Defect Engineering of Oxygen Vacancies in Ultrathin NiFe-Layered Double Hydroxides: Insights from Density Functional Theory
Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known enhancement of LDH activity by oxygen vacancies (Ov), a formal exploration of how vacancy content influences electrocatalytic properties is lack...
Saved in:
Published in | Journal of physical chemistry. C Vol. 128; no. 10; pp. 4161 - 4170 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
14.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-7447 1932-7455 |
DOI | 10.1021/acs.jpcc.3c07521 |
Cover
Abstract | Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known enhancement of LDH activity by oxygen vacancies (Ov), a formal exploration of how vacancy content influences electrocatalytic properties is lacking. Herein, density functional theory (DFT) calculations were employed to investigate the impact of the Ov content (1–5%) on the electronic structure, electrocatalytic activity of NiFe LDH, and interface coupling with heteroatom-doped carbon. Calculations revealed that the density of states and bandwidth of defect levels induced within the band gap depend on the Ov content, influencing the adsorption of oxygenated species and calculated overpotentials for the oxygen evolution reaction (OER), predicted to be three times less than that of the defect-free system. Additionally, binding energy calculations highlight heightened interactions between Ov-enriched LDH and doped-carbon surfaces, causing electron density redistribution and Fermi level shifts due to doping effects. Carbon modification with pyridinic nitrogen and phosphorus is a promising candidate for enhanced interface engineering with defective LDH, attributed to the larger interaction energy and alignment of its Fermi level with the valence band of LDH, underscoring the key role of pyridinic nitrogen in the carbon support and enhanced electronic conductivity in LDH/carbon composites. |
---|---|
AbstractList | Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known enhancement of LDH activity by oxygen vacancies (Ov), a formal exploration of how vacancy content influences electrocatalytic properties is lacking. Herein, density functional theory (DFT) calculations were employed to investigate the impact of the Ov content (1–5%) on the electronic structure, electrocatalytic activity of NiFe LDH, and interface coupling with heteroatom-doped carbon. Calculations revealed that the density of states and bandwidth of defect levels induced within the band gap depend on the Ov content, influencing the adsorption of oxygenated species and calculated overpotentials for the oxygen evolution reaction (OER), predicted to be three times less than that of the defect-free system. Additionally, binding energy calculations highlight heightened interactions between Ov-enriched LDH and doped-carbon surfaces, causing electron density redistribution and Fermi level shifts due to doping effects. Carbon modification with pyridinic nitrogen and phosphorus is a promising candidate for enhanced interface engineering with defective LDH, attributed to the larger interaction energy and alignment of its Fermi level with the valence band of LDH, underscoring the key role of pyridinic nitrogen in the carbon support and enhanced electronic conductivity in LDH/carbon composites. |
Author | Arjona, Noé Álvarez-Contreras, Lorena Ramos-Castillo, C. M. Guerra-Balcázar, Minerva |
AuthorAffiliation | Centro de Investigación en Materiales Avanzados S. C Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C Facultad de Ingeniería, División de Investigación y Posgrado Universidad Autónoma de Querétaro |
AuthorAffiliation_xml | – name: Facultad de Ingeniería, División de Investigación y Posgrado – name: Universidad Autónoma de Querétaro – name: Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C – name: Centro de Investigación en Materiales Avanzados S. C |
Author_xml | – sequence: 1 givenname: C. M. surname: Ramos-Castillo fullname: Ramos-Castillo, C. M. email: cm.ramoscastillo@gmail.com organization: Universidad Autónoma de Querétaro – sequence: 2 givenname: Lorena surname: Álvarez-Contreras fullname: Álvarez-Contreras, Lorena organization: Centro de Investigación en Materiales Avanzados S. C – sequence: 3 givenname: Noé surname: Arjona fullname: Arjona, Noé organization: Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C – sequence: 4 givenname: Minerva orcidid: 0000-0002-0650-335X surname: Guerra-Balcázar fullname: Guerra-Balcázar, Minerva email: minerva.guerra@uaq.mx organization: Universidad Autónoma de Querétaro |
BookMark | eNp9kE9PAjEQxRuDiYDePfYDuDjd7rLgzfBHSIhcwOum251CydKStiRs_PIuQjyY6GneZOZN5v06pGWsQUIeGfQYxOxZSN_bHaTscQlZGrMb0mZDHkdZkqatH51kd6Tj_Q4g5cB4m3yOUaEMdGI22iA6bTbUKro81Rs09ENIYaRGT7Wh6yo4EbaNetdTjBaiRoclHdtjUSGd1aWzJ12if6Fz4_VmGzxVzu7pGJs21HR6NDJoa0RFV1u0rr4nt0pUHh-utUvW08lqNIsWy7f56HURiXgAIRL9WKisTIe8BOCDIpEs4YUYcoVcQCJ5AYIzFoOUMWZlXyXYDFJEEIMMYsW7pH-5K5313qHKpQ7i_EoTSFc5g_yMMG8Q5meE-RVhY4RfxoPTe-Hq_yxPF8v3xB5dE9f_vf4Ffo-J7A |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_113773 crossref_primary_10_1021_acsanm_4c03006 crossref_primary_10_1016_j_apsusc_2024_161828 crossref_primary_10_1016_j_surfin_2024_104902 crossref_primary_10_1016_j_est_2024_111565 |
Cites_doi | 10.1002/adma.201606793 10.1016/j.elecom.2017.02.015 10.1021/acsami.9b0556410.1021/acsami.9b05564 10.1103/PhysRevB.40.3616 10.1002/anie.202109938 10.1007/s40843-017-9214-9 10.3390/nano8070528 10.1007/s10562-020-03426-2 10.1039/D1TA06263H 10.1007/s12274-022-4377-4 10.1038/nmat4703 10.1016/0927-0256(96)00008-0 10.1039/C8TA05295F 10.1039/D0NJ00021C 10.1021/ja407115p 10.1016/j.nanoen.2015.12.032 10.1016/j.jpowsour.2020.228354 10.1038/s41467-020-15933-2 10.1016/j.carbon.2019.01.018 10.1021/ja4027715 10.1002/cssc.201902841 10.1016/j.jcis.2021.01.093 10.1063/1.3382344 10.1039/C4CS00160E 10.1016/j.jpowsour.2014.11.105 10.1021/acs.chemrev.7b00488 10.1016/j.jiec.2022.12.030 10.1103/PhysRevB.57.1505 10.1038/nnano.2014.167 10.1021/jz2016507 10.1103/PhysRevB.54.11169 10.1016/j.cej.2018.01.024 10.1021/jacs.6b01606 10.1016/j.ijhydene.2016.05.184 10.1016/j.mattod.2015.10.006 10.1039/C4CS00236A 10.1107/S0021889811038970 10.1021/acsenergylett.2c01362 10.1016/j.nanoen.2020.105606 10.1016/j.jallcom.2023.171304 10.1016/j.apsusc.2022.154253 10.1016/j.nanoen.2020.104761 10.1038/ncomms5477 10.1002/aenm.201703189 10.1016/j.susmat.2023.e00695 10.1016/j.ijhydene.2019.07.185 10.1002/aenm.201501974 10.1007/s12274-021-3475-z 10.1007/s12274-017-1437-2 10.1039/C7TA04001F 10.1039/D0TA10712C 10.1021/ja1069272 10.1016/j.apcatb.2017.01.010 10.1002/adma.201700017 10.1016/j.micromeso.2021.111593 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.jpcc.3c07521 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 4170 |
ExternalDocumentID | 10_1021_acs_jpcc_3c07521 d59832553 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABMYL ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABBLG ABLBI CITATION CUPRZ ROL |
ID | FETCH-LOGICAL-a280t-a62af7d593d0038b4c143ba93fe3a04c3b0a31120cc2e7d6f4ee3a5ee0a8702f3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Thu Apr 24 23:11:57 EDT 2025 Tue Jul 01 00:17:26 EDT 2025 Fri Mar 15 18:47:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-a62af7d593d0038b4c143ba93fe3a04c3b0a31120cc2e7d6f4ee3a5ee0a8702f3 |
ORCID | 0000-0002-0650-335X |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_acs_jpcc_3c07521 crossref_primary_10_1021_acs_jpcc_3c07521 acs_journals_10_1021_acs_jpcc_3c07521 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-14 |
PublicationDateYYYYMMDD | 2024-03-14 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref37/cit37 doi: 10.1002/adma.201606793 – ident: ref42/cit42 doi: 10.1016/j.elecom.2017.02.015 – ident: ref52/cit52 doi: 10.1021/acsami.9b0556410.1021/acsami.9b05564 – ident: ref32/cit32 doi: 10.1103/PhysRevB.40.3616 – ident: ref53/cit53 doi: 10.1002/anie.202109938 – ident: ref22/cit22 doi: 10.1007/s40843-017-9214-9 – ident: ref50/cit50 doi: 10.3390/nano8070528 – ident: ref54/cit54 doi: 10.1007/s10562-020-03426-2 – ident: ref55/cit55 doi: 10.1039/D1TA06263H – ident: ref46/cit46 doi: 10.1007/s12274-022-4377-4 – ident: ref44/cit44 doi: 10.1038/nmat4703 – ident: ref29/cit29 doi: 10.1016/0927-0256(96)00008-0 – ident: ref25/cit25 doi: 10.1039/C8TA05295F – ident: ref6/cit6 doi: 10.1039/D0NJ00021C – ident: ref4/cit4 doi: 10.1021/ja407115p – ident: ref3/cit3 doi: 10.1016/j.nanoen.2015.12.032 – ident: ref36/cit36 doi: 10.1016/j.jpowsour.2020.228354 – ident: ref38/cit38 doi: 10.1038/s41467-020-15933-2 – ident: ref27/cit27 doi: 10.1016/j.carbon.2019.01.018 – ident: ref18/cit18 doi: 10.1021/ja4027715 – ident: ref39/cit39 doi: 10.1002/cssc.201902841 – ident: ref48/cit48 doi: 10.1016/j.jcis.2021.01.093 – ident: ref33/cit33 doi: 10.1063/1.3382344 – ident: ref12/cit12 doi: 10.1039/C4CS00160E – ident: ref28/cit28 doi: 10.1016/j.jpowsour.2014.11.105 – ident: ref40/cit40 doi: 10.1021/acs.chemrev.7b00488 – ident: ref7/cit7 doi: 10.1016/j.jiec.2022.12.030 – ident: ref31/cit31 doi: 10.1103/PhysRevB.57.1505 – ident: ref43/cit43 doi: 10.1038/nnano.2014.167 – ident: ref9/cit9 doi: 10.1021/jz2016507 – ident: ref30/cit30 doi: 10.1103/PhysRevB.54.11169 – ident: ref51/cit51 doi: 10.1016/j.cej.2018.01.024 – ident: ref14/cit14 doi: 10.1021/jacs.6b01606 – ident: ref2/cit2 doi: 10.1016/j.ijhydene.2016.05.184 – ident: ref15/cit15 doi: 10.1016/j.mattod.2015.10.006 – ident: ref16/cit16 doi: 10.1039/C4CS00236A – ident: ref34/cit34 doi: 10.1107/S0021889811038970 – ident: ref5/cit5 doi: 10.1021/acsenergylett.2c01362 – ident: ref21/cit21 doi: 10.1016/j.nanoen.2020.105606 – ident: ref13/cit13 doi: 10.1016/j.jallcom.2023.171304 – ident: ref24/cit24 doi: 10.1016/j.apsusc.2022.154253 – ident: ref1/cit1 doi: 10.1016/j.nanoen.2020.104761 – ident: ref17/cit17 doi: 10.1038/ncomms5477 – ident: ref35/cit35 doi: 10.1002/aenm.201703189 – ident: ref45/cit45 doi: 10.1016/j.susmat.2023.e00695 – ident: ref41/cit41 doi: 10.1016/j.ijhydene.2019.07.185 – ident: ref11/cit11 doi: 10.1002/aenm.201501974 – ident: ref23/cit23 doi: 10.1007/s12274-021-3475-z – ident: ref19/cit19 doi: 10.1007/s12274-017-1437-2 – ident: ref49/cit49 doi: 10.1039/C7TA04001F – ident: ref8/cit8 doi: 10.1039/D0TA10712C – ident: ref10/cit10 doi: 10.1021/ja1069272 – ident: ref26/cit26 doi: 10.1016/j.apcatb.2017.01.010 – ident: ref20/cit20 doi: 10.1002/adma.201700017 – ident: ref47/cit47 doi: 10.1016/j.micromeso.2021.111593 |
SSID | ssj0053013 |
Score | 2.4781678 |
Snippet | Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 4161 |
SubjectTerms | C: Chemical and Catalytic Reactivity at Interfaces |
Title | Defect Engineering of Oxygen Vacancies in Ultrathin NiFe-Layered Double Hydroxides: Insights from Density Functional Theory |
URI | http://dx.doi.org/10.1021/acs.jpcc.3c07521 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhjSgveYCBIW1iO2nChlqqgqAMUNQtsp2LKFRpRVKJwp_nnKRQ8RJShiiJo4t9zn323X1HyBFIz1euoy0pJFjCEcryHQALAofFkUDIrM3WwHXX6_TEZd_tf9LkfPXgM6cudVp7HGtd4xrNm8kZX2QeapmBQc3b2V_XRUXlhQcZEaMQjdIl-dMbjCHS6ZwhmrMo7dWiNFGaExGaQJKn2iRTNf36nabxH8KukZUSWNKzQhPWyQIkG2SpOavntkneWmBCN-gcAyEdxfTmZYo6RO-lzuv0pnSQ0N7QcNY-4Fl30AbrSk5NRU-KYFsNgXamEYo8iCA9pRdJalb3KTVpKrRlouGzKW2jsSz2GGmR-79Feu3zu2bHKksvWJL5dmZJj8m4EbkBj4zvUAmNuErJgMfApS00V7bkCNVsrRk0Ii8WgDdcAFvi0LCYb5NKMkpgh1AUHyc5cBfRgXBjHuChbUfhNwc-AsoqOcZeC8upk4a5V5w5YX4RuzIsu7JK6rPxCnXJX27KaAz_aHHy0WJccHf8-uzuP6XYI8sMYY2JQnPEPqlkzxM4QFiSqcNcH98BQJPfTQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDhjXjjAQaGlDh20oataqkKlCIBRd0i27mIQhUqkkoU_jznJIUKAQIpQ-TE1sU5-z77zt8RcgDSqyqXaUsKCZZgQllVBmCBz5woFAiZtdkauOx4ra4477m9GcImZ2FQiARbSjIn_ie7ADs2ZQ9Drctco5UzR8dnEYs4JltDrX4zmXxd1FeeO5IROApRKTyT37Vg7JFOpuzRlGFpLpLrD5GyeJLH8ihVZf36ha3xXzIvkYUCZtJarhfLZAbiFTJXn2R3WyVvDTCBHHSKj5A-RfTqZYwaRe-kzrL2JrQf0-7AMNje412n3wSrLccmvydF6K0GQFvjECXvh5Cc0LM4MWv9hJpDK7RhYuPTMW2i6cx3HGnOBLBGus3T23rLKhIxWNKp2qklPUdGldD1eWg8iUpoRFlK-jwCLm2hubIlR-Bma-1AJfQiAfjABbAlTgdOxNdJKX6KYYNQFB-HPHAXsYJwI-7jpW2m8Jv9KsLLTXKIvRYUAykJMh-5w4KsELsyKLpykxxPflugCzZzk1Rj8EuNo48aw5zJ48d3t_4oxT6Za91etoP2Wedim8w7CHhMfBoTO6SUPo9gFwFLqvYyFX0Hhbnnrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQX3xW5yfedAHH7q1TbqtvslmmV9T0I29lSS94nR0w3Zg9Z_30nYyREWhDyVtwjW95H7JXX5HyBGIWkM6ljIEF2Bwi0ujYQEY4Fp2GHCEzEpvDdx0au0uv-w7_TniTM_CoBAxthRnTnw9qsdBWDAMWFVd_jRWqsIUWjp9fHxee-10xoaz5v10AnZQZ1nuTEbwyHm98E5-14K2SSqesUkzxsVbIb1PsbKYkufKJJEV9faFsfHfcq-S5QJu0rNcP9bIHETrZLE5zfK2Qd5boAM66AwvIR2F9PY1Rc2iPaGy7L0xHUS0O9RMto941xl4YFyLVOf5pAjB5RBoOw1Q-kEA8Sm9iGK95o-pPrxCWzpGPkmphyY033mkOSPAJul65w_NtlEkZDCE3TATQ9RsEdYDx2WB9ihKrhBtSeGyEJgwuWLSFAwBnKmUDfWgFnLABw6AKXBasEO2RUrRKIJtQlF8HPrAHMQM3AmZi5cyLYnf7DYQZpbJMfaaXwyo2M985bblZ4XYlX7RlWVSnf46XxWs5jq5xvCXGiefNcY5o8eP7-78UYpDsnDX8vzri87VLlmyEffoMDWL75FS8jKBfcQtiTzItPQDDH_qMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Engineering+of+Oxygen+Vacancies+in+Ultrathin+NiFe-Layered+Double+Hydroxides%3A+Insights+from+Density+Functional+Theory&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Ramos-Castillo%2C+C.+M.&rft.au=%C3%81lvarez-Contreras%2C+Lorena&rft.au=Arjona%2C+No%C3%A9&rft.au=Guerra-Balc%C3%A1zar%2C+Minerva&rft.date=2024-03-14&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=128&rft.issue=10&rft.spage=4161&rft.epage=4170&rft_id=info:doi/10.1021%2Facs.jpcc.3c07521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_3c07521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |