Defect Engineering of Oxygen Vacancies in Ultrathin NiFe-Layered Double Hydroxides: Insights from Density Functional Theory

Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known enhancement of LDH activity by oxygen vacancies (Ov), a formal exploration of how vacancy content influences electrocatalytic properties is lack...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 128; no. 10; pp. 4161 - 4170
Main Authors Ramos-Castillo, C. M., Álvarez-Contreras, Lorena, Arjona, Noé, Guerra-Balcázar, Minerva
Format Journal Article
LanguageEnglish
Published American Chemical Society 14.03.2024
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
DOI10.1021/acs.jpcc.3c07521

Cover

Abstract Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known enhancement of LDH activity by oxygen vacancies (Ov), a formal exploration of how vacancy content influences electrocatalytic properties is lacking. Herein, density functional theory (DFT) calculations were employed to investigate the impact of the Ov content (1–5%) on the electronic structure, electrocatalytic activity of NiFe LDH, and interface coupling with heteroatom-doped carbon. Calculations revealed that the density of states and bandwidth of defect levels induced within the band gap depend on the Ov content, influencing the adsorption of oxygenated species and calculated overpotentials for the oxygen evolution reaction (OER), predicted to be three times less than that of the defect-free system. Additionally, binding energy calculations highlight heightened interactions between Ov-enriched LDH and doped-carbon surfaces, causing electron density redistribution and Fermi level shifts due to doping effects. Carbon modification with pyridinic nitrogen and phosphorus is a promising candidate for enhanced interface engineering with defective LDH, attributed to the larger interaction energy and alignment of its Fermi level with the valence band of LDH, underscoring the key role of pyridinic nitrogen in the carbon support and enhanced electronic conductivity in LDH/carbon composites.
AbstractList Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known enhancement of LDH activity by oxygen vacancies (Ov), a formal exploration of how vacancy content influences electrocatalytic properties is lacking. Herein, density functional theory (DFT) calculations were employed to investigate the impact of the Ov content (1–5%) on the electronic structure, electrocatalytic activity of NiFe LDH, and interface coupling with heteroatom-doped carbon. Calculations revealed that the density of states and bandwidth of defect levels induced within the band gap depend on the Ov content, influencing the adsorption of oxygenated species and calculated overpotentials for the oxygen evolution reaction (OER), predicted to be three times less than that of the defect-free system. Additionally, binding energy calculations highlight heightened interactions between Ov-enriched LDH and doped-carbon surfaces, causing electron density redistribution and Fermi level shifts due to doping effects. Carbon modification with pyridinic nitrogen and phosphorus is a promising candidate for enhanced interface engineering with defective LDH, attributed to the larger interaction energy and alignment of its Fermi level with the valence band of LDH, underscoring the key role of pyridinic nitrogen in the carbon support and enhanced electronic conductivity in LDH/carbon composites.
Author Arjona, Noé
Álvarez-Contreras, Lorena
Ramos-Castillo, C. M.
Guerra-Balcázar, Minerva
AuthorAffiliation Centro de Investigación en Materiales Avanzados S. C
Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C
Facultad de Ingeniería, División de Investigación y Posgrado
Universidad Autónoma de Querétaro
AuthorAffiliation_xml – name: Facultad de Ingeniería, División de Investigación y Posgrado
– name: Universidad Autónoma de Querétaro
– name: Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C
– name: Centro de Investigación en Materiales Avanzados S. C
Author_xml – sequence: 1
  givenname: C. M.
  surname: Ramos-Castillo
  fullname: Ramos-Castillo, C. M.
  email: cm.ramoscastillo@gmail.com
  organization: Universidad Autónoma de Querétaro
– sequence: 2
  givenname: Lorena
  surname: Álvarez-Contreras
  fullname: Álvarez-Contreras, Lorena
  organization: Centro de Investigación en Materiales Avanzados S. C
– sequence: 3
  givenname: Noé
  surname: Arjona
  fullname: Arjona, Noé
  organization: Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C
– sequence: 4
  givenname: Minerva
  orcidid: 0000-0002-0650-335X
  surname: Guerra-Balcázar
  fullname: Guerra-Balcázar, Minerva
  email: minerva.guerra@uaq.mx
  organization: Universidad Autónoma de Querétaro
BookMark eNp9kE9PAjEQxRuDiYDePfYDuDjd7rLgzfBHSIhcwOum251CydKStiRs_PIuQjyY6GneZOZN5v06pGWsQUIeGfQYxOxZSN_bHaTscQlZGrMb0mZDHkdZkqatH51kd6Tj_Q4g5cB4m3yOUaEMdGI22iA6bTbUKro81Rs09ENIYaRGT7Wh6yo4EbaNetdTjBaiRoclHdtjUSGd1aWzJ12if6Fz4_VmGzxVzu7pGJs21HR6NDJoa0RFV1u0rr4nt0pUHh-utUvW08lqNIsWy7f56HURiXgAIRL9WKisTIe8BOCDIpEs4YUYcoVcQCJ5AYIzFoOUMWZlXyXYDFJEEIMMYsW7pH-5K5313qHKpQ7i_EoTSFc5g_yMMG8Q5meE-RVhY4RfxoPTe-Hq_yxPF8v3xB5dE9f_vf4Ffo-J7A
CitedBy_id crossref_primary_10_1016_j_jece_2024_113773
crossref_primary_10_1021_acsanm_4c03006
crossref_primary_10_1016_j_apsusc_2024_161828
crossref_primary_10_1016_j_surfin_2024_104902
crossref_primary_10_1016_j_est_2024_111565
Cites_doi 10.1002/adma.201606793
10.1016/j.elecom.2017.02.015
10.1021/acsami.9b0556410.1021/acsami.9b05564
10.1103/PhysRevB.40.3616
10.1002/anie.202109938
10.1007/s40843-017-9214-9
10.3390/nano8070528
10.1007/s10562-020-03426-2
10.1039/D1TA06263H
10.1007/s12274-022-4377-4
10.1038/nmat4703
10.1016/0927-0256(96)00008-0
10.1039/C8TA05295F
10.1039/D0NJ00021C
10.1021/ja407115p
10.1016/j.nanoen.2015.12.032
10.1016/j.jpowsour.2020.228354
10.1038/s41467-020-15933-2
10.1016/j.carbon.2019.01.018
10.1021/ja4027715
10.1002/cssc.201902841
10.1016/j.jcis.2021.01.093
10.1063/1.3382344
10.1039/C4CS00160E
10.1016/j.jpowsour.2014.11.105
10.1021/acs.chemrev.7b00488
10.1016/j.jiec.2022.12.030
10.1103/PhysRevB.57.1505
10.1038/nnano.2014.167
10.1021/jz2016507
10.1103/PhysRevB.54.11169
10.1016/j.cej.2018.01.024
10.1021/jacs.6b01606
10.1016/j.ijhydene.2016.05.184
10.1016/j.mattod.2015.10.006
10.1039/C4CS00236A
10.1107/S0021889811038970
10.1021/acsenergylett.2c01362
10.1016/j.nanoen.2020.105606
10.1016/j.jallcom.2023.171304
10.1016/j.apsusc.2022.154253
10.1016/j.nanoen.2020.104761
10.1038/ncomms5477
10.1002/aenm.201703189
10.1016/j.susmat.2023.e00695
10.1016/j.ijhydene.2019.07.185
10.1002/aenm.201501974
10.1007/s12274-021-3475-z
10.1007/s12274-017-1437-2
10.1039/C7TA04001F
10.1039/D0TA10712C
10.1021/ja1069272
10.1016/j.apcatb.2017.01.010
10.1002/adma.201700017
10.1016/j.micromeso.2021.111593
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.3c07521
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 4170
ExternalDocumentID 10_1021_acs_jpcc_3c07521
d59832553
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABMYL
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
ROL
ID FETCH-LOGICAL-a280t-a62af7d593d0038b4c143ba93fe3a04c3b0a31120cc2e7d6f4ee3a5ee0a8702f3
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Thu Apr 24 23:11:57 EDT 2025
Tue Jul 01 00:17:26 EDT 2025
Fri Mar 15 18:47:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-a62af7d593d0038b4c143ba93fe3a04c3b0a31120cc2e7d6f4ee3a5ee0a8702f3
ORCID 0000-0002-0650-335X
PageCount 10
ParticipantIDs crossref_citationtrail_10_1021_acs_jpcc_3c07521
crossref_primary_10_1021_acs_jpcc_3c07521
acs_journals_10_1021_acs_jpcc_3c07521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-14
PublicationDateYYYYMMDD 2024-03-14
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-14
  day: 14
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref37/cit37
  doi: 10.1002/adma.201606793
– ident: ref42/cit42
  doi: 10.1016/j.elecom.2017.02.015
– ident: ref52/cit52
  doi: 10.1021/acsami.9b0556410.1021/acsami.9b05564
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.40.3616
– ident: ref53/cit53
  doi: 10.1002/anie.202109938
– ident: ref22/cit22
  doi: 10.1007/s40843-017-9214-9
– ident: ref50/cit50
  doi: 10.3390/nano8070528
– ident: ref54/cit54
  doi: 10.1007/s10562-020-03426-2
– ident: ref55/cit55
  doi: 10.1039/D1TA06263H
– ident: ref46/cit46
  doi: 10.1007/s12274-022-4377-4
– ident: ref44/cit44
  doi: 10.1038/nmat4703
– ident: ref29/cit29
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref25/cit25
  doi: 10.1039/C8TA05295F
– ident: ref6/cit6
  doi: 10.1039/D0NJ00021C
– ident: ref4/cit4
  doi: 10.1021/ja407115p
– ident: ref3/cit3
  doi: 10.1016/j.nanoen.2015.12.032
– ident: ref36/cit36
  doi: 10.1016/j.jpowsour.2020.228354
– ident: ref38/cit38
  doi: 10.1038/s41467-020-15933-2
– ident: ref27/cit27
  doi: 10.1016/j.carbon.2019.01.018
– ident: ref18/cit18
  doi: 10.1021/ja4027715
– ident: ref39/cit39
  doi: 10.1002/cssc.201902841
– ident: ref48/cit48
  doi: 10.1016/j.jcis.2021.01.093
– ident: ref33/cit33
  doi: 10.1063/1.3382344
– ident: ref12/cit12
  doi: 10.1039/C4CS00160E
– ident: ref28/cit28
  doi: 10.1016/j.jpowsour.2014.11.105
– ident: ref40/cit40
  doi: 10.1021/acs.chemrev.7b00488
– ident: ref7/cit7
  doi: 10.1016/j.jiec.2022.12.030
– ident: ref31/cit31
  doi: 10.1103/PhysRevB.57.1505
– ident: ref43/cit43
  doi: 10.1038/nnano.2014.167
– ident: ref9/cit9
  doi: 10.1021/jz2016507
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.54.11169
– ident: ref51/cit51
  doi: 10.1016/j.cej.2018.01.024
– ident: ref14/cit14
  doi: 10.1021/jacs.6b01606
– ident: ref2/cit2
  doi: 10.1016/j.ijhydene.2016.05.184
– ident: ref15/cit15
  doi: 10.1016/j.mattod.2015.10.006
– ident: ref16/cit16
  doi: 10.1039/C4CS00236A
– ident: ref34/cit34
  doi: 10.1107/S0021889811038970
– ident: ref5/cit5
  doi: 10.1021/acsenergylett.2c01362
– ident: ref21/cit21
  doi: 10.1016/j.nanoen.2020.105606
– ident: ref13/cit13
  doi: 10.1016/j.jallcom.2023.171304
– ident: ref24/cit24
  doi: 10.1016/j.apsusc.2022.154253
– ident: ref1/cit1
  doi: 10.1016/j.nanoen.2020.104761
– ident: ref17/cit17
  doi: 10.1038/ncomms5477
– ident: ref35/cit35
  doi: 10.1002/aenm.201703189
– ident: ref45/cit45
  doi: 10.1016/j.susmat.2023.e00695
– ident: ref41/cit41
  doi: 10.1016/j.ijhydene.2019.07.185
– ident: ref11/cit11
  doi: 10.1002/aenm.201501974
– ident: ref23/cit23
  doi: 10.1007/s12274-021-3475-z
– ident: ref19/cit19
  doi: 10.1007/s12274-017-1437-2
– ident: ref49/cit49
  doi: 10.1039/C7TA04001F
– ident: ref8/cit8
  doi: 10.1039/D0TA10712C
– ident: ref10/cit10
  doi: 10.1021/ja1069272
– ident: ref26/cit26
  doi: 10.1016/j.apcatb.2017.01.010
– ident: ref20/cit20
  doi: 10.1002/adma.201700017
– ident: ref47/cit47
  doi: 10.1016/j.micromeso.2021.111593
SSID ssj0053013
Score 2.4781678
Snippet Defects and interface engineering in layered double hydroxides (LDH) are crucial for the rational search for functional electrocatalysts. Despite the known...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 4161
SubjectTerms C: Chemical and Catalytic Reactivity at Interfaces
Title Defect Engineering of Oxygen Vacancies in Ultrathin NiFe-Layered Double Hydroxides: Insights from Density Functional Theory
URI http://dx.doi.org/10.1021/acs.jpcc.3c07521
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhjSgveYCBIW1iO2nChlqqgqAMUNQtsp2LKFRpRVKJwp_nnKRQ8RJShiiJo4t9zn323X1HyBFIz1euoy0pJFjCEcryHQALAofFkUDIrM3WwHXX6_TEZd_tf9LkfPXgM6cudVp7HGtd4xrNm8kZX2QeapmBQc3b2V_XRUXlhQcZEaMQjdIl-dMbjCHS6ZwhmrMo7dWiNFGaExGaQJKn2iRTNf36nabxH8KukZUSWNKzQhPWyQIkG2SpOavntkneWmBCN-gcAyEdxfTmZYo6RO-lzuv0pnSQ0N7QcNY-4Fl30AbrSk5NRU-KYFsNgXamEYo8iCA9pRdJalb3KTVpKrRlouGzKW2jsSz2GGmR-79Feu3zu2bHKksvWJL5dmZJj8m4EbkBj4zvUAmNuErJgMfApS00V7bkCNVsrRk0Ii8WgDdcAFvi0LCYb5NKMkpgh1AUHyc5cBfRgXBjHuChbUfhNwc-AsoqOcZeC8upk4a5V5w5YX4RuzIsu7JK6rPxCnXJX27KaAz_aHHy0WJccHf8-uzuP6XYI8sMYY2JQnPEPqlkzxM4QFiSqcNcH98BQJPfTQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGWDhjXjjAQaGlDh20oataqkKlCIBRd0i27mIQhUqkkoU_jznJIUKAQIpQ-TE1sU5-z77zt8RcgDSqyqXaUsKCZZgQllVBmCBz5woFAiZtdkauOx4ra4477m9GcImZ2FQiARbSjIn_ie7ADs2ZQ9Drctco5UzR8dnEYs4JltDrX4zmXxd1FeeO5IROApRKTyT37Vg7JFOpuzRlGFpLpLrD5GyeJLH8ihVZf36ha3xXzIvkYUCZtJarhfLZAbiFTJXn2R3WyVvDTCBHHSKj5A-RfTqZYwaRe-kzrL2JrQf0-7AMNje412n3wSrLccmvydF6K0GQFvjECXvh5Cc0LM4MWv9hJpDK7RhYuPTMW2i6cx3HGnOBLBGus3T23rLKhIxWNKp2qklPUdGldD1eWg8iUpoRFlK-jwCLm2hubIlR-Bma-1AJfQiAfjABbAlTgdOxNdJKX6KYYNQFB-HPHAXsYJwI-7jpW2m8Jv9KsLLTXKIvRYUAykJMh-5w4KsELsyKLpykxxPflugCzZzk1Rj8EuNo48aw5zJ48d3t_4oxT6Za91etoP2Wedim8w7CHhMfBoTO6SUPo9gFwFLqvYyFX0Hhbnnrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQX3xW5yfedAHH7q1TbqtvslmmV9T0I29lSS94nR0w3Zg9Z_30nYyREWhDyVtwjW95H7JXX5HyBGIWkM6ljIEF2Bwi0ujYQEY4Fp2GHCEzEpvDdx0au0uv-w7_TniTM_CoBAxthRnTnw9qsdBWDAMWFVd_jRWqsIUWjp9fHxee-10xoaz5v10AnZQZ1nuTEbwyHm98E5-14K2SSqesUkzxsVbIb1PsbKYkufKJJEV9faFsfHfcq-S5QJu0rNcP9bIHETrZLE5zfK2Qd5boAM66AwvIR2F9PY1Rc2iPaGy7L0xHUS0O9RMto941xl4YFyLVOf5pAjB5RBoOw1Q-kEA8Sm9iGK95o-pPrxCWzpGPkmphyY033mkOSPAJul65w_NtlEkZDCE3TATQ9RsEdYDx2WB9ihKrhBtSeGyEJgwuWLSFAwBnKmUDfWgFnLABw6AKXBasEO2RUrRKIJtQlF8HPrAHMQM3AmZi5cyLYnf7DYQZpbJMfaaXwyo2M985bblZ4XYlX7RlWVSnf46XxWs5jq5xvCXGiefNcY5o8eP7-78UYpDsnDX8vzri87VLlmyEffoMDWL75FS8jKBfcQtiTzItPQDDH_qMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Engineering+of+Oxygen+Vacancies+in+Ultrathin+NiFe-Layered+Double+Hydroxides%3A+Insights+from+Density+Functional+Theory&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Ramos-Castillo%2C+C.+M.&rft.au=%C3%81lvarez-Contreras%2C+Lorena&rft.au=Arjona%2C+No%C3%A9&rft.au=Guerra-Balc%C3%A1zar%2C+Minerva&rft.date=2024-03-14&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=128&rft.issue=10&rft.spage=4161&rft.epage=4170&rft_id=info:doi/10.1021%2Facs.jpcc.3c07521&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_3c07521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon