High-Throughput Screening of Transition-Metal-Atom-Embedded Parallel Tetracyanoethylene 2D Networks as Single-Atom Electrocatalysts for Ammonia Synthesis and Its Underlying Microscopic Mechanisms

Electrosynthesis of ammonia under mild conditions has been impeded by the lack of high-performance electrocatalysts. Inspired by the high activity and selectivity of single-atom catalysts (SACs) with maximum atom utilization, we systematically explored a new class of two-dimensional SACs formed by e...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 126; no. 49; pp. 20816 - 20830
Main Authors Deng, Dan, Song, Bingyi, Li, Cong, Yang, Li-Ming
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrosynthesis of ammonia under mild conditions has been impeded by the lack of high-performance electrocatalysts. Inspired by the high activity and selectivity of single-atom catalysts (SACs) with maximum atom utilization, we systematically explored a new class of two-dimensional SACs formed by embedding 30 types of transition metals (TMs) in two-dimensional (2D) parallel patterning of tetracyanoethylene (TCNE) networks (labeled as p-TM­[TCNE], p means parallel) for the nitrogen reduction reaction (NRR) through the combination of high-throughput screening and density functional theory calculations. Three p-TM­[TCNE] (TM = Mo, Nb, Ti) catalysts stand out with high catalytic activity and selectivity. The full reaction path search demonstrates that these three catalysts prefer the distal mechanism, among which p-Mo­[TCNE] has the lowest limiting potential of −0.36 V. The origin of high activity might be ascribed to the joint effects from exposed active sites in 2D planar structures, high stability and metallic properties of catalysts, and efficient charge transfer between adsorbed N2 and active sites. Interestingly, the catalytic performance can be correlated well with the magnetic moment of transition metal, which indicates that the magnetic moment could be used as an efficient descriptor for the NRR. This work will shed some light on the rational design of efficient NRR catalysts and stimulate further efforts of both experiment and theory in this field.
AbstractList Electrosynthesis of ammonia under mild conditions has been impeded by the lack of high-performance electrocatalysts. Inspired by the high activity and selectivity of single-atom catalysts (SACs) with maximum atom utilization, we systematically explored a new class of two-dimensional SACs formed by embedding 30 types of transition metals (TMs) in two-dimensional (2D) parallel patterning of tetracyanoethylene (TCNE) networks (labeled as p-TM­[TCNE], p means parallel) for the nitrogen reduction reaction (NRR) through the combination of high-throughput screening and density functional theory calculations. Three p-TM­[TCNE] (TM = Mo, Nb, Ti) catalysts stand out with high catalytic activity and selectivity. The full reaction path search demonstrates that these three catalysts prefer the distal mechanism, among which p-Mo­[TCNE] has the lowest limiting potential of −0.36 V. The origin of high activity might be ascribed to the joint effects from exposed active sites in 2D planar structures, high stability and metallic properties of catalysts, and efficient charge transfer between adsorbed N2 and active sites. Interestingly, the catalytic performance can be correlated well with the magnetic moment of transition metal, which indicates that the magnetic moment could be used as an efficient descriptor for the NRR. This work will shed some light on the rational design of efficient NRR catalysts and stimulate further efforts of both experiment and theory in this field.
Author Li, Cong
Deng, Dan
Yang, Li-Ming
Song, Bingyi
AuthorAffiliation Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-2615-4185
  surname: Deng
  fullname: Deng, Dan
– sequence: 2
  givenname: Bingyi
  surname: Song
  fullname: Song, Bingyi
– sequence: 3
  givenname: Cong
  surname: Li
  fullname: Li, Cong
– sequence: 4
  givenname: Li-Ming
  orcidid: 0000-0002-7836-212X
  surname: Yang
  fullname: Yang, Li-Ming
  email: Lmyang@hust.edu.cn
BookMark eNp9kU1u2zAQhYkiBZq42WfJA0QuSVGWtDQS5weI2wJ21gJNDi2mFGmQNAKdLxcLlQRdFGhWM8DM9zDz3hk6cd4BQheUzClh9IeQcf50kHLOJKmaln9Bp7QtWVHzqjr52_P6GzqL8YmQqiS0PEUvd2bfF9s--OO-PxwT3sgA4IzbY6_xNggXTTLeFWtIwhbL5IdiNexAKVD4twjCWrB4CykIOQrnIfWjBQeYXeOfkJ59-BOxiHiTFS288XhlQabgpciKY0wRax_wchi8MwJvRpd6iCZTTuH7PH10CoIdp5PWRgYfpT8Yidcge-FMHOJ39FULG-H8o87Q481qe3VXPPy6vb9aPhSCNSQVu1qRdpHNWrBqIWrgXDEoNaVKt7rRu0ZyXtVaV6xpheZalzvZUMooZw2okpUzRN51pyNiAN0dghlEGDtKuimELofQTSF0HyFkZPEPIk0Sk6HZMGM_Ay_fwbeJPwaXP_v_-itziaU8
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_161648
crossref_primary_10_1039_D3CP03073C
crossref_primary_10_1016_j_surfin_2024_105401
crossref_primary_10_1039_D3MA00917C
crossref_primary_10_1007_s12274_023_5619_9
crossref_primary_10_1021_acs_langmuir_4c00951
crossref_primary_10_1021_acs_jpcc_4c04313
crossref_primary_10_1007_s40843_023_2805_y
crossref_primary_10_1016_j_coelec_2023_101383
crossref_primary_10_1016_j_mcat_2023_113031
crossref_primary_10_1007_s12598_024_03151_4
crossref_primary_10_1021_acs_jpclett_4c01812
crossref_primary_10_1002_eem2_12693
crossref_primary_10_1021_acsmaterialslett_3c01604
crossref_primary_10_1039_D4TA03424D
crossref_primary_10_1016_j_mcat_2024_113879
crossref_primary_10_1021_acs_jpcc_4c04179
crossref_primary_10_1016_S1872_2067_24_60032_X
crossref_primary_10_1002_adsu_202400123
crossref_primary_10_1016_j_jechem_2024_05_045
crossref_primary_10_1039_D3TA07452H
crossref_primary_10_1021_acsami_4c13025
crossref_primary_10_1007_s12598_024_02836_0
crossref_primary_10_1016_j_ijhydene_2024_10_153
crossref_primary_10_1002_eem2_12888
crossref_primary_10_1016_j_fuel_2024_131750
crossref_primary_10_1016_S1872_2067_23_64501_2
Cites_doi 10.1103/PhysRevLett.77.3865
10.1021/acscatal.7b02165
10.1039/C8TA08219G
10.1038/22672
10.1021/acsami.2c02677
10.1016/j.chempr.2018.10.010
10.1021/jacs.9b11614
10.1002/aelm.201700323
10.1021/acssuschemeng.0c04401
10.1021/jacs.0c09527
10.1063/1.4887924
10.1021/jp047349j
10.1016/j.commatsci.2005.04.010
10.1126/science.aar6611
10.1002/anie.201903969
10.1038/s41467-021-25426-5
10.1039/D1TA11024A
10.1088/1361-6528/ab1d01
10.1039/C9TA12608B
10.1021/acsami.1c06414
10.1016/j.joule.2019.10.006
10.1021/jp5065819
10.1021/acsami.0c20553
10.1016/j.jcis.2022.04.005
10.1002/cssc.201500322
10.1038/s41929-019-0252-4
10.1021/acs.jpcc.9b05250
10.1039/D1EE00154J
10.1002/eem2.12277
10.1039/D1TA08877G
10.1016/j.cattod.2018.12.029
10.1038/ngeo325
10.1021/acscatal.6b03035
10.1038/s41929-019-0280-0
10.1002/smtd.201800376
10.1063/1.3382344
10.1021/ja513209c
10.1021/acsami.0c18472
10.1039/C1CP22271F
10.1016/j.crcon.2018.06.004
10.1016/0927-0256(96)00008-0
10.1039/c0ee00809e
10.1021/acs.jpclett.2c00918
10.1021/jacs.8b13075
10.1063/1.431807
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.2c05894
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 20830
ExternalDocumentID 10_1021_acs_jpcc_2c05894
d221346941
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
ID FETCH-LOGICAL-a280t-b7d0961026256a7e44d2e3f11df9f8fb8c4457ff5289af4ff3bc81121428ed323
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 02:50:50 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Sat Dec 17 03:10:33 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-b7d0961026256a7e44d2e3f11df9f8fb8c4457ff5289af4ff3bc81121428ed323
ORCID 0000-0002-7836-212X
0000-0002-2615-4185
PageCount 15
ParticipantIDs crossref_primary_10_1021_acs_jpcc_2c05894
crossref_citationtrail_10_1021_acs_jpcc_2c05894
acs_journals_10_1021_acs_jpcc_2c05894
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221215
2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 20221215
  day: 15
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref9/cit9
  doi: 10.1021/acscatal.7b02165
– ident: ref41/cit41
  doi: 10.1039/C8TA08219G
– ident: ref3/cit3
  doi: 10.1038/22672
– ident: ref24/cit24
  doi: 10.1021/acsami.2c02677
– ident: ref5/cit5
  doi: 10.1016/j.chempr.2018.10.010
– ident: ref37/cit37
– ident: ref14/cit14
  doi: 10.1021/jacs.9b11614
– ident: ref27/cit27
  doi: 10.1002/aelm.201700323
– ident: ref32/cit32
  doi: 10.1021/acssuschemeng.0c04401
– ident: ref33/cit33
  doi: 10.1021/jacs.0c09527
– ident: ref26/cit26
  doi: 10.1063/1.4887924
– ident: ref36/cit36
  doi: 10.1021/jp047349j
– ident: ref46/cit46
  doi: 10.1016/j.commatsci.2005.04.010
– ident: ref7/cit7
  doi: 10.1126/science.aar6611
– ident: ref17/cit17
  doi: 10.1002/anie.201903969
– ident: ref13/cit13
  doi: 10.1038/s41467-021-25426-5
– ident: ref23/cit23
  doi: 10.1039/D1TA11024A
– ident: ref42/cit42
  doi: 10.1088/1361-6528/ab1d01
– ident: ref39/cit39
  doi: 10.1039/C9TA12608B
– ident: ref20/cit20
  doi: 10.1021/acsami.1c06414
– ident: ref11/cit11
  doi: 10.1016/j.joule.2019.10.006
– ident: ref44/cit44
  doi: 10.1021/jp5065819
– ident: ref19/cit19
  doi: 10.1021/acsami.0c20553
– ident: ref22/cit22
  doi: 10.1016/j.jcis.2022.04.005
– ident: ref31/cit31
  doi: 10.1002/cssc.201500322
– ident: ref6/cit6
  doi: 10.1038/s41929-019-0252-4
– ident: ref43/cit43
  doi: 10.1021/acs.jpcc.9b05250
– ident: ref34/cit34
  doi: 10.1039/D1EE00154J
– ident: ref21/cit21
  doi: 10.1002/eem2.12277
– ident: ref40/cit40
  doi: 10.1039/D1TA08877G
– ident: ref12/cit12
  doi: 10.1016/j.cattod.2018.12.029
– ident: ref1/cit1
  doi: 10.1038/ngeo325
– ident: ref4/cit4
  doi: 10.1021/acscatal.6b03035
– ident: ref8/cit8
  doi: 10.1038/s41929-019-0280-0
– ident: ref38/cit38
  doi: 10.1002/smtd.201800376
– ident: ref29/cit29
  doi: 10.1063/1.3382344
– ident: ref15/cit15
  doi: 10.1021/ja513209c
– ident: ref18/cit18
  doi: 10.1021/acsami.0c18472
– ident: ref45/cit45
  doi: 10.1039/C1CP22271F
– ident: ref10/cit10
  doi: 10.1016/j.crcon.2018.06.004
– ident: ref28/cit28
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref2/cit2
  doi: 10.1039/c0ee00809e
– ident: ref35/cit35
  doi: 10.1021/acs.jpclett.2c00918
– ident: ref16/cit16
  doi: 10.1021/jacs.8b13075
– ident: ref25/cit25
  doi: 10.1063/1.431807
SSID ssj0053013
Score 2.5255957
Snippet Electrosynthesis of ammonia under mild conditions has been impeded by the lack of high-performance electrocatalysts. Inspired by the high activity and...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 20816
SubjectTerms C: Chemical and Catalytic Reactivity at Interfaces
Title High-Throughput Screening of Transition-Metal-Atom-Embedded Parallel Tetracyanoethylene 2D Networks as Single-Atom Electrocatalysts for Ammonia Synthesis and Its Underlying Microscopic Mechanisms
URI http://dx.doi.org/10.1021/acs.jpcc.2c05894
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swECbadGiX9I2mj-CGduhAx6RISx4N10FSwEEBO0A2gaRIwK0jG6Y8OH-vf6x3lNwGfSGAJklHELoT7yPv8TH2XmupnRzSuYYNXKFH4UPErVwIX5l-LguRWgpNLwZnl-rzlb761Sbn9wi-FCfGxd7XtXM96YgCT91nD-SgyGmjNRrP9quuRkPN2ggyIkal8i4k-bcRyBG5eMsR3fIop49baqKYGhFSIsm33raxPXfzZ5vGO0z2CTvsgCWMWkt4yu75-hl7ON7zuT1n3ymlg89bXp71toGZo5wbdF2wCpB8Vkrf4lOPgJyPGlw9J9fW48pUwRezIdKVJcx9szFuZ-qVRxWjy_IgP8FFm0wewUSY4YhLn-Rh0pLspDOiXWwiIESGEZn-wsBsVyP6jAuUqis4x6eJhGlJhVcwpURBKplZOJh6Kk9exOv4gl2eTubjM95ROHAji37DbV4Rpwxu9BBamdwrVUmfBSGqMAxFsIVTSuchaNz3maBCyKwrEAJSHzhfZTJ7yQ7qVe1fMaDNqeobBFCVVcPKFMJo47UbGBvMoBBH7AN-_bL7BWOZoutSlOkmqqTsVHLETvZ6L13XB53oOJb_kfj4U2Ld9gD557uv7ziLN-yRpEIKgZd-yw6azda_Q3jT2ONk1z8AtOb5lQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKOZQLlJcoUJgDHDg4jb12dnOMQqoUuhEiqdTbyuuHFEg3Ubw5hL_HH2Ps3bRVBQikPXnX1mj9mG88j4-Qd1JyqXk_3GuUjgrUKLSPuJUyZo3qpjxjsaRQPumNL8SnS3m5R9guFwaF8DiSj078m-oC7CS0fVtp3eE6MOGJe-Q-YhEe7K3BcLo7fCWu16RxJCNwFCJtPZO_GyHoI-1v6aNbiuX0Efl6LVKMJ_ne2dRlR_-4U63xv2Q-JA9bmAmDZl08Jnu2ekIOhjt2t6fkZwjwoLOGpWe1qWGqQwQOKjJYOogaLAZz0dwiPKeDGs_S0VVp8Zwy8EWtAwXLAma2Xiu9VdXS4oSjArPAP8KkCS33oDxMccSFjf1h1FDuxBujra89IGCGQdgIcwXTbYVY1M-xV2XgDN9GSqZFSMOCPIQNhgSauYbchmTlub_yz8jF6Wg2HNOW0IEqnnVrWqYmMMyg2YdAS6VWCMNt4hgzru8yV2ZaCJk6J9EKVE44l5Q6Q0AYqsJZk_DkOdmvlpV9QSCYqqKrEE6ZUvSNypiSykrdU6VTvYwdkff494t2Q_oi-to5K2IjTknRTskROdlNf6HbquiBnGPxlx4frnusmoogf_z25T9K8ZYcjGf5eXF-Nvn8ijzgIcWC4SNfk_16vbHHCHzq8k1c6r8Aq54CBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKkYALb0R5-gAHDk5jr53dHKM0UQskqpQU9bbyUwqkmyjeHMLf448x491UFQIE0p68O5a1Hns-ex4fIe-UEsqKPt5rmMAkWBTWB9zKOPdOd3NR8FRSaDLtnV7Ij5fq8oCofS4MDCJCTzE58XFVr11oKwzwY2z_ura2Iyyy4clb5DZ67fDMNRjO9huwAp3NGmcygEcp89Y7-bse0CbZeMMm3TAu4wfky_WwUkzJt862Nh37_ZeKjf897ofkfgs36aDRj0fkwFePyd3hnuXtCfmBgR5s3rD1rLc1nVmMxAGDRleBJkuWgrrYxANMZ4Ma9tTRlfGwXzl6rjdIxbKkc19vtN3pauVh4sGQeSpO6LQJMY9URzqDHpc-ydNRQ72Tbo52sY4UgDMd4IJYaDrbVYBJ4wKkKkfP4G2iZlpiOhadYPggJtIsLJ14TFpexKv4lFyMR_PhKWuJHZgWRbdmJnfINAPHPwBcOvdSOuGzwLkL_VAEU1gpVR6CgtOgDjKEzNgCgCFWh_MuE9kzclitKv-cUDyyyq4GWOWM7DtdcK20V7anTdC9gh-R9_D3y3ZhxjL53AUvUyNMSdlOyRE53qtAadvq6EjSsfyLxIdriXVTGeSP3774x1G8JXfOT8bl57Ppp5fknsBMCw6PekUO683Wvwb8U5s3Sdt_AtuvBIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Throughput+Screening+of+Transition-Metal-Atom-Embedded+Parallel+Tetracyanoethylene+2D+Networks+as+Single-Atom+Electrocatalysts+for+Ammonia+Synthesis+and+Its+Underlying+Microscopic+Mechanisms&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Deng%2C+Dan&rft.au=Song%2C+Bingyi&rft.au=Li%2C+Cong&rft.au=Yang%2C+Li-Ming&rft.date=2022-12-15&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=126&rft.issue=49&rft.spage=20816&rft.epage=20830&rft_id=info:doi/10.1021%2Facs.jpcc.2c05894&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_2c05894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon