 2014; 71
Gao (10.1016/j.jhydrol.2024.131703_b0080) 2021; 428
Wang (10.1016/j.jhydrol.2024.131703_b0275) 2021; 126
Bandai (10.1016/j.jhydrol.2024.131703_b0010) 2021; 57
Kitanidis (10.1016/j.jhydrol.2024.131703_b0150) 2014; 50
Berg (10.1016/j.jhydrol.2024.131703_b0030) 2013; 51
Weglein (10.1016/j.jhydrol.2024.131703_b0305) 2017; 5
Wang (10.1016/j.jhydrol.2024.131703_b0280) 2023; 617
Yeh (10.1016/j.jhydrol.2024.131703_b0370) 1996; 32
Chen (10.1016/j.jhydrol.2024.131703_b0055) 2019; 569
10.1016/j.jhydrol.2024.131703_b0075
10.1016/j.jhydrol.2024.131703_b0350
10.1016/j.jhydrol.2024.131703_b0230
10.1016/j.jhydrol.2024.131703_b0110
Baydin (10.1016/j.jhydrol.2024.131703_b0020) 2018; 18
Xiang (10.1016/j.jhydrol.2024.131703_b0330) 2022; 496
10.1016/j.jhydrol.2024.131703_b0355
References_xml – volume: 13
  start-page: 206
  year: 2005
  end-page: 222
  ident: b0050
  article-title: Inverse problem in hydrogeology
  publication-title: Hydrogeol. J.
– volume: 604
  year: 2022
  ident: b0135
  article-title: Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography
  publication-title: J. Hydrol.
– volume: 48
  year: 2012
  ident: b0125
  article-title: A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions
  publication-title: Water Resour. Res.
– volume: 55
  start-page: 703
  year: 2019
  end-page: 728
  ident: b0215
  article-title: Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media
  publication-title: Water Resour. Res.
– volume: 58
  start-page: 1
  year: 2022
  end-page: 24
  ident: b0255
  article-title: Data-Driven Discovery of Soil Moisture Flow Governing Equation: A Sparse Regression Framework
  publication-title: Water Resour. Res.
– volume: 617
  year: 2023
  ident: b0280
  article-title: Mapping conduits in two-dimensional heterogeneous karst aquifers using hydraulic tomography
  publication-title: J. Hydrol.
– volume: 462
  year: 2022
  ident: b0180
  article-title: Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems
  publication-title: J. Comput. Phys.
– volume: 341
  start-page: 222
  year: 2007
  end-page: 234
  ident: b0115
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
– volume: 54
  start-page: 1716
  year: 2018
  end-page: 1733
  ident: b0395
  article-title: An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With Multimodal Distributions
  publication-title: Water Resour. Res.
– volume: 71
  start-page: 162
  year: 2014
  end-page: 176
  ident: b0380
  article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium
  publication-title: Adv. Water Resour.
– volume: 8
  start-page: 1385
  year: 2017
  end-page: 1395
  ident: b0225
  article-title: Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software
  publication-title: Geosci. Front.
– volume: 584
  year: 2020
  ident: b0270
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol.
– volume: 29
  start-page: 930
  year: 2021
  end-page: 954
  ident: b0315
  article-title: Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
  publication-title: Commun. Comput. Phys.
– volume: 428
  year: 2021
  ident: b0285
  article-title: Deep learning of free boundary and Stefan problems
  publication-title: J. Comput. Phys.
– volume: 44
  start-page: 1
  year: 2008
  end-page: 9
  ident: b0360
  article-title: A view toward the future of subsurface characterization: CAT scanning groundwater basins
  publication-title: Water Resour. Res.
– volume: 616
  year: 2023
  ident: b0090
  article-title: High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN)
  publication-title: J. Hydrol.
– year: 2019
  ident: b0170
  article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: Is it feasible?
  publication-title: Comput. Geosci.
– volume: 52
  start-page: 50
  year: 2013
  end-page: 61
  ident: b0205
  article-title: Necessary conditions for inverse modeling of flow through variably saturated porous media
  publication-title: Adv. Water Resour.
– volume: 206
  year: 2021
  ident: b0060
  article-title: Physics-constrained deep learning for solving seepage equation
  publication-title: J. Pet. Sci. Eng.
– volume: 54
  start-page: 381
  year: 2018
  end-page: 406
  ident: b0165
  article-title: Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 1979
  year: 2021
  end-page: 1997
  ident: b0265
  article-title: Hydraulic tomography analysis of municipal-well operation data with geology-based groundwater models
  publication-title: Hydrogeol. J.
– volume: 57
  year: 2021
  ident: b0010
  article-title: Physics-Informed Neural Networks With Monotonicity Constraints for Richardson-Richards Equation: Estimation of Constitutive Relationships and Soil Water Flux Density From Volumetric Water Content Measurements
  publication-title: Water Resour. Res.
– volume: 141
  year: 2020
  ident: b0105
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
– reference: Yeh, T.-C.J., Dong, Y., Ye, S., 2023. An Introduction to Solute Transport in Heterogeneous Geologic Media. Cambridge University Press, Cambridge. doi: 10.1017/9781009049511.
– reference: Huang, X., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Weng, B., Wang, M., Chu, H., Zhou, J., Yu, F., Hua, B., Chen, L., Dong, B., 2021. Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks. doi: 10.48550/arXiv.2111.01394.
– volume: 32
  start-page: 85
  year: 1996
  end-page: 92
  ident: b0370
  article-title: An Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields
  publication-title: Water Resour. Res.
– volume: 5
  year: 2017
  ident: b0305
  article-title: A direct inverse method for subsurface properties: The conceptual and practical benefit and added value in comparison with all current indirect methods, for example, amplitude-variation-with-offset and full-waveform inversion
  publication-title: Interpretation
– volume: 51
  start-page: 29
  year: 2013
  end-page: 40
  ident: b0030
  article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography
  publication-title: GroundWater
– reference: Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 32.
– volume: 63
  start-page: 22
  year: 2014
  end-page: 37
  ident: b0410
  article-title: Inverse methods in hydrogeology: Evolution and recent trends
  publication-title: Adv. Water Resour.
– volume: 47
  start-page: 259
  year: 2009
  end-page: 270
  ident: b0045
  article-title: A potential-based inversion of unconfined steady-state hydraulic tomography
  publication-title: Ground Water
– volume: 47
  year: 2011
  ident: b0040
  article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
  publication-title: Water Resour. Res.
– volume: 41
  year: 2005
  ident: b0175
  article-title: Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown
  publication-title: Water Resour. Res.
– volume: 569
  start-page: 117
  year: 2019
  end-page: 134
  ident: b0055
  article-title: Reproducibility of hydraulic tomography estimates and their predictions: A two-year case study in Taiwan
  publication-title: J. Hydrol.
– volume: 50
  start-page: 5428
  year: 2014
  end-page: 5443
  ident: b0150
  article-title: Principal Component Geostatistical Approach for large-dimensional inverse problems
  publication-title: Water Resour. Res.
– volume: 194
  start-page: 773
  year: 2004
  end-page: 794
  ident: b0400
  article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions
  publication-title: J. Comput. Phys.
– volume: 365
  year: 2020
  ident: b0130
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 11
  start-page: 563
  year: 1975
  end-page: 570
  ident: b0245
  article-title: A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers
  publication-title: Water Resour. Res.
– volume: 610
  year: 2022
  ident: b0200
  article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations
  publication-title: J. Hydrol.
– reference: Wong, K.W., Fung, C.C., Ong, Y.S., Gedeon, T.D., 2005. Reservoir characterization using support vector machines, in: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). IEEE, pp. 354–359.
– volume: 47
  year: 2011
  ident: b0025
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 10
  ident: b0415
  article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography
  publication-title: Water Resour. Res.
– volume: 393
  year: 2022
  ident: b0375
  article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 165
  year: 2022
  ident: b0405
  article-title: GW-PINN: A deep learning algorithm for solving groundwater flow equations
  publication-title: Adv. Water Resour.
– volume: 428
  year: 2021
  ident: b0080
  article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
– reference: Shadab, M.A., Luo, D., Shen, Y., Hiatt, E., Hesse, M.A., 2021. Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural Networks. doi: 10.48550/arXiv.2112.13792.
– volume: 578
  year: 2019
  ident: b0140
  article-title: Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data
  publication-title: J. Hydrol.
– volume: 126
  year: 2021
  ident: b0275
  article-title: Deep-Learning-Based Inverse Modeling Approaches: A Subsurface Flow Example
  publication-title: J. Geophys. Res. Solid Earth
– volume: 58
  start-page: 79
  year: 2020
  end-page: 92
  ident: b0310
  article-title: Redundant and Nonredundant Information for Model Calibration or Hydraulic Tomography
  publication-title: Groundwater
– start-page: 143
  year: 2020
  end-page: 154
  ident: b0155
  article-title: Predicting Permeability Based on Core Analysis
  publication-title: International Conference on Engineering Applications of Neural Networks
– reference: Harbaugh, A.W., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey Reston, VA, USA.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 12
  ident: b0325
  article-title: Traditional analysis of aquifer tests: Comparing apples to oranges?
  publication-title: Water Resour. Res.
– volume: 566
  start-page: 195
  year: 2019
  end-page: 204
  ident: b0240
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
– volume: 55
  start-page: 3
  year: 2013
  end-page: 15
  ident: b0070
  article-title: Ensemble smoother with multiple data assimilation
  publication-title: Comput. Geosci.
– year: 2015
  ident: b0210
  article-title: Core analysis: a best practice guide
– volume: 56
  start-page: 1
  year: 2020
  end-page: 16
  ident: b0260
  article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 2095
  year: 2000
  end-page: 2105
  ident: b0365
  article-title: Hydraulic tomography: Development of a new aquifer test method
  publication-title: Water Resour. Res.
– reference: Franke, O.L., Reilly, T.E., 1987. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems: results and implications of numerical experiments. Cent. Integr. data Anal. wisconsin Sci. Cent.
– year: 2016
  ident: b0085
  article-title: Deep learning
– volume: 110
  start-page: 387
  year: 2017
  end-page: 405
  ident: b0160
  article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network
  publication-title: Adv. Water Resour.
– volume: 45
  year: 2009
  ident: b0335
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
– volume: 56
  year: 2020
  ident: b0220
  article-title: Integration of Adversarial Autoencoders With Residual Dense Convolutional Networks for Estimation of Non-Gaussian Hydraulic Conductivities
  publication-title: Water Resour. Res.
– volume: 379
  year: 2021
  ident: b0095
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 153
  year: 2021
  ident: b0340
  article-title: Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network
  publication-title: Adv. Water Resour.
– volume: 46
  start-page: 120
  year: 2008
  end-page: 132
  ident: b0120
  article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography
  publication-title: Ground Water
– volume: 63
  start-page: 208
  year: 2021
  end-page: 228
  ident: b0195
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
– volume: 43
  start-page: 3055
  year: 2021
  end-page: 3081
  ident: b0295
  article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
– volume: 31
  start-page: 2411
  year: 1995
  end-page: 2419
  ident: b0145
  article-title: Quasi-Linear Geostatistical Theory for Inversing
  publication-title: Water Resour. Res.
– volume: 16
  start-page: 21
  year: 2022
  end-page: 36
  ident: b0065
  article-title: Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow
  publication-title: Georisk
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b0235
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 436
  year: 2021
  ident: b0345
  article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
  publication-title: J. Comput. Phys.
– reference: Yeh, T.-C.J., Khaleel, R., Carroll, K.C., 2015. Flow Through Heterogeneous Geologic Media. Cambridge University Press. doi: 10.1017/CBO9781139879323.
– volume: 86
  start-page: 86
  year: 2015
  end-page: 101
  ident: b0185
  article-title: Geological realism in hydrogeological and geophysical inverse modeling: A review
  publication-title: Adv. Water Resour.
– volume: 54
  start-page: 1616
  year: 2018
  end-page: 1632
  ident: b0385
  article-title: A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography
  publication-title: Water Resour. Res.
– volume: 496
  start-page: 11
  year: 2022
  end-page: 34
  ident: b0330
  article-title: Self-adaptive loss balanced Physics-informed neural networks
  publication-title: Neurocomputing
– volume: 449
  year: 2022
  ident: b0300
  article-title: When and why PINNs fail to train: A neural tangent kernel perspective
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 4469
  year: 2022
  end-page: 4495
  ident: b0015
  article-title: Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 56
  start-page: 1
  year: 2020
  end-page: 18
  ident: b0190
  article-title: Potential of Hydraulic Tomography in Identifying Boundary Conditions of Groundwater Basins
  publication-title: Water Resour. Res.
– volume: 143
  start-page: 1
  year: 2021
  end-page: 15
  ident: b0035
  article-title: Physics-informed neural networks for heat transfer problems
  publication-title: J. Heat Transfer
– volume: 58
  start-page: 1
  year: 2022
  end-page: 21
  ident: b0390
  article-title: Data-Worth Analysis for Heterogeneous Subsurface Structure Identification With a Stochastic Deep Learning Framework
  publication-title: Water Resour. Res.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 43
  ident: b0020
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Marchine Learn. Res.
– volume: 54
  start-page: 733
  year: 2016
  end-page: 739
  ident: b0005
  article-title: Scripting MODFLOW Model Development Using Python and FloPy
  publication-title: Groundwater
– volume: 59
  start-page: 1
  year: 2023
  end-page: 22
  ident: b0290
  article-title: Multiphysics-Informed Neural Networks for Coupled Soil Hydrothermal Modeling
  publication-title: Water Resour. Res.
– volume: 58
  start-page: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0255
  article-title: Data-Driven Discovery of Soil Moisture Flow Governing Equation: A Sparse Regression Framework
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR031926
– volume: 54
  start-page: 1716
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131703_b0395
  article-title: An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With Multimodal Distributions
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR020906
– volume: 71
  start-page: 162
  year: 2014
  ident: 10.1016/j.jhydrol.2024.131703_b0380
  article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.06.008
– year: 2016
  ident: 10.1016/j.jhydrol.2024.131703_b0085
– volume: 428
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0285
  article-title: Deep learning of free boundary and Stefan problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109914
– volume: 41
  year: 2005
  ident: 10.1016/j.jhydrol.2024.131703_b0175
  article-title: Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003874
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131703_b0020
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Marchine Learn. Res.
– volume: 141
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0105
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103610
– volume: 16
  start-page: 21
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0065
  article-title: Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow
  publication-title: Georisk
– volume: 29
  start-page: 1979
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0265
  article-title: Hydraulic tomography analysis of municipal-well operation data with geology-based groundwater models
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-021-02320-4
– volume: 50
  start-page: 5428
  year: 2014
  ident: 10.1016/j.jhydrol.2024.131703_b0150
  article-title: Principal Component Geostatistical Approach for large-dimensional inverse problems
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014630
– volume: 57
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0010
  article-title: Physics-Informed Neural Networks With Monotonicity Constraints for Richardson-Richards Equation: Estimation of Constitutive Relationships and Soil Water Flux Density From Volumetric Water Content Measurements
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR027642
– volume: 51
  start-page: 29
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131703_b0030
  article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography
  publication-title: GroundWater
  doi: 10.1111/j.1745-6584.2012.00914.x
– volume: 47
  start-page: 259
  year: 2009
  ident: 10.1016/j.jhydrol.2024.131703_b0045
  article-title: A potential-based inversion of unconfined steady-state hydraulic tomography
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2008.00541.x
– volume: 616
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131703_b0090
  article-title: High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128828
– ident: 10.1016/j.jhydrol.2024.131703_b0230
– volume: 126
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0275
  article-title: Deep-Learning-Based Inverse Modeling Approaches: A Subsurface Flow Example
  publication-title: J. Geophys. Res. Solid Earth
– ident: 10.1016/j.jhydrol.2024.131703_b0100
  doi: 10.3133/tm6A16
– volume: 165
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0405
  article-title: GW-PINN: A deep learning algorithm for solving groundwater flow equations
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2022.104243
– volume: 56
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0220
  article-title: Integration of Adversarial Autoencoders With Residual Dense Convolutional Networks for Estimation of Non-Gaussian Hydraulic Conductivities
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026082
– volume: 449
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0300
  article-title: When and why PINNs fail to train: A neural tangent kernel perspective
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110768
– volume: 59
  start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131703_b0290
  article-title: Multiphysics-Informed Neural Networks for Coupled Soil Hydrothermal Modeling
  publication-title: Water Resour. Res.
– volume: 86
  start-page: 86
  year: 2015
  ident: 10.1016/j.jhydrol.2024.131703_b0185
  article-title: Geological realism in hydrogeological and geophysical inverse modeling: A review
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.09.019
– volume: 52
  start-page: 50
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131703_b0205
  article-title: Necessary conditions for inverse modeling of flow through variably saturated porous media
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.08.001
– year: 2019
  ident: 10.1016/j.jhydrol.2024.131703_b0170
  article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: Is it feasible?
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104333
– volume: 428
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0080
  article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110079
– volume: 31
  start-page: 2411
  year: 1995
  ident: 10.1016/j.jhydrol.2024.131703_b0145
  article-title: Quasi-Linear Geostatistical Theory for Inversing
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01945
– volume: 578
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131703_b0140
  article-title: Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124092
– volume: 8
  start-page: 1385
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131703_b0225
  article-title: Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2016.11.017
– volume: 55
  start-page: 3
  year: 2013
  ident: 10.1016/j.jhydrol.2024.131703_b0070
  article-title: Ensemble smoother with multiple data assimilation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.03.011
– volume: 36
  start-page: 2095
  year: 2000
  ident: 10.1016/j.jhydrol.2024.131703_b0365
  article-title: Hydraulic tomography: Development of a new aquifer test method
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900114
– volume: 393
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0375
  article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114823
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131703_b0235
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 56
  start-page: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0260
  article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR026731
– volume: 47
  year: 2011
  ident: 10.1016/j.jhydrol.2024.131703_b0025
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010616
– volume: 13
  start-page: 206
  year: 2005
  ident: 10.1016/j.jhydrol.2024.131703_b0050
  article-title: Inverse problem in hydrogeology
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0404-7
– volume: 29
  start-page: 930
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0315
  article-title: Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0086
– volume: 604
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0135
  article-title: Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127233
– volume: 610
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0200
  article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127911
– volume: 58
  start-page: 79
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0310
  article-title: Redundant and Nonredundant Information for Model Calibration or Hydraulic Tomography
  publication-title: Groundwater
  doi: 10.1111/gwat.12879
– volume: 26
  start-page: 4469
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0015
  article-title: Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-26-4469-2022
– volume: 194
  start-page: 773
  year: 2004
  ident: 10.1016/j.jhydrol.2024.131703_b0400
  article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.015
– ident: 10.1016/j.jhydrol.2024.131703_b0250
– volume: 11
  start-page: 563
  year: 1975
  ident: 10.1016/j.jhydrol.2024.131703_b0245
  article-title: A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers
  publication-title: Water Resour. Res.
  doi: 10.1029/WR011i004p00563
– volume: 379
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0095
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113741
– volume: 341
  start-page: 222
  year: 2007
  ident: 10.1016/j.jhydrol.2024.131703_b0115
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.05.011
– ident: 10.1016/j.jhydrol.2024.131703_b0350
  doi: 10.1017/CBO9781139879323
– volume: 584
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0270
  article-title: Deep learning of subsurface flow via theory-guided neural network
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124700
– start-page: 143
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0155
  article-title: Predicting Permeability Based on Core Analysis
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.jhydrol.2024.131703_b0415
  article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003790
– volume: 54
  start-page: 733
  year: 2016
  ident: 10.1016/j.jhydrol.2024.131703_b0005
  article-title: Scripting MODFLOW Model Development Using Python and FloPy
  publication-title: Groundwater
  doi: 10.1111/gwat.12413
– volume: 44
  start-page: 1
  year: 2008
  ident: 10.1016/j.jhydrol.2024.131703_b0360
  article-title: A view toward the future of subsurface characterization: CAT scanning groundwater basins
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006375
– volume: 110
  start-page: 387
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131703_b0160
  article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.029
– ident: 10.1016/j.jhydrol.2024.131703_b0075
– volume: 54
  start-page: 381
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131703_b0165
  article-title: Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR022148
– volume: 63
  start-page: 208
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0195
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 43
  start-page: 3055
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0295
  article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1318043
– volume: 569
  start-page: 117
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131703_b0055
  article-title: Reproducibility of hydraulic tomography estimates and their predictions: A two-year case study in Taiwan
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.064
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.jhydrol.2024.131703_b0325
  article-title: Traditional analysis of aquifer tests: Comparing apples to oranges?
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003717
– ident: 10.1016/j.jhydrol.2024.131703_b0110
  doi: 10.24963/ijcai.2022/533
– volume: 153
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0340
  article-title: Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.103941
– volume: 496
  start-page: 11
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0330
  article-title: Self-adaptive loss balanced Physics-informed neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.015
– volume: 436
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0345
  article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110318
– volume: 462
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0180
  article-title: Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111230
– volume: 46
  start-page: 120
  year: 2008
  ident: 10.1016/j.jhydrol.2024.131703_b0120
  article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2007.00374.x
– volume: 48
  year: 2012
  ident: 10.1016/j.jhydrol.2024.131703_b0125
  article-title: A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011756
– volume: 63
  start-page: 22
  year: 2014
  ident: 10.1016/j.jhydrol.2024.131703_b0410
  article-title: Inverse methods in hydrogeology: Evolution and recent trends
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.10.014
– volume: 45
  year: 2009
  ident: 10.1016/j.jhydrol.2024.131703_b0335
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007180
– volume: 617
  year: 2023
  ident: 10.1016/j.jhydrol.2024.131703_b0280
  article-title: Mapping conduits in two-dimensional heterogeneous karst aquifers using hydraulic tomography
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.129018
– volume: 55
  start-page: 703
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131703_b0215
  article-title: Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023528
– volume: 206
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0060
  article-title: Physics-constrained deep learning for solving seepage equation
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109046
– ident: 10.1016/j.jhydrol.2024.131703_b0320
– volume: 54
  start-page: 1616
  year: 2018
  ident: 10.1016/j.jhydrol.2024.131703_b0385
  article-title: A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021884
– volume: 56
  start-page: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0190
  article-title: Potential of Hydraulic Tomography in Identifying Boundary Conditions of Groundwater Basins
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR028331
– volume: 365
  year: 2020
  ident: 10.1016/j.jhydrol.2024.131703_b0130
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113028
– volume: 566
  start-page: 195
  year: 2019
  ident: 10.1016/j.jhydrol.2024.131703_b0240
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
– volume: 143
  start-page: 1
  year: 2021
  ident: 10.1016/j.jhydrol.2024.131703_b0035
  article-title: Physics-informed neural networks for heat transfer problems
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4050542
– volume: 5
  year: 2017
  ident: 10.1016/j.jhydrol.2024.131703_b0305
  article-title: A direct inverse method for subsurface properties: The conceptual and practical benefit and added value in comparison with all current indirect methods, for example, amplitude-variation-with-offset and full-waveform inversion
  publication-title: Interpretation
  doi: 10.1190/INT-2016-0198.1
– volume: 58
  start-page: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2024.131703_b0390
  article-title: Data-Worth Analysis for Heterogeneous Subsurface Structure Identification With a Stochastic Deep Learning Framework
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR033241
– ident: 10.1016/j.jhydrol.2024.131703_b0355
  doi: 10.1017/9781009049511
– year: 2015
  ident: 10.1016/j.jhydrol.2024.131703_b0210
– volume: 32
  start-page: 85
  year: 1996
  ident: 10.1016/j.jhydrol.2024.131703_b0370
  article-title: An Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02869
– volume: 47
  year: 2011
  ident: 10.1016/j.jhydrol.2024.131703_b0040
  article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR010367
SSID ssj0000334
Score 2.4695444
Snippet •A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 131703
SubjectTerms Boundary conditions
Groundwater inversion
Hydraulic tomography
Physics-informed neural network
Title Groundwater inverse modeling: Physics-informed neural network with disentangled constraints and errors
URI https://dx.doi.org/10.1016/j.jhydrol.2024.131703
Volume 640
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCeIryqDywJnUcJ7HZqoqqgOhEpW5RYju0FUqrtAh14bdzl4cKDAyMiewoOtv3fba_uyPkFtZQxIwNYJNjrSN0wpzUE9oJpLI8tEoGBjeKz-NwNBGP02DaIoMmFgZllbXvr3x66a3rN73amr3VfI4xvpx7oRKASeX1Dkawiwhnufu5k3kw3xdNxnBsvYvi6S3cxWxriiXeQHDhegClTe2s3_j0DXOGR-SwJou0X_3PMWnZ_ITs13XLZ9tTkuHRUW4-gDAWdJ6jxMLSsrgNINIdLeWdeu1U2VGtoZi9Ej6YV9pvioewFK9ocqCIr2_QQCNdxKoRmzVNckNtUSyL9RmZDO9fBiOnrpzgJFyyjWMAdQHqrebSMB2pTEovCbiwqUmYL4xB4gLLkYdKwfAYP0ozTySZzEKtTCb8c9LOl7m9IJRxE_IUeElmPGFVoJQJbAK8iKVaRzrsELexV7yqEmTEjXJsEdcGjtHAcWXgDpGNVeMfIx2DE_-76-X_u16RA3yqpHvXpL0p3u0N0IlN2i3nS5fs9R-eRuMvYebMlw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGcqCeIry9MCa1HGcxGZDFVWBtlMrdYsS24FWyK3SItSF3845DxUYGFgTO4nO8X2ffZ_vELqFORQRpQNY5GjtMJkQJ_WYdAIuNA214IGyC8XhKOxP2NM0mDZQtz4LY2WVle8vfXrhrasrncqaneVsZs_4UuqFggEmFeGdHbTL4NW2jIH7udV5EN9ndcpw23x7jKczd-evG5UvbAiCMtcDLK2LZ_0GqG-g0ztA-xVbxPflBx2ihjZHqFUVLn_dHKPM7h0Z9QGMMcczYzUWGhfVbQCS7nCh75Qrp0yPqhW26SvhgaYUf2O7C4ttjMYAR3x5gwbS8kVbNmK9wolRWOf5Il-doEnvYdztO1XpBCehnKwdBbALWK8l5YrISGSce0lAmU5VQnymlGUuMB9pKASMj_KjNPNYkvEslEJlzD9FTbMw-gxhQlVIUyAmmfKYFoEQKtAJECOSShnJsI3c2l7xssyQEdfSsXlcGTi2Bo5LA7cRr60a_xjqGLz4313P_9_1BrX64-EgHjyOni_Qnr1T6vguUXOdv-sr4Bbr9Lr4d74APrPOJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+inverse+modeling%3A+Physics-informed+neural+network+with+disentangled+constraints+and+errors&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ji%2C+Yuzhe&rft.au=Zha%2C+Yuanyuan&rft.au=Yeh%2C+Tian-Chyi+J.&rft.au=Shi%2C+Liangsheng&rft.date=2024-08-01&rft.issn=0022-1694&rft.volume=640&rft.spage=131703&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.131703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2024_131703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon