Groundwater inverse modeling: Physics-informed neural network with disentangled constraints and errors
•A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding the results of our model.•KLE-PINN can easily investigate cases where BCs are unknown. This study combines a physics-informed neural network...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 640; p. 131703 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding the results of our model.•KLE-PINN can easily investigate cases where BCs are unknown.
This study combines a physics-informed neural network (PINN) and Karhunen-Loeve expansion (KLE) (i.e., KLE-PINN) to solve the groundwater inverse problem. The hydraulic head (u) distribution is approximated by a deep neural network (DNN), while the hydraulic conductivity (K) field is constructed by KLE with given prior geostatistical information. KLE-PINN is applied to investigate the inversion using data from a single pumping test, natural gradient flow (NG), and hydraulic tomography (HT). The results from these cases demonstrate that our inverse method is robust. Our error analysis endeavors to quantify the sources of error by using two custom reference indicators, eforward and ecoupling. Moreover, the study finds that the inversion using data from multiple pumping tests (HT) yields more accurate estimates, leads to faster training convergence, and maintains higher stability. In addition, by investigating cases with different outer boundary conditions (BCs), we find that KLE-PINN is more flexible. Precisely, in scenarios with missing BCs, our network still fits well with the observed data, and the estimates capture the approximate spatial pattern in the region where the observation wells are distributed. Even with incorrect BCs, our network still performs well because the observational data constraints are strongly enforced during training. |
---|---|
AbstractList | •A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding the results of our model.•KLE-PINN can easily investigate cases where BCs are unknown.
This study combines a physics-informed neural network (PINN) and Karhunen-Loeve expansion (KLE) (i.e., KLE-PINN) to solve the groundwater inverse problem. The hydraulic head (u) distribution is approximated by a deep neural network (DNN), while the hydraulic conductivity (K) field is constructed by KLE with given prior geostatistical information. KLE-PINN is applied to investigate the inversion using data from a single pumping test, natural gradient flow (NG), and hydraulic tomography (HT). The results from these cases demonstrate that our inverse method is robust. Our error analysis endeavors to quantify the sources of error by using two custom reference indicators, eforward and ecoupling. Moreover, the study finds that the inversion using data from multiple pumping tests (HT) yields more accurate estimates, leads to faster training convergence, and maintains higher stability. In addition, by investigating cases with different outer boundary conditions (BCs), we find that KLE-PINN is more flexible. Precisely, in scenarios with missing BCs, our network still fits well with the observed data, and the estimates capture the approximate spatial pattern in the region where the observation wells are distributed. Even with incorrect BCs, our network still performs well because the observational data constraints are strongly enforced during training. |
ArticleNumber | 131703 |
Author | Shi, Liangsheng Yeh, Tian-Chyi J. Ji, Yuzhe Zha, Yuanyuan Wang, Yanling |
Author_xml | – sequence: 1 givenname: Yuzhe orcidid: 0009-0000-4975-8507 surname: Ji fullname: Ji, Yuzhe organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China – sequence: 2 givenname: Yuanyuan orcidid: 0000-0003-4323-0730 surname: Zha fullname: Zha, Yuanyuan email: zhayuan87@whu.edu.cn organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China – sequence: 3 givenname: Tian-Chyi J. orcidid: 0000-0003-0826-5268 surname: Yeh fullname: Yeh, Tian-Chyi J. organization: Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA – sequence: 4 givenname: Liangsheng surname: Shi fullname: Shi, Liangsheng organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China – sequence: 5 givenname: Yanling surname: Wang fullname: Wang, Yanling organization: State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, China |
BookMark | eNqFkM1uwjAQhH2gUoH2ESr5BZL6J4Skl6pC_ZOQ2kN7toy9BqfBrtYGxNs3CO7dy1x2RjPfhIxCDEDIHWclZ7y-78puc7QY-1IwUZVc8jmTIzJmTIiC1211TSYpdWw4Kasxca8Yd8EedAakPuwBE9BttND7sH6gn5tj8iYVPriIW7A0wA51P0g-RPyhB5831PoEIeuw7ocHE0PKqH3IiepgKSBGTDfkyuk-we1Fp-T75flr8VYsP17fF0_LQouG5cLWNW94C0Y0lpl565qG65moYGU1k5W1rB72zLio29ZoZuV85XilXeNq01pXySmZnXMNxpQQnPpFv9V4VJypEyDVqQsgdQKkzoAG3-PZB0O5vQdUyXgIBqxHMFnZ6P9J-AM-BHiR |
Cites_doi | 10.1029/2022WR031926 10.1002/2017WR020906 10.1016/j.advwatres.2014.06.008 10.1016/j.jcp.2020.109914 10.1029/2004WR003874 10.1016/j.advwatres.2020.103610 10.1007/s10040-021-02320-4 10.1002/2013WR014630 10.1029/2020WR027642 10.1111/j.1745-6584.2012.00914.x 10.1111/j.1745-6584.2008.00541.x 10.1016/j.jhydrol.2022.128828 10.3133/tm6A16 10.1016/j.advwatres.2022.104243 10.1029/2019WR026082 10.1016/j.jcp.2021.110768 10.1016/j.advwatres.2015.09.019 10.1016/j.advwatres.2012.08.001 10.1016/j.cageo.2019.104333 10.1016/j.jcp.2020.110079 10.1029/95WR01945 10.1016/j.jhydrol.2019.124092 10.1016/j.gsf.2016.11.017 10.1016/j.cageo.2012.03.011 10.1029/2000WR900114 10.1016/j.cma.2022.114823 10.1016/j.jcp.2018.10.045 10.1029/2019WR026731 10.1029/2011WR010616 10.1007/s10040-004-0404-7 10.4208/cicp.OA-2020-0086 10.1016/j.jhydrol.2021.127233 10.1016/j.jhydrol.2022.127911 10.1111/gwat.12879 10.5194/hess-26-4469-2022 10.1016/j.jcp.2003.09.015 10.1029/WR011i004p00563 10.1016/j.cma.2021.113741 10.1016/j.jhydrol.2007.05.011 10.1017/CBO9781139879323 10.1016/j.jhydrol.2020.124700 10.1029/2004WR003790 10.1111/gwat.12413 10.1029/2007WR006375 10.1016/j.advwatres.2017.09.029 10.1002/2017WR022148 10.1137/19M1274067 10.1137/20M1318043 10.1016/j.jhydrol.2018.11.064 10.1029/2004WR003717 10.24963/ijcai.2022/533 10.1016/j.advwatres.2021.103941 10.1016/j.neucom.2022.05.015 10.1016/j.jcp.2021.110318 10.1016/j.jcp.2022.111230 10.1111/j.1745-6584.2007.00374.x 10.1029/2011WR011756 10.1016/j.advwatres.2013.10.014 10.1029/2008WR007180 10.1016/j.jhydrol.2022.129018 10.1029/2018WR023528 10.1016/j.petrol.2021.109046 10.1002/2017WR021884 10.1029/2020WR028331 10.1016/j.cma.2020.113028 10.1038/s41586-019-0912-1 10.1115/1.4050542 10.1190/INT-2016-0198.1 10.1029/2022WR033241 10.1017/9781009049511 10.1029/95WR02869 10.1029/2010WR010367 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jhydrol.2024.131703 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
ExternalDocumentID | 10_1016_j_jhydrol_2024_131703 S0022169424010990 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV ADVLN AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-a280t-d661819ec28d0c79f881a524ebda034dd06170512699ca0d37bf14af8f6c9df43 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Tue Jul 01 01:54:02 EDT 2025 Sat Sep 14 18:00:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Physics-informed neural network Boundary conditions Hydraulic tomography Groundwater inversion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-d661819ec28d0c79f881a524ebda034dd06170512699ca0d37bf14af8f6c9df43 |
ORCID | 0000-0003-0826-5268 0009-0000-4975-8507 0000-0003-4323-0730 |
ParticipantIDs | crossref_primary_10_1016_j_jhydrol_2024_131703 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2024_131703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Zhang, Rong, Wang (b0345) 2021; 436 Haghighat, Raissi, Moure, Gomez, Juanes (b0095) 2021; 379 Harbaugh, A.W., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey Reston, VA, USA. Wang, Perdikaris (b0285) 2021; 428 Berg, Illman (b0025) 2011; 47 Sagar, Yakowitz, Duckstein (b0245) 1975; 11 Tartakovsky, Marrero, Perdikaris, Tartakovsky, Barajas-Solano (b0260) 2020; 56 Wang, Shi, Hu, Song, Wang (b0290) 2023; 59 Moharir, Pande, Patil (b0225) 2017; 8 Reichstein, Camps-Valls, Stevens, Jung, Denzler, Carvalhais, Prabhat (b0240) 2019; 566 Wight, Zhao (b0315) 2021; 29 Kitanidis (b0145) 1995; 31 Liu, Yeh, Wang, Song, Lei, Wen, Wang, Hao (b0190) 2020; 56 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 32. Zha, Yeh, Illman, Zeng, Zhang, Sun, Shi (b0385) 2018; 54 Chen, Wen, Jim Yeh, Andrew Lin, Wang, Huang, Ma, Yu, Lee (b0055) 2019; 569 Li, Tartakovsky (b0180) 2022; 462 Jardani, Vu, Fischer (b0135) 2022; 604 Xu, Wang, Zhang (b0340) 2021; 153 Yeh, T.-C.J., Khaleel, R., Carroll, K.C., 2015. Flow Through Heterogeneous Geologic Media. Cambridge University Press. doi: 10.1017/CBO9781139879323. Laloy, Linde, Ruffino, Hérault, Gasso, Jacques (b0170) 2019 Zhu, Yeh (b0415) 2005; 41 Bandai, Ghezzehei (b0015) 2022; 26 Luo, Illman, Zha (b0200) 2022; 610 Wang, Zhang, Chang, Li (b0270) 2020; 584 Zha, Yeh, Mao, Yang, Lu (b0380) 2014; 71 He, Barajas-Solano, Tartakovsky, Tartakovsky (b0105) 2020; 141 Kontopoulos, Ahriz, Elyan, Arnold (b0155) 2020 Yeh, Lee, Hsu, Illman, Barrash, Cai, Daniels, Sudicky, Wan, Li (b0360) 2008; 44 Wang, Yu, Perdikaris (b0300) 2022; 449 Yeh, T.-C.J., Dong, Y., Ye, S., 2023. An Introduction to Solute Transport in Heterogeneous Geologic Media. Cambridge University Press, Cambridge. doi: 10.1017/9781009049511. Illman, Craig, Liu (b0120) 2008; 46 Wang, Chang, Zhang (b0275) 2021; 126 Yeh, Liu (b0365) 2000; 36 McPhee, Reed, Zubizarreta (b0210) 2015 Bakker, Post, Langevin, Hughes, White, Starn, Fienen (b0005) 2016; 54 Bandai, Ghezzehei (b0010) 2021; 57 Tong, Illman, Berg, Luo (b0265) 2021; 29 Kitanidis, Lee (b0150) 2014; 50 Zhang, Zhu, Wang, Ju, Qian, Ye, Yang (b0405) 2022; 165 Carrera, Alcolea, Medina, Hidalgo, Slooten (b0050) 2005; 13 Zhou, Gómez-Hernández, Li (b0410) 2014; 63 Yeh, Jin, Hanna (b0370) 1996; 32 Wu, Yeh, Zhu, Lee, Hsu, Chen, Sancho (b0325) 2005; 41 Cai, Wang, Wang, Perdikaris, Karniadakis (b0035) 2021; 143 Huang, X., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Weng, B., Wang, M., Chu, H., Zhou, J., Yu, F., Hua, B., Chen, L., Dong, B., 2021. Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks. doi: 10.48550/arXiv.2111.01394. Zhang, Lin, Li, Wu, Zeng (b0395) 2018; 54 Raissi, Perdikaris, Karniadakis (b0235) 2019; 378 Xiang, Yeh, Lee, Hsu, Wen (b0335) 2009; 45 Weglein (b0305) 2017; 5 Gao, Sun, Wang (b0080) 2021; 428 Guo, Zhao, Lu, Luo (b0090) 2023; 616 Jagtap, Kharazmi, Karniadakis (b0130) 2020; 365 Laloy, Hérault, Lee, Jacques, Linde (b0160) 2017; 110 Xiang, Peng, Liu, Yao (b0330) 2022; 496 Illman, Liu, Craig (b0115) 2007; 341 Mo, Zhu, Zabaras, Shi, Wu (b0215) 2019; 55 Goodfellow, Bengio, Courville (b0085) 2016 Li, Nowak, Cirpka (b0175) 2005; 41 Baydin, Pearlmutter, Radul, Siskind (b0020) 2018; 18 Mao, Yeh, Wan, Hsu, Lee, Wen (b0205) 2013; 52 Shadab, M.A., Luo, D., Shen, Y., Hiatt, E., Hesse, M.A., 2021. Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural Networks. doi: 10.48550/arXiv.2112.13792. Wang, Kong, Hu, Xu (b0280) 2023; 617 Wen, Chen, Yeh, Wang, Huang, Tian, Yu (b0310) 2020; 58 Yu, Lu, Meng, Karniadakis (b0375) 2022; 393 Kang, Shi, Revil, Cao, Li, Lan, Wu (b0140) 2019; 578 Daolun, Luhang, Wenshu, Xuliang, Jieqing (b0060) 2021; 206 Mo, Zabaras, Shi, Wu (b0220) 2020; 56 Cardiff, Barrash (b0040) 2011; 47 Wang, Teng, Perdikaris (b0295) 2021; 43 Cardiff, Barrash, Kitanidis, Malama, Revil, Straface, Rizzo (b0045) 2009; 47 Berg, Illman (b0030) 2013; 51 Franke, O.L., Reilly, T.E., 1987. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems: results and implications of numerical experiments. Cent. Integr. data Anal. wisconsin Sci. Cent. Lu, Meng, Mao, Karniadakis (b0195) 2021; 63 Linde, Renard, Mukerji, Caers (b0185) 2015; 86 Depina, Jain, Mar Valsson, Gotovac (b0065) 2022; 16 Song, Shi, Wang, Wang, Hu (b0255) 2022; 58 Irsa, Zhang (b0125) 2012; 48 Zhan, Dai, Soltanian, de Barros (b0390) 2022; 58 Emerick, Reynolds (b0070) 2013; 55 Zhang, Lu (b0400) 2004; 194 Wong, K.W., Fung, C.C., Ong, Y.S., Gedeon, T.D., 2005. Reservoir characterization using support vector machines, in: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). IEEE, pp. 354–359. Laloy, Hérault, Jacques, Linde (b0165) 2018; 54 Goodfellow (10.1016/j.jhydrol.2024.131703_b0085) 2016 Bakker (10.1016/j.jhydrol.2024.131703_b0005) 2016; 54 Emerick (10.1016/j.jhydrol.2024.131703_b0070) 2013; 55 Zha (10.1016/j.jhydrol.2024.131703_b0385) 2018; 54 Mo (10.1016/j.jhydrol.2024.131703_b0215) 2019; 55 Wen (10.1016/j.jhydrol.2024.131703_b0310) 2020; 58 Wang (10.1016/j.jhydrol.2024.131703_b0300) 2022; 449 Raissi (10.1016/j.jhydrol.2024.131703_b0235) 2019; 378 Zhou (10.1016/j.jhydrol.2024.131703_b0410) 2014; 63 Cardiff (10.1016/j.jhydrol.2024.131703_b0045) 2009; 47 Cardiff (10.1016/j.jhydrol.2024.131703_b0040) 2011; 47 Song (10.1016/j.jhydrol.2024.131703_b0255) 2022; 58 Illman (10.1016/j.jhydrol.2024.131703_b0115) 2007; 341 Illman (10.1016/j.jhydrol.2024.131703_b0120) 2008; 46 Wang (10.1016/j.jhydrol.2024.131703_b0270) 2020; 584 Yu (10.1016/j.jhydrol.2024.131703_b0375) 2022; 393 Zhu (10.1016/j.jhydrol.2024.131703_b0415) 2005; 41 Carrera (10.1016/j.jhydrol.2024.131703_b0050) 2005; 13 Wang (10.1016/j.jhydrol.2024.131703_b0295) 2021; 43 Yeh (10.1016/j.jhydrol.2024.131703_b0360) 2008; 44 10.1016/j.jhydrol.2024.131703_b0100 Jagtap (10.1016/j.jhydrol.2024.131703_b0130) 2020; 365 Laloy (10.1016/j.jhydrol.2024.131703_b0165) 2018; 54 Linde (10.1016/j.jhydrol.2024.131703_b0185) 2015; 86 Jardani (10.1016/j.jhydrol.2024.131703_b0135) 2022; 604 Kontopoulos (10.1016/j.jhydrol.2024.131703_b0155) 2020 Wang (10.1016/j.jhydrol.2024.131703_b0290) 2023; 59 Liu (10.1016/j.jhydrol.2024.131703_b0190) 2020; 56 Cai (10.1016/j.jhydrol.2024.131703_b0035) 2021; 143 Tong (10.1016/j.jhydrol.2024.131703_b0265) 2021; 29 Wang (10.1016/j.jhydrol.2024.131703_b0285) 2021; 428 Irsa (10.1016/j.jhydrol.2024.131703_b0125) 2012; 48 Moharir (10.1016/j.jhydrol.2024.131703_b0225) 2017; 8 Wu (10.1016/j.jhydrol.2024.131703_b0325) 2005; 41 Zhang (10.1016/j.jhydrol.2024.131703_b0400) 2004; 194 Laloy (10.1016/j.jhydrol.2024.131703_b0170) 2019 Reichstein (10.1016/j.jhydrol.2024.131703_b0240) 2019; 566 Luo (10.1016/j.jhydrol.2024.131703_b0200) 2022; 610 Yeh (10.1016/j.jhydrol.2024.131703_b0365) 2000; 36 He (10.1016/j.jhydrol.2024.131703_b0105) 2020; 141 10.1016/j.jhydrol.2024.131703_b0250 Tartakovsky (10.1016/j.jhydrol.2024.131703_b0260) 2020; 56 Wight (10.1016/j.jhydrol.2024.131703_b0315) 2021; 29 Guo (10.1016/j.jhydrol.2024.131703_b0090) 2023; 616 Kitanidis (10.1016/j.jhydrol.2024.131703_b0145) 1995; 31 Berg (10.1016/j.jhydrol.2024.131703_b0025) 2011; 47 Li (10.1016/j.jhydrol.2024.131703_b0175) 2005; 41 Zhang (10.1016/j.jhydrol.2024.131703_b0395) 2018; 54 Mo (10.1016/j.jhydrol.2024.131703_b0220) 2020; 56 McPhee (10.1016/j.jhydrol.2024.131703_b0210) 2015 Haghighat (10.1016/j.jhydrol.2024.131703_b0095) 2021; 379 Mao (10.1016/j.jhydrol.2024.131703_b0205) 2013; 52 Xiang (10.1016/j.jhydrol.2024.131703_b0335) 2009; 45 Laloy (10.1016/j.jhydrol.2024.131703_b0160) 2017; 110 Kang (10.1016/j.jhydrol.2024.131703_b0140) 2019; 578 Lu (10.1016/j.jhydrol.2024.131703_b0195) 2021; 63 Xu (10.1016/j.jhydrol.2024.131703_b0340) 2021; 153 Zhan (10.1016/j.jhydrol.2024.131703_b0390) 2022; 58 Bandai (10.1016/j.jhydrol.2024.131703_b0015) 2022; 26 Sagar (10.1016/j.jhydrol.2024.131703_b0245) 1975; 11 Zhang (10.1016/j.jhydrol.2024.131703_b0405) 2022; 165 Daolun (10.1016/j.jhydrol.2024.131703_b0060) 2021; 206 Depina (10.1016/j.jhydrol.2024.131703_b0065) 2022; 16 10.1016/j.jhydrol.2024.131703_b0320 Li (10.1016/j.jhydrol.2024.131703_b0180) 2022; 462 Xu (10.1016/j.jhydrol.2024.131703_b0345) 2021; 436 Zha (10.1016/j.jhydrol.2024.131703_b0380) 2014; 71 Gao (10.1016/j.jhydrol.2024.131703_b0080) 2021; 428 Wang (10.1016/j.jhydrol.2024.131703_b0275) 2021; 126 Bandai (10.1016/j.jhydrol.2024.131703_b0010) 2021; 57 Kitanidis (10.1016/j.jhydrol.2024.131703_b0150) 2014; 50 Berg (10.1016/j.jhydrol.2024.131703_b0030) 2013; 51 Weglein (10.1016/j.jhydrol.2024.131703_b0305) 2017; 5 Wang (10.1016/j.jhydrol.2024.131703_b0280) 2023; 617 Yeh (10.1016/j.jhydrol.2024.131703_b0370) 1996; 32 Chen (10.1016/j.jhydrol.2024.131703_b0055) 2019; 569 10.1016/j.jhydrol.2024.131703_b0075 10.1016/j.jhydrol.2024.131703_b0350 10.1016/j.jhydrol.2024.131703_b0230 10.1016/j.jhydrol.2024.131703_b0110 Baydin (10.1016/j.jhydrol.2024.131703_b0020) 2018; 18 Xiang (10.1016/j.jhydrol.2024.131703_b0330) 2022; 496 10.1016/j.jhydrol.2024.131703_b0355 |
References_xml | – volume: 13 start-page: 206 year: 2005 end-page: 222 ident: b0050 article-title: Inverse problem in hydrogeology publication-title: Hydrogeol. J. – volume: 604 year: 2022 ident: b0135 article-title: Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography publication-title: J. Hydrol. – volume: 48 year: 2012 ident: b0125 article-title: A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions publication-title: Water Resour. Res. – volume: 55 start-page: 703 year: 2019 end-page: 728 ident: b0215 article-title: Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media publication-title: Water Resour. Res. – volume: 58 start-page: 1 year: 2022 end-page: 24 ident: b0255 article-title: Data-Driven Discovery of Soil Moisture Flow Governing Equation: A Sparse Regression Framework publication-title: Water Resour. Res. – volume: 617 year: 2023 ident: b0280 article-title: Mapping conduits in two-dimensional heterogeneous karst aquifers using hydraulic tomography publication-title: J. Hydrol. – volume: 462 year: 2022 ident: b0180 article-title: Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems publication-title: J. Comput. Phys. – volume: 341 start-page: 222 year: 2007 end-page: 234 ident: b0115 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. – volume: 54 start-page: 1716 year: 2018 end-page: 1733 ident: b0395 article-title: An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With Multimodal Distributions publication-title: Water Resour. Res. – volume: 71 start-page: 162 year: 2014 end-page: 176 ident: b0380 article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium publication-title: Adv. Water Resour. – volume: 8 start-page: 1385 year: 2017 end-page: 1395 ident: b0225 article-title: Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software publication-title: Geosci. Front. – volume: 584 year: 2020 ident: b0270 article-title: Deep learning of subsurface flow via theory-guided neural network publication-title: J. Hydrol. – volume: 29 start-page: 930 year: 2021 end-page: 954 ident: b0315 article-title: Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks publication-title: Commun. Comput. Phys. – volume: 428 year: 2021 ident: b0285 article-title: Deep learning of free boundary and Stefan problems publication-title: J. Comput. Phys. – volume: 44 start-page: 1 year: 2008 end-page: 9 ident: b0360 article-title: A view toward the future of subsurface characterization: CAT scanning groundwater basins publication-title: Water Resour. Res. – volume: 616 year: 2023 ident: b0090 article-title: High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN) publication-title: J. Hydrol. – year: 2019 ident: b0170 article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: Is it feasible? publication-title: Comput. Geosci. – volume: 52 start-page: 50 year: 2013 end-page: 61 ident: b0205 article-title: Necessary conditions for inverse modeling of flow through variably saturated porous media publication-title: Adv. Water Resour. – volume: 206 year: 2021 ident: b0060 article-title: Physics-constrained deep learning for solving seepage equation publication-title: J. Pet. Sci. Eng. – volume: 54 start-page: 381 year: 2018 end-page: 406 ident: b0165 article-title: Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network publication-title: Water Resour. Res. – volume: 29 start-page: 1979 year: 2021 end-page: 1997 ident: b0265 article-title: Hydraulic tomography analysis of municipal-well operation data with geology-based groundwater models publication-title: Hydrogeol. J. – volume: 57 year: 2021 ident: b0010 article-title: Physics-Informed Neural Networks With Monotonicity Constraints for Richardson-Richards Equation: Estimation of Constitutive Relationships and Soil Water Flux Density From Volumetric Water Content Measurements publication-title: Water Resour. Res. – volume: 141 year: 2020 ident: b0105 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. – reference: Yeh, T.-C.J., Dong, Y., Ye, S., 2023. An Introduction to Solute Transport in Heterogeneous Geologic Media. Cambridge University Press, Cambridge. doi: 10.1017/9781009049511. – reference: Huang, X., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Weng, B., Wang, M., Chu, H., Zhou, J., Yu, F., Hua, B., Chen, L., Dong, B., 2021. Solving Partial Differential Equations with Point Source Based on Physics-Informed Neural Networks. doi: 10.48550/arXiv.2111.01394. – volume: 32 start-page: 85 year: 1996 end-page: 92 ident: b0370 article-title: An Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields publication-title: Water Resour. Res. – volume: 5 year: 2017 ident: b0305 article-title: A direct inverse method for subsurface properties: The conceptual and practical benefit and added value in comparison with all current indirect methods, for example, amplitude-variation-with-offset and full-waveform inversion publication-title: Interpretation – volume: 51 start-page: 29 year: 2013 end-page: 40 ident: b0030 article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography publication-title: GroundWater – reference: Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 32. – volume: 63 start-page: 22 year: 2014 end-page: 37 ident: b0410 article-title: Inverse methods in hydrogeology: Evolution and recent trends publication-title: Adv. Water Resour. – volume: 47 start-page: 259 year: 2009 end-page: 270 ident: b0045 article-title: A potential-based inversion of unconfined steady-state hydraulic tomography publication-title: Ground Water – volume: 47 year: 2011 ident: b0040 article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response publication-title: Water Resour. Res. – volume: 41 year: 2005 ident: b0175 article-title: Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown publication-title: Water Resour. Res. – volume: 569 start-page: 117 year: 2019 end-page: 134 ident: b0055 article-title: Reproducibility of hydraulic tomography estimates and their predictions: A two-year case study in Taiwan publication-title: J. Hydrol. – volume: 50 start-page: 5428 year: 2014 end-page: 5443 ident: b0150 article-title: Principal Component Geostatistical Approach for large-dimensional inverse problems publication-title: Water Resour. Res. – volume: 194 start-page: 773 year: 2004 end-page: 794 ident: b0400 article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions publication-title: J. Comput. Phys. – volume: 365 year: 2020 ident: b0130 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 11 start-page: 563 year: 1975 end-page: 570 ident: b0245 article-title: A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers publication-title: Water Resour. Res. – volume: 610 year: 2022 ident: b0200 article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations publication-title: J. Hydrol. – reference: Wong, K.W., Fung, C.C., Ong, Y.S., Gedeon, T.D., 2005. Reservoir characterization using support vector machines, in: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06). IEEE, pp. 354–359. – volume: 47 year: 2011 ident: b0025 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. – volume: 41 start-page: 1 year: 2005 end-page: 10 ident: b0415 article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography publication-title: Water Resour. Res. – volume: 393 year: 2022 ident: b0375 article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 165 year: 2022 ident: b0405 article-title: GW-PINN: A deep learning algorithm for solving groundwater flow equations publication-title: Adv. Water Resour. – volume: 428 year: 2021 ident: b0080 article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain publication-title: J. Comput. Phys. – reference: Shadab, M.A., Luo, D., Shen, Y., Hiatt, E., Hesse, M.A., 2021. Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural Networks. doi: 10.48550/arXiv.2112.13792. – volume: 578 year: 2019 ident: b0140 article-title: Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data publication-title: J. Hydrol. – volume: 126 year: 2021 ident: b0275 article-title: Deep-Learning-Based Inverse Modeling Approaches: A Subsurface Flow Example publication-title: J. Geophys. Res. Solid Earth – volume: 58 start-page: 79 year: 2020 end-page: 92 ident: b0310 article-title: Redundant and Nonredundant Information for Model Calibration or Hydraulic Tomography publication-title: Groundwater – start-page: 143 year: 2020 end-page: 154 ident: b0155 article-title: Predicting Permeability Based on Core Analysis publication-title: International Conference on Engineering Applications of Neural Networks – reference: Harbaugh, A.W., 2005. MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior, US Geological Survey Reston, VA, USA. – volume: 41 start-page: 1 year: 2005 end-page: 12 ident: b0325 article-title: Traditional analysis of aquifer tests: Comparing apples to oranges? publication-title: Water Resour. Res. – volume: 566 start-page: 195 year: 2019 end-page: 204 ident: b0240 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature – volume: 55 start-page: 3 year: 2013 end-page: 15 ident: b0070 article-title: Ensemble smoother with multiple data assimilation publication-title: Comput. Geosci. – year: 2015 ident: b0210 article-title: Core analysis: a best practice guide – volume: 56 start-page: 1 year: 2020 end-page: 16 ident: b0260 article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems publication-title: Water Resour. Res. – volume: 36 start-page: 2095 year: 2000 end-page: 2105 ident: b0365 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. – reference: Franke, O.L., Reilly, T.E., 1987. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems: results and implications of numerical experiments. Cent. Integr. data Anal. wisconsin Sci. Cent. – year: 2016 ident: b0085 article-title: Deep learning – volume: 110 start-page: 387 year: 2017 end-page: 405 ident: b0160 article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network publication-title: Adv. Water Resour. – volume: 45 year: 2009 ident: b0335 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. – volume: 56 year: 2020 ident: b0220 article-title: Integration of Adversarial Autoencoders With Residual Dense Convolutional Networks for Estimation of Non-Gaussian Hydraulic Conductivities publication-title: Water Resour. Res. – volume: 379 year: 2021 ident: b0095 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 153 year: 2021 ident: b0340 article-title: Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network publication-title: Adv. Water Resour. – volume: 46 start-page: 120 year: 2008 end-page: 132 ident: b0120 article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography publication-title: Ground Water – volume: 63 start-page: 208 year: 2021 end-page: 228 ident: b0195 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. – volume: 43 start-page: 3055 year: 2021 end-page: 3081 ident: b0295 article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks publication-title: SIAM J. Sci. Comput. – volume: 31 start-page: 2411 year: 1995 end-page: 2419 ident: b0145 article-title: Quasi-Linear Geostatistical Theory for Inversing publication-title: Water Resour. Res. – volume: 16 start-page: 21 year: 2022 end-page: 36 ident: b0065 article-title: Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow publication-title: Georisk – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b0235 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 436 year: 2021 ident: b0345 article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow publication-title: J. Comput. Phys. – reference: Yeh, T.-C.J., Khaleel, R., Carroll, K.C., 2015. Flow Through Heterogeneous Geologic Media. Cambridge University Press. doi: 10.1017/CBO9781139879323. – volume: 86 start-page: 86 year: 2015 end-page: 101 ident: b0185 article-title: Geological realism in hydrogeological and geophysical inverse modeling: A review publication-title: Adv. Water Resour. – volume: 54 start-page: 1616 year: 2018 end-page: 1632 ident: b0385 article-title: A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography publication-title: Water Resour. Res. – volume: 496 start-page: 11 year: 2022 end-page: 34 ident: b0330 article-title: Self-adaptive loss balanced Physics-informed neural networks publication-title: Neurocomputing – volume: 449 year: 2022 ident: b0300 article-title: When and why PINNs fail to train: A neural tangent kernel perspective publication-title: J. Comput. Phys. – volume: 26 start-page: 4469 year: 2022 end-page: 4495 ident: b0015 article-title: Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition publication-title: Hydrol. Earth Syst. Sci. – volume: 56 start-page: 1 year: 2020 end-page: 18 ident: b0190 article-title: Potential of Hydraulic Tomography in Identifying Boundary Conditions of Groundwater Basins publication-title: Water Resour. Res. – volume: 143 start-page: 1 year: 2021 end-page: 15 ident: b0035 article-title: Physics-informed neural networks for heat transfer problems publication-title: J. Heat Transfer – volume: 58 start-page: 1 year: 2022 end-page: 21 ident: b0390 article-title: Data-Worth Analysis for Heterogeneous Subsurface Structure Identification With a Stochastic Deep Learning Framework publication-title: Water Resour. Res. – volume: 18 start-page: 1 year: 2018 end-page: 43 ident: b0020 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Marchine Learn. Res. – volume: 54 start-page: 733 year: 2016 end-page: 739 ident: b0005 article-title: Scripting MODFLOW Model Development Using Python and FloPy publication-title: Groundwater – volume: 59 start-page: 1 year: 2023 end-page: 22 ident: b0290 article-title: Multiphysics-Informed Neural Networks for Coupled Soil Hydrothermal Modeling publication-title: Water Resour. Res. – volume: 58 start-page: 1 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0255 article-title: Data-Driven Discovery of Soil Moisture Flow Governing Equation: A Sparse Regression Framework publication-title: Water Resour. Res. doi: 10.1029/2022WR031926 – volume: 54 start-page: 1716 year: 2018 ident: 10.1016/j.jhydrol.2024.131703_b0395 article-title: An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With Multimodal Distributions publication-title: Water Resour. Res. doi: 10.1002/2017WR020906 – volume: 71 start-page: 162 year: 2014 ident: 10.1016/j.jhydrol.2024.131703_b0380 article-title: Usefulness of flux measurements during hydraulic tomographic survey for mapping hydraulic conductivity distribution in a fractured medium publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2014.06.008 – year: 2016 ident: 10.1016/j.jhydrol.2024.131703_b0085 – volume: 428 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0285 article-title: Deep learning of free boundary and Stefan problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109914 – volume: 41 year: 2005 ident: 10.1016/j.jhydrol.2024.131703_b0175 article-title: Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown publication-title: Water Resour. Res. doi: 10.1029/2004WR003874 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2024.131703_b0020 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Marchine Learn. Res. – volume: 141 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0105 article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103610 – volume: 16 start-page: 21 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0065 article-title: Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow publication-title: Georisk – volume: 29 start-page: 1979 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0265 article-title: Hydraulic tomography analysis of municipal-well operation data with geology-based groundwater models publication-title: Hydrogeol. J. doi: 10.1007/s10040-021-02320-4 – volume: 50 start-page: 5428 year: 2014 ident: 10.1016/j.jhydrol.2024.131703_b0150 article-title: Principal Component Geostatistical Approach for large-dimensional inverse problems publication-title: Water Resour. Res. doi: 10.1002/2013WR014630 – volume: 57 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0010 article-title: Physics-Informed Neural Networks With Monotonicity Constraints for Richardson-Richards Equation: Estimation of Constitutive Relationships and Soil Water Flux Density From Volumetric Water Content Measurements publication-title: Water Resour. Res. doi: 10.1029/2020WR027642 – volume: 51 start-page: 29 year: 2013 ident: 10.1016/j.jhydrol.2024.131703_b0030 article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography publication-title: GroundWater doi: 10.1111/j.1745-6584.2012.00914.x – volume: 47 start-page: 259 year: 2009 ident: 10.1016/j.jhydrol.2024.131703_b0045 article-title: A potential-based inversion of unconfined steady-state hydraulic tomography publication-title: Ground Water doi: 10.1111/j.1745-6584.2008.00541.x – volume: 616 year: 2023 ident: 10.1016/j.jhydrol.2024.131703_b0090 article-title: High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128828 – ident: 10.1016/j.jhydrol.2024.131703_b0230 – volume: 126 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0275 article-title: Deep-Learning-Based Inverse Modeling Approaches: A Subsurface Flow Example publication-title: J. Geophys. Res. Solid Earth – ident: 10.1016/j.jhydrol.2024.131703_b0100 doi: 10.3133/tm6A16 – volume: 165 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0405 article-title: GW-PINN: A deep learning algorithm for solving groundwater flow equations publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2022.104243 – volume: 56 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0220 article-title: Integration of Adversarial Autoencoders With Residual Dense Convolutional Networks for Estimation of Non-Gaussian Hydraulic Conductivities publication-title: Water Resour. Res. doi: 10.1029/2019WR026082 – volume: 449 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0300 article-title: When and why PINNs fail to train: A neural tangent kernel perspective publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110768 – volume: 59 start-page: 1 year: 2023 ident: 10.1016/j.jhydrol.2024.131703_b0290 article-title: Multiphysics-Informed Neural Networks for Coupled Soil Hydrothermal Modeling publication-title: Water Resour. Res. – volume: 86 start-page: 86 year: 2015 ident: 10.1016/j.jhydrol.2024.131703_b0185 article-title: Geological realism in hydrogeological and geophysical inverse modeling: A review publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.09.019 – volume: 52 start-page: 50 year: 2013 ident: 10.1016/j.jhydrol.2024.131703_b0205 article-title: Necessary conditions for inverse modeling of flow through variably saturated porous media publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.08.001 – year: 2019 ident: 10.1016/j.jhydrol.2024.131703_b0170 article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: Is it feasible? publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104333 – volume: 428 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0080 article-title: PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110079 – volume: 31 start-page: 2411 year: 1995 ident: 10.1016/j.jhydrol.2024.131703_b0145 article-title: Quasi-Linear Geostatistical Theory for Inversing publication-title: Water Resour. Res. doi: 10.1029/95WR01945 – volume: 578 year: 2019 ident: 10.1016/j.jhydrol.2024.131703_b0140 article-title: Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124092 – volume: 8 start-page: 1385 year: 2017 ident: 10.1016/j.jhydrol.2024.131703_b0225 article-title: Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software publication-title: Geosci. Front. doi: 10.1016/j.gsf.2016.11.017 – volume: 55 start-page: 3 year: 2013 ident: 10.1016/j.jhydrol.2024.131703_b0070 article-title: Ensemble smoother with multiple data assimilation publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.03.011 – volume: 36 start-page: 2095 year: 2000 ident: 10.1016/j.jhydrol.2024.131703_b0365 article-title: Hydraulic tomography: Development of a new aquifer test method publication-title: Water Resour. Res. doi: 10.1029/2000WR900114 – volume: 393 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0375 article-title: Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2022.114823 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.jhydrol.2024.131703_b0235 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 56 start-page: 1 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0260 article-title: Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems publication-title: Water Resour. Res. doi: 10.1029/2019WR026731 – volume: 47 year: 2011 ident: 10.1016/j.jhydrol.2024.131703_b0025 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. doi: 10.1029/2011WR010616 – volume: 13 start-page: 206 year: 2005 ident: 10.1016/j.jhydrol.2024.131703_b0050 article-title: Inverse problem in hydrogeology publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0404-7 – volume: 29 start-page: 930 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0315 article-title: Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2020-0086 – volume: 604 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0135 article-title: Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127233 – volume: 610 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0200 article-title: Large-scale three-dimensional hydraulic tomography analyses of long-term municipal wellfield operations publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127911 – volume: 58 start-page: 79 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0310 article-title: Redundant and Nonredundant Information for Model Calibration or Hydraulic Tomography publication-title: Groundwater doi: 10.1111/gwat.12879 – volume: 26 start-page: 4469 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0015 article-title: Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-26-4469-2022 – volume: 194 start-page: 773 year: 2004 ident: 10.1016/j.jhydrol.2024.131703_b0400 article-title: An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.015 – ident: 10.1016/j.jhydrol.2024.131703_b0250 – volume: 11 start-page: 563 year: 1975 ident: 10.1016/j.jhydrol.2024.131703_b0245 article-title: A direct method for the identification of the parameters of dynamic nonhomogeneous aquifers publication-title: Water Resour. Res. doi: 10.1029/WR011i004p00563 – volume: 379 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0095 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113741 – volume: 341 start-page: 222 year: 2007 ident: 10.1016/j.jhydrol.2024.131703_b0115 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.05.011 – ident: 10.1016/j.jhydrol.2024.131703_b0350 doi: 10.1017/CBO9781139879323 – volume: 584 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0270 article-title: Deep learning of subsurface flow via theory-guided neural network publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124700 – start-page: 143 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0155 article-title: Predicting Permeability Based on Core Analysis – volume: 41 start-page: 1 year: 2005 ident: 10.1016/j.jhydrol.2024.131703_b0415 article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography publication-title: Water Resour. Res. doi: 10.1029/2004WR003790 – volume: 54 start-page: 733 year: 2016 ident: 10.1016/j.jhydrol.2024.131703_b0005 article-title: Scripting MODFLOW Model Development Using Python and FloPy publication-title: Groundwater doi: 10.1111/gwat.12413 – volume: 44 start-page: 1 year: 2008 ident: 10.1016/j.jhydrol.2024.131703_b0360 article-title: A view toward the future of subsurface characterization: CAT scanning groundwater basins publication-title: Water Resour. Res. doi: 10.1029/2007WR006375 – volume: 110 start-page: 387 year: 2017 ident: 10.1016/j.jhydrol.2024.131703_b0160 article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.09.029 – ident: 10.1016/j.jhydrol.2024.131703_b0075 – volume: 54 start-page: 381 year: 2018 ident: 10.1016/j.jhydrol.2024.131703_b0165 article-title: Training-Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network publication-title: Water Resour. Res. doi: 10.1002/2017WR022148 – volume: 63 start-page: 208 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0195 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 43 start-page: 3055 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0295 article-title: Understanding and mitigating gradient flow pathologies in physics-informed neural networks publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1318043 – volume: 569 start-page: 117 year: 2019 ident: 10.1016/j.jhydrol.2024.131703_b0055 article-title: Reproducibility of hydraulic tomography estimates and their predictions: A two-year case study in Taiwan publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.064 – volume: 41 start-page: 1 year: 2005 ident: 10.1016/j.jhydrol.2024.131703_b0325 article-title: Traditional analysis of aquifer tests: Comparing apples to oranges? publication-title: Water Resour. Res. doi: 10.1029/2004WR003717 – ident: 10.1016/j.jhydrol.2024.131703_b0110 doi: 10.24963/ijcai.2022/533 – volume: 153 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0340 article-title: Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2021.103941 – volume: 496 start-page: 11 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0330 article-title: Self-adaptive loss balanced Physics-informed neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.05.015 – volume: 436 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0345 article-title: Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110318 – volume: 462 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0180 article-title: Physics-informed Karhunen-Loéve and neural network approximations for solving inverse differential equation problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111230 – volume: 46 start-page: 120 year: 2008 ident: 10.1016/j.jhydrol.2024.131703_b0120 article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography publication-title: Ground Water doi: 10.1111/j.1745-6584.2007.00374.x – volume: 48 year: 2012 ident: 10.1016/j.jhydrol.2024.131703_b0125 article-title: A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions publication-title: Water Resour. Res. doi: 10.1029/2011WR011756 – volume: 63 start-page: 22 year: 2014 ident: 10.1016/j.jhydrol.2024.131703_b0410 article-title: Inverse methods in hydrogeology: Evolution and recent trends publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.10.014 – volume: 45 year: 2009 ident: 10.1016/j.jhydrol.2024.131703_b0335 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. doi: 10.1029/2008WR007180 – volume: 617 year: 2023 ident: 10.1016/j.jhydrol.2024.131703_b0280 article-title: Mapping conduits in two-dimensional heterogeneous karst aquifers using hydraulic tomography publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.129018 – volume: 55 start-page: 703 year: 2019 ident: 10.1016/j.jhydrol.2024.131703_b0215 article-title: Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media publication-title: Water Resour. Res. doi: 10.1029/2018WR023528 – volume: 206 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0060 article-title: Physics-constrained deep learning for solving seepage equation publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109046 – ident: 10.1016/j.jhydrol.2024.131703_b0320 – volume: 54 start-page: 1616 year: 2018 ident: 10.1016/j.jhydrol.2024.131703_b0385 article-title: A Reduced-Order Successive Linear Estimator for Geostatistical Inversion and its Application in Hydraulic Tomography publication-title: Water Resour. Res. doi: 10.1002/2017WR021884 – volume: 56 start-page: 1 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0190 article-title: Potential of Hydraulic Tomography in Identifying Boundary Conditions of Groundwater Basins publication-title: Water Resour. Res. doi: 10.1029/2020WR028331 – volume: 365 year: 2020 ident: 10.1016/j.jhydrol.2024.131703_b0130 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113028 – volume: 566 start-page: 195 year: 2019 ident: 10.1016/j.jhydrol.2024.131703_b0240 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 – volume: 143 start-page: 1 year: 2021 ident: 10.1016/j.jhydrol.2024.131703_b0035 article-title: Physics-informed neural networks for heat transfer problems publication-title: J. Heat Transfer doi: 10.1115/1.4050542 – volume: 5 year: 2017 ident: 10.1016/j.jhydrol.2024.131703_b0305 article-title: A direct inverse method for subsurface properties: The conceptual and practical benefit and added value in comparison with all current indirect methods, for example, amplitude-variation-with-offset and full-waveform inversion publication-title: Interpretation doi: 10.1190/INT-2016-0198.1 – volume: 58 start-page: 1 year: 2022 ident: 10.1016/j.jhydrol.2024.131703_b0390 article-title: Data-Worth Analysis for Heterogeneous Subsurface Structure Identification With a Stochastic Deep Learning Framework publication-title: Water Resour. Res. doi: 10.1029/2022WR033241 – ident: 10.1016/j.jhydrol.2024.131703_b0355 doi: 10.1017/9781009049511 – year: 2015 ident: 10.1016/j.jhydrol.2024.131703_b0210 – volume: 32 start-page: 85 year: 1996 ident: 10.1016/j.jhydrol.2024.131703_b0370 article-title: An Iterative Stochastic Inverse Method: Conditional Effective Transmissivity and Hydraulic Head Fields publication-title: Water Resour. Res. doi: 10.1029/95WR02869 – volume: 47 year: 2011 ident: 10.1016/j.jhydrol.2024.131703_b0040 article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response publication-title: Water Resour. Res. doi: 10.1029/2010WR010367 |
SSID | ssj0000334 |
Score | 2.4695444 |
Snippet | •A PINN method (KLE-PINN) is proposed for estimating hydraulic conductivity under different scenarios.•Analyzing water head fitting error improve understanding... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 131703 |
SubjectTerms | Boundary conditions Groundwater inversion Hydraulic tomography Physics-informed neural network |
Title | Groundwater inverse modeling: Physics-informed neural network with disentangled constraints and errors |
URI | https://dx.doi.org/10.1016/j.jhydrol.2024.131703 |
Volume | 640 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsCCeIryqDywJnUcJ7HZqoqqgOhEpW5RYju0FUqrtAh14bdzl4cKDAyMiewoOtv3fba_uyPkFtZQxIwNYJNjrSN0wpzUE9oJpLI8tEoGBjeKz-NwNBGP02DaIoMmFgZllbXvr3x66a3rN73amr3VfI4xvpx7oRKASeX1Dkawiwhnufu5k3kw3xdNxnBsvYvi6S3cxWxriiXeQHDhegClTe2s3_j0DXOGR-SwJou0X_3PMWnZ_ITs13XLZ9tTkuHRUW4-gDAWdJ6jxMLSsrgNINIdLeWdeu1U2VGtoZi9Ej6YV9pvioewFK9ocqCIr2_QQCNdxKoRmzVNckNtUSyL9RmZDO9fBiOnrpzgJFyyjWMAdQHqrebSMB2pTEovCbiwqUmYL4xB4gLLkYdKwfAYP0ozTySZzEKtTCb8c9LOl7m9IJRxE_IUeElmPGFVoJQJbAK8iKVaRzrsELexV7yqEmTEjXJsEdcGjtHAcWXgDpGNVeMfIx2DE_-76-X_u16RA3yqpHvXpL0p3u0N0IlN2i3nS5fs9R-eRuMvYebMlw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGcqCeIry9MCa1HGcxGZDFVWBtlMrdYsS24FWyK3SItSF3845DxUYGFgTO4nO8X2ffZ_vELqFORQRpQNY5GjtMJkQJ_WYdAIuNA214IGyC8XhKOxP2NM0mDZQtz4LY2WVle8vfXrhrasrncqaneVsZs_4UuqFggEmFeGdHbTL4NW2jIH7udV5EN9ndcpw23x7jKczd-evG5UvbAiCMtcDLK2LZ_0GqG-g0ztA-xVbxPflBx2ihjZHqFUVLn_dHKPM7h0Z9QGMMcczYzUWGhfVbQCS7nCh75Qrp0yPqhW26SvhgaYUf2O7C4ttjMYAR3x5gwbS8kVbNmK9wolRWOf5Il-doEnvYdztO1XpBCehnKwdBbALWK8l5YrISGSce0lAmU5VQnymlGUuMB9pKASMj_KjNPNYkvEslEJlzD9FTbMw-gxhQlVIUyAmmfKYFoEQKtAJECOSShnJsI3c2l7xssyQEdfSsXlcGTi2Bo5LA7cRr60a_xjqGLz4313P_9_1BrX64-EgHjyOni_Qnr1T6vguUXOdv-sr4Bbr9Lr4d74APrPOJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Groundwater+inverse+modeling%3A+Physics-informed+neural+network+with+disentangled+constraints+and+errors&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ji%2C+Yuzhe&rft.au=Zha%2C+Yuanyuan&rft.au=Yeh%2C+Tian-Chyi+J.&rft.au=Shi%2C+Liangsheng&rft.date=2024-08-01&rft.issn=0022-1694&rft.volume=640&rft.spage=131703&rft_id=info:doi/10.1016%2Fj.jhydrol.2024.131703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2024_131703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |