How does the burial rate control the diagenesis of sandstone? Insights from a diagenetic physical simulation experiment
The study conducted physical simulation experiments on sandstone samples from the Junggar Basin to investigate how burial rates influence sandstone diagenesis and reservoir quality. Results show that the mechanical compaction under a negative burial rate (tectonic uplift) almost stops to destroy the...
Saved in:
Published in | Chemical geology Vol. 658; p. 122122 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study conducted physical simulation experiments on sandstone samples from the Junggar Basin to investigate how burial rates influence sandstone diagenesis and reservoir quality. Results show that the mechanical compaction under a negative burial rate (tectonic uplift) almost stops to destroy the sandstone reservoir space, the capacity of fluid seepage is the strongest and the sandstone tends to develop ‘weak compaction–strong dissolution’ diagenetic facies. For positive burial rates, sandstones with a low burial rate tend to develop ‘medium compaction–medium dissolution’ diagenetic facies; sandstones at a medium burial rate easily form ‘strong compaction–weak dissolution’ diagenetic facies, and sandstones at a high burial rate tend to develop ‘weak compaction–weak dissolution’ diagenetic facies. Experimental results indicate that the compaction strength and damage to sandstone reservoirs may not consistently rise with the burial rate. Faster burial rates do not always intensify compaction; the degree of compaction depends on fluid overpressure. If the increase in burial rate does not induce the fluid overpressure in sandstones, the burial rate is higher and the destruction degree of primary pores caused by mechanical compaction is greater; mechanical compaction also simultaneously causes the diagenetic system to be more closed and the dissolution to be weaker. If the increase in burial rate can induce the fluid overpressure in sandstones, the burial rate is higher, the inhibition of mechanical compaction by fluid overpressure is more pronounced. However, fluid overpressure also strengthens the closure of the diagenetic system, hindering the injection of external acidic fluids into the sandstone, which is not conducive to dissolution. Overall, low burial rates with normal pressure favour secondary pore development, high burial rates with overpressure preserve primary pores, while medium burial rates with normal pressure are unfavourable for primary and secondary pores. |
---|---|
AbstractList | The study conducted physical simulation experiments on sandstone samples from the Junggar Basin to investigate how burial rates influence sandstone diagenesis and reservoir quality. Results show that the mechanical compaction under a negative burial rate (tectonic uplift) almost stops to destroy the sandstone reservoir space, the capacity of fluid seepage is the strongest and the sandstone tends to develop ‘weak compaction–strong dissolution’ diagenetic facies. For positive burial rates, sandstones with a low burial rate tend to develop ‘medium compaction–medium dissolution’ diagenetic facies; sandstones at a medium burial rate easily form ‘strong compaction–weak dissolution’ diagenetic facies, and sandstones at a high burial rate tend to develop ‘weak compaction–weak dissolution’ diagenetic facies. Experimental results indicate that the compaction strength and damage to sandstone reservoirs may not consistently rise with the burial rate. Faster burial rates do not always intensify compaction; the degree of compaction depends on fluid overpressure. If the increase in burial rate does not induce the fluid overpressure in sandstones, the burial rate is higher and the destruction degree of primary pores caused by mechanical compaction is greater; mechanical compaction also simultaneously causes the diagenetic system to be more closed and the dissolution to be weaker. If the increase in burial rate can induce the fluid overpressure in sandstones, the burial rate is higher, the inhibition of mechanical compaction by fluid overpressure is more pronounced. However, fluid overpressure also strengthens the closure of the diagenetic system, hindering the injection of external acidic fluids into the sandstone, which is not conducive to dissolution. Overall, low burial rates with normal pressure favour secondary pore development, high burial rates with overpressure preserve primary pores, while medium burial rates with normal pressure are unfavourable for primary and secondary pores. |
ArticleNumber | 122122 |
Author | Li, Jiaqi Tian, Rongheng Ji, Youliang Chen, Sirui Xian, Benzhong Rahman, Naveed Ur Wang, Pengyu |
Author_xml | – sequence: 1 givenname: Sirui surname: Chen fullname: Chen, Sirui organization: National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China – sequence: 2 givenname: Benzhong surname: Xian fullname: Xian, Benzhong email: xianbzh@cup.edu.cn organization: National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China – sequence: 3 givenname: Youliang surname: Ji fullname: Ji, Youliang organization: National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China – sequence: 4 givenname: Jiaqi surname: Li fullname: Li, Jiaqi organization: School of Energy Resources, China University of Geosciences, Beijing 100083, China – sequence: 5 givenname: Naveed Ur surname: Rahman fullname: Rahman, Naveed Ur organization: College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China – sequence: 6 givenname: Rongheng surname: Tian fullname: Tian, Rongheng organization: College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China – sequence: 7 givenname: Pengyu surname: Wang fullname: Wang, Pengyu organization: College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China |
BookMark | eNqFkN1KAzEQhYNUsK0-gpAX2DU_-3tVpKgtFLzR65DNTropu0lJUmvf3q2t18LAMIc5h8M3QxPrLCD0SElKCS2edqnqYNiCSxlhWUoZG-cGTWlVsqSoeDFBU0JInbA8o3doFsJuPCnP8yk6rtwRtw4Cjh3g5uCN7LGXEbByNnrX_-qtkVuwEEzATuMgbRvi2GGB1zaYbRcD1t4NWP49RqPwvjsFo8a0YIZDL6NxFsP3HrwZwMZ7dKtlH-Dhuufo8_XlY7lKNu9v6-XzJpGsIjGpddnmpWq05HnFATjTVCrCJZVZS4uyVIVmktS8qqEuSalURbO2KLKqkbzJSz5H-SVXeReCBy32YwHpT4IScaYnduJKT5zpiQu90be4-GAs92XAi6AMWAWt8aCiaJ35J-EHYKV_Xw |
Cites_doi | 10.1016/j.marpetgeo.2019.03.010 10.1016/j.petrol.2019.106362 10.1111/gfl.12141 10.1016/j.jngse.2017.01.020 10.1016/j.marpetgeo.2009.08.008 10.1016/S1876-3804(18)30029-6 10.1007/s11430-020-9931-9 10.1016/S1876-3804(23)60348-9 10.1016/S0264-8172(98)00043-9 10.1016/j.marpetgeo.2014.11.001 10.1144/gsjgs.137.2.0189 10.1144/GSL.SP.1992.061.01.17 10.1016/j.marpetgeo.2019.104034 10.1016/j.marpetgeo.2019.07.016 10.1016/S0264-8172(01)00049-6 10.1111/ter.12203 10.1111/bre.12581 10.1016/j.gca.2017.03.022 10.1016/j.petrol.2022.111051 10.1016/j.marpetgeo.2022.105737 10.1016/j.marpetgeo.2017.02.027 10.1007/s12182-015-0045-6 10.1016/j.marpetgeo.2018.10.055 10.1016/S1876-3804(13)60099-3 10.1306/07101514004 10.1016/S1876-3804(21)60067-8 10.1306/04301211139 10.1016/j.petrol.2020.107295 10.1016/j.earscirev.2019.02.004 10.1016/0264-8172(87)90044-4 10.1016/S1876-3804(20)60105-7 10.1016/S1876-3804(13)60093-2 10.1306/02260301071 10.1306/04061514181 10.1016/j.sedgeo.2022.106170 10.1016/j.jafrearsci.2021.104372 10.1306/04211009121 10.1016/j.jseaes.2018.09.003 10.1016/S1876-3804(23)60347-7 10.1111/sed.12354 10.1016/j.petrol.2016.04.015 10.1306/04211009178 10.1007/s12517-020-05956-w |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chemgeo.2024.122122 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-6836 |
ExternalDocumentID | 10_1016_j_chemgeo_2024_122122 S000925412400202X |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABLJU ABMAC ABPPZ ABQEM ABQYD ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSE SSZ T5K TN5 ~02 ~G- 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AETEA AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 LY3 OHT R2- SEP SSH VH1 WUQ XJT XOL XPP ZKB ZMT ZY4 |
ID | FETCH-LOGICAL-a280t-9f7d57cbfa3583ee32f1ac03a1a4d1677c6f2a09389e9707cc814d6648ba3b573 |
IEDL.DBID | .~1 |
ISSN | 0009-2541 |
IngestDate | Tue Jul 01 02:14:17 EDT 2025 Sat May 25 15:41:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Burial rate Physical simulation experiment Diagenesis Overpressure Sandstone reservoirs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-9f7d57cbfa3583ee32f1ac03a1a4d1677c6f2a09389e9707cc814d6648ba3b573 |
ParticipantIDs | crossref_primary_10_1016_j_chemgeo_2024_122122 elsevier_sciencedirect_doi_10_1016_j_chemgeo_2024_122122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-20 |
PublicationDateYYYYMMDD | 2024-07-20 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Chemical geology |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bloch, Lander, Bonnell (bb0025) 2002; 86 Sun, Zou, Zhu, Zhang, Zhang, Zhang, Zhu, Gao (bb0180) 2013; 40 Aschwanden, Diamond, Adams (bb0005) 2019; 100 Chuhan, Kjeldtad, Bjørlykke, Høeg (bb0040) 2002; 19 Worden, Benshatwan, Potts, Elgarmadi (bb0205) 2016; 16 Wang, Lin, Zhang, Dong, Ren, Lin (bb0195) 2020; 112 Hao, Zou, Ni, Zeng, Wang (bb0085) 2002; 27 Xi, Cao, Wang, Zhang, Jin, Zhu, Zhang, Wang, Yang, Du (bb0210) 2015; 12 Glasmann (bb0075) 1992; 61 Yuan, Cao, Jia, Gluyas, Yang, Wang, Xi (bb0220) 2015; 60 Yuan, Cao, Zhang, Gluyas (bb0230) 2017; 82 Leder, Park (bb0110) 1986; 70 Li, Zhao, Wei, Shang, Wu, Wu, Chen (bb0125) 2022; 49 Osborne, Swarbrick (bb0145) 1999; 16 Salama, Abd-Allah, El-Sayed (bb0170) 2021; 184 Cao, Yuan, Wang, Zan, Jin, Liu, Xi, Wei, Sun (bb0030) 2022; 65 Fu, Luo, Shi, Cao, Mao, Sheng (bb0065) 2022; 218 Saha, Bhattacharya (bb0165) 2022; 436 Dixon, Summers, Surdam (bb0050) 1989; 73 Teng, Qiu, Zhang, Ma (bb0185) 2022; 49 Baruch, Kennedy, Lohr, Dewhurst (bb0015) 2015; 99 França, Araújo, Maynard, Potter (bb0060) 2003; 87 Giles (bb0070) 1987; 4 Morad, Al-Ramadan, Ketzer, De Ros (bb0140) 2010; 94 Baig, Faleide, Mondol, Jahren (bb0010) 2019; 104 Curtis (bb0045) 1980; 137 Yuan, Cao, Schulz, Hao, Gluyas, Liu, Yang, Wang, Xi, Li (bb0240) 2019; 191 Yuan, Cao, Gluyas, Jia (bb0235) 2017; 207 Hui, Wang, Ren, Hui (bb0090) 2020; 192 Ma, Tan, Zheng, Ni, Hu, Ma (bb0135) 2022; 142 Yuan, Cao, Gluyas, Li, Xi, Wang, Jia, Sun, Oxtoby (bb0225) 2015; 99 Lander, Bonnell (bb0105) 2010; 94 Dutton, Loucks (bb0055) 2010; 27 Karimi, Rabbani, Kamali (bb0100) 2016; 146 Jin, Zhang, Wang, Niu, Yu, Bai, Zhao (bb0095) 2018; 45 Tenger, Lu, Yu, Zhang, Pan, Shen, Wang, Yang, Gao (bb0190) 2021; 48 Hansen, Løvstad, Lageat, Clerc, Jahren (bb0080) 2021; 33 Bjørlykke, Jahren (bb0020) 2012; 96 Yang, Xu, Liu, Peng, Yu, Xu (bb0215) 2016; 64 Wang, He, Jones, Yang, Wei, Liu, Liu, Cheng, Liu (bb0200) 2019; 182 Li, Zhao, Wei, Chen, Song, Han, Wu (bb0120) 2019; 110 Li, Dong, Lin, Ren, Jiang, Tang (bb0115) 2013; 40 Poursoltani, Gibling, Pe-Piper (bb0155) 2019; 172 Parks, Tóth (bb0150) 1995; 43 Ma, Xie, Yong, Zhu (bb0130) 2020; 47 Chen, Ji, Zhang, Jia, Zhu, Fang (bb0035) 2017; 39 Qu, Zhang, Chen, Yang, You, Zhong (bb0160) 2020; 13 Sathar, Jones (bb0175) 2016; 28 Sun (10.1016/j.chemgeo.2024.122122_bb0180) 2013; 40 Hui (10.1016/j.chemgeo.2024.122122_bb0090) 2020; 192 Dixon (10.1016/j.chemgeo.2024.122122_bb0050) 1989; 73 Wang (10.1016/j.chemgeo.2024.122122_bb0200) 2019; 182 Giles (10.1016/j.chemgeo.2024.122122_bb0070) 1987; 4 Ma (10.1016/j.chemgeo.2024.122122_bb0135) 2022; 142 Li (10.1016/j.chemgeo.2024.122122_bb0120) 2019; 110 Cao (10.1016/j.chemgeo.2024.122122_bb0030) 2022; 65 Chuhan (10.1016/j.chemgeo.2024.122122_bb0040) 2002; 19 Karimi (10.1016/j.chemgeo.2024.122122_bb0100) 2016; 146 Glasmann (10.1016/j.chemgeo.2024.122122_bb0075) 1992; 61 Wang (10.1016/j.chemgeo.2024.122122_bb0195) 2020; 112 Leder (10.1016/j.chemgeo.2024.122122_bb0110) 1986; 70 Saha (10.1016/j.chemgeo.2024.122122_bb0165) 2022; 436 Sathar (10.1016/j.chemgeo.2024.122122_bb0175) 2016; 28 Yuan (10.1016/j.chemgeo.2024.122122_bb0225) 2015; 99 Yuan (10.1016/j.chemgeo.2024.122122_bb0240) 2019; 191 Morad (10.1016/j.chemgeo.2024.122122_bb0140) 2010; 94 Worden (10.1016/j.chemgeo.2024.122122_bb0205) 2016; 16 Curtis (10.1016/j.chemgeo.2024.122122_bb0045) 1980; 137 Teng (10.1016/j.chemgeo.2024.122122_bb0185) 2022; 49 Osborne (10.1016/j.chemgeo.2024.122122_bb0145) 1999; 16 Dutton (10.1016/j.chemgeo.2024.122122_bb0055) 2010; 27 Li (10.1016/j.chemgeo.2024.122122_bb0125) 2022; 49 Jin (10.1016/j.chemgeo.2024.122122_bb0095) 2018; 45 Yang (10.1016/j.chemgeo.2024.122122_bb0215) 2016; 64 Yuan (10.1016/j.chemgeo.2024.122122_bb0230) 2017; 82 Aschwanden (10.1016/j.chemgeo.2024.122122_bb0005) 2019; 100 Qu (10.1016/j.chemgeo.2024.122122_bb0160) 2020; 13 Ma (10.1016/j.chemgeo.2024.122122_bb0130) 2020; 47 Poursoltani (10.1016/j.chemgeo.2024.122122_bb0155) 2019; 172 Salama (10.1016/j.chemgeo.2024.122122_bb0170) 2021; 184 Chen (10.1016/j.chemgeo.2024.122122_bb0035) 2017; 39 França (10.1016/j.chemgeo.2024.122122_bb0060) 2003; 87 Lander (10.1016/j.chemgeo.2024.122122_bb0105) 2010; 94 Baig (10.1016/j.chemgeo.2024.122122_bb0010) 2019; 104 Hao (10.1016/j.chemgeo.2024.122122_bb0085) 2002; 27 Li (10.1016/j.chemgeo.2024.122122_bb0115) 2013; 40 Bloch (10.1016/j.chemgeo.2024.122122_bb0025) 2002; 86 Bjørlykke (10.1016/j.chemgeo.2024.122122_bb0020) 2012; 96 Hansen (10.1016/j.chemgeo.2024.122122_bb0080) 2021; 33 Xi (10.1016/j.chemgeo.2024.122122_bb0210) 2015; 12 Tenger (10.1016/j.chemgeo.2024.122122_bb0190) 2021; 48 Yuan (10.1016/j.chemgeo.2024.122122_bb0220) 2015; 60 Yuan (10.1016/j.chemgeo.2024.122122_bb0235) 2017; 207 Baruch (10.1016/j.chemgeo.2024.122122_bb0015) 2015; 99 Fu (10.1016/j.chemgeo.2024.122122_bb0065) 2022; 218 Parks (10.1016/j.chemgeo.2024.122122_bb0150) 1995; 43 |
References_xml | – volume: 47 start-page: 901 year: 2020 end-page: 915 ident: bb0130 article-title: Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China publication-title: Pet. Explor. Dev. – volume: 49 start-page: 1266 year: 2022 end-page: 1281 ident: bb0125 article-title: Gas expansion caused by formation uplifting and its effects on tight gas accumulation: a case study of Sulige gas field in Ordos Basin, NW China publication-title: Pet. Explor. Dev. – volume: 94 start-page: 1267 year: 2010 end-page: 1309 ident: bb0140 article-title: The impact of diagenesis on he heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy publication-title: AAPG Bull. – volume: 28 start-page: 155 year: 2016 end-page: 162 ident: bb0175 article-title: Fluid overpressure as a control on sandstone reservoir quality in a mechanical compaction dominated setting: Magnolia Field, Gulf of Mexico publication-title: Terra Nova – volume: 146 start-page: 61 year: 2016 end-page: 70 ident: bb0100 article-title: A bulk kinetic, burial history and thermal modeling study of the Albian Kazhdumi and the Eocene-Oligocene Pabdeh formations in the Ahvaz anticline, Dezful Embayment, Iran publication-title: J. Pet. Sci. Eng. – volume: 99 start-page: 2121 year: 2015 end-page: 2154 ident: bb0225 article-title: Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: typical examples from two sags in Bohai Bay Basin, East China publication-title: AAPG Bull. – volume: 70 start-page: 1713 year: 1986 end-page: 1728 ident: bb0110 article-title: Porosity reduction in sandstone by Quartz overgrowth publication-title: AAPG Bull. – volume: 19 start-page: 39 year: 2002 end-page: 53 ident: bb0040 article-title: Porosity loss in sand by grain crushing—experimental evidence and relevance to reservoir quality publication-title: Mar. Pet. Geol. – volume: 142 year: 2022 ident: bb0135 article-title: Simulation experiment of fluid-feldspar sandstone interactions and their implications for tight oil and gas exploration of the Yanchang Formation, Ordos Basin, China publication-title: Mar. Pet. Geol. – volume: 218 year: 2022 ident: bb0065 article-title: Implications of lithofacies and diagenetic evolution for reservoir quality: a case study of the Upper Triassic chang 6 tight sandstone, southeastern Ordos Basin, China publication-title: J. Pet. Sci. Eng. – volume: 27 start-page: 610 year: 2002 end-page: 615 ident: bb0085 article-title: Evolution of overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation publication-title: Earth Sci. – volume: 182 year: 2019 ident: bb0200 article-title: Overpressure and its positive effect in deep sandstone reservoir quality of Bozhong Depression, offshore Bohai Bay Basin, China publication-title: J. Pet. Sci. Eng. – volume: 73 start-page: 707 year: 1989 end-page: 728 ident: bb0050 article-title: Diagenesis and preservation of porosity in norphlet formation (Upper Jurassic), Southern Alabama publication-title: AAPG Bull. – volume: 48 start-page: 798 year: 2021 end-page: 812 ident: bb0190 article-title: Formation, preservation and connectivity control of organic pores in shale publication-title: Pet. Explor. Dev. – volume: 27 start-page: 69 year: 2010 end-page: 81 ident: bb0055 article-title: Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6700m) burial, Gulf of Mexico Basin, U.S.A publication-title: Mar. Pet. Geol. – volume: 40 start-page: 742 year: 2013 end-page: 750 ident: bb0115 article-title: Control factors on tight sandstone reservoirs below source rocks in the Rangzijing slope zone of southern Songliao Basin, East China publication-title: Pet. Explor. Dev. – volume: 94 start-page: 1161 year: 2010 end-page: 1187 ident: bb0105 article-title: A model for fibrous illite nucleation and growth in sandstones publication-title: AAPG Bull. – volume: 16 start-page: 337 year: 1999 end-page: 353 ident: bb0145 article-title: Diagenesis in North Sea HPHT clastic reservoirs consequences for porosity and overpressure prediction publication-title: Mar. Pet. Geol. – volume: 207 start-page: 232 year: 2017 end-page: 255 ident: bb0235 article-title: Reactive transport modeling of coupled feldspar dissolution and secondary mineral precipitation and its implication for diagenetic interaction in sandstones publication-title: Geochim. Cosmochim. Acta – volume: 49 start-page: 1251 year: 2022 end-page: 1265 ident: bb0185 article-title: Origin and diagenetic evolution of dolomites in Paleogene Shahejie Formation lacustrine organic shale of Jiyang Depression, Bohai Bay Basin, East China publication-title: Pet. Explor. Dev. – volume: 12 start-page: 391 year: 2015 end-page: 405 ident: bb0210 article-title: Factors influencing physical property evolution in sandstone mechanical compaction: the evidence from diagenetic simulation experiments publication-title: Pet. Sci. – volume: 172 start-page: 143 year: 2019 end-page: 169 ident: bb0155 article-title: Diagenesis, burial history, and hydrocarbon potential of Cambrian sandstone in the northern continental margin of Gondwana: a case study of the Lalun Formation of Central Iran publication-title: J. Asian Earth Sci. – volume: 64 start-page: 1303 year: 2016 end-page: 1321 ident: bb0215 article-title: Fluid–rock interactions during continuous diagenesis of sandstone reservoirs and their effects on reservoir porosity publication-title: Sedimentology – volume: 192 year: 2020 ident: bb0090 article-title: Effects of pore structures on the movable fluid saturation in tight sandstones: a He8 formation example in Sulige Gasfield, Ordos Basin, China publication-title: J. Pet. Sci. Eng. – volume: 65 start-page: 1673 year: 2022 end-page: 1703 ident: bb0030 article-title: Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance publication-title: Sci. China Earth Sci. – volume: 87 start-page: 1073 year: 2003 end-page: 1082 ident: bb0060 article-title: Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America publication-title: AAPG Bull. – volume: 45 start-page: 264 year: 2018 end-page: 272 ident: bb0095 article-title: Formation mechanisms of good-quality clastic reservoirs in deep formations in rifted basins: a case study of Raoyang sag in Bohai Bay Basin, East China publication-title: Pet. Explor. Dev. – volume: 40 start-page: 687 year: 2013 end-page: 695 ident: bb0180 article-title: Formation, distribution and potential of deep hydrocarbon resources in China publication-title: Pet. Explor. Dev. – volume: 100 start-page: 148 year: 2019 end-page: 164 ident: bb0005 article-title: Effects of progressive burial on matrix porosity and permeability of dolostones in the foreland basin of the Alpine Orogen, Switzerland publication-title: Mar. Pet. Geol. – volume: 16 start-page: 149 year: 2016 end-page: 174 ident: bb0205 article-title: Basin-scale fluid movement patterns revealed by veins: Wessex Basin, UK publication-title: Geofluids – volume: 137 start-page: 189 year: 1980 end-page: 194 ident: bb0045 article-title: Diagenetic alteration in black shales publication-title: J. Geol. Soc. Lond. – volume: 60 start-page: 105 year: 2015 end-page: 119 ident: bb0220 article-title: Selective dissolution of feldspars in the presence of carbonates: the way to generate secondary pores in buried sandstones by organic CO publication-title: Mar. Pet. Geol. – volume: 39 start-page: 173 year: 2017 end-page: 187 ident: bb0035 article-title: Effect of burial processes on the evolution of organic acids and implications for acidic dissolution from a case study of the Nanpu Sag, Bohai Bay Basin, China publication-title: J. Nat. Gas Sci. Eng. – volume: 33 start-page: 2725 year: 2021 end-page: 2744 ident: bb0080 article-title: Chlorite coating patterns and reservoir quality in deep marine depositional systems – example from the cretaceous Agat Formation, Northern North Sea, Norway publication-title: Basin Res. – volume: 184 year: 2021 ident: bb0170 article-title: Source rock evaluation and burial history modeling of cretaceous rocks at the Khalda Concession of Abu Gharadig Basin, Western Desert, Egypt publication-title: J. Afr. Earth Sci. – volume: 82 start-page: 444 year: 2017 end-page: 464 ident: bb0230 article-title: Diagenesis and reservoir quality of sandstones with ancient “deep” incursion of meteoric freshwater—an example in the Nanpu Sag, Bohai Bay Basin, East China publication-title: Mar. Pet. Geol. – volume: 191 start-page: 114 year: 2019 end-page: 140 ident: bb0240 article-title: A review of feldspar alteration and its geological significance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs publication-title: Earth Sci. Rev. – volume: 61 start-page: 329 year: 1992 end-page: 350 ident: bb0075 article-title: The fate of feldspar in Brent Group reservoirs, North Sea: a regional synthesis of diagenesis in shallow, intermediate, and deep burial environments publication-title: Geol. Soc. Lond. Spec. Publ. – volume: 104 start-page: 61 year: 2019 end-page: 85 ident: bb0010 article-title: Burial and exhumation history controls on shale compaction and thermal maturity along the Norwegian North Sea basin margin areas publication-title: Mar. Pet. Geol. – volume: 86 start-page: 301 year: 2002 end-page: 328 ident: bb0025 article-title: Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability publication-title: AAPG Bull. – volume: 99 start-page: 1745 year: 2015 end-page: 1770 ident: bb0015 article-title: Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia) publication-title: AAPG Bull. – volume: 436 year: 2022 ident: bb0165 article-title: Controls on near-surface and burial diagenesis of a syn-rift siliciclastic rock succession: a study from Permian Barren measures formation, Southern India publication-title: Sediment. Geol. – volume: 13 start-page: 1022 year: 2020 ident: bb0160 article-title: Physical simulation experiment on porosity evolution and controlling factors of Miocene reservoir in Ledong-Lingshui Depression, Qiongdongnan Basin, South China Sea publication-title: Arab. J. Geosci. – volume: 112 year: 2020 ident: bb0195 article-title: Effect of burial history on diagenetic and reservoir-forming process of the Oligocene sandstone in Xihu sag, East China Sea Basin publication-title: Mar. Pet. Geol. – volume: 110 start-page: 162 year: 2019 end-page: 177 ident: bb0120 article-title: Origin of abnormal pressure in the Upper Paleozoic shale of the Ordos Basin, China publication-title: Mar. Pet. Geol. – volume: 4 start-page: 188 year: 1987 end-page: 204 ident: bb0070 article-title: Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs publication-title: Mar. Pet. Geol. – volume: 96 start-page: 2193 year: 2012 end-page: 2214 ident: bb0020 article-title: Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs publication-title: AAPG Bull. – volume: 43 start-page: 281 year: 1995 end-page: 292 ident: bb0150 article-title: Field evidence for erosion-induced under pressuring in Upper cretaceous and Tertiary strata, west Central Alberta, Canada publication-title: Bull. Can. Petrol. Geol. – volume: 104 start-page: 61 year: 2019 ident: 10.1016/j.chemgeo.2024.122122_bb0010 article-title: Burial and exhumation history controls on shale compaction and thermal maturity along the Norwegian North Sea basin margin areas publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.03.010 – volume: 43 start-page: 281 year: 1995 ident: 10.1016/j.chemgeo.2024.122122_bb0150 article-title: Field evidence for erosion-induced under pressuring in Upper cretaceous and Tertiary strata, west Central Alberta, Canada publication-title: Bull. Can. Petrol. Geol. – volume: 182 year: 2019 ident: 10.1016/j.chemgeo.2024.122122_bb0200 article-title: Overpressure and its positive effect in deep sandstone reservoir quality of Bozhong Depression, offshore Bohai Bay Basin, China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.106362 – volume: 16 start-page: 149 year: 2016 ident: 10.1016/j.chemgeo.2024.122122_bb0205 article-title: Basin-scale fluid movement patterns revealed by veins: Wessex Basin, UK publication-title: Geofluids doi: 10.1111/gfl.12141 – volume: 39 start-page: 173 year: 2017 ident: 10.1016/j.chemgeo.2024.122122_bb0035 article-title: Effect of burial processes on the evolution of organic acids and implications for acidic dissolution from a case study of the Nanpu Sag, Bohai Bay Basin, China publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.01.020 – volume: 27 start-page: 69 year: 2010 ident: 10.1016/j.chemgeo.2024.122122_bb0055 article-title: Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6700m) burial, Gulf of Mexico Basin, U.S.A publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2009.08.008 – volume: 45 start-page: 264 year: 2018 ident: 10.1016/j.chemgeo.2024.122122_bb0095 article-title: Formation mechanisms of good-quality clastic reservoirs in deep formations in rifted basins: a case study of Raoyang sag in Bohai Bay Basin, East China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(18)30029-6 – volume: 65 start-page: 1673 year: 2022 ident: 10.1016/j.chemgeo.2024.122122_bb0030 article-title: Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-020-9931-9 – volume: 49 start-page: 1266 year: 2022 ident: 10.1016/j.chemgeo.2024.122122_bb0125 article-title: Gas expansion caused by formation uplifting and its effects on tight gas accumulation: a case study of Sulige gas field in Ordos Basin, NW China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(23)60348-9 – volume: 16 start-page: 337 year: 1999 ident: 10.1016/j.chemgeo.2024.122122_bb0145 article-title: Diagenesis in North Sea HPHT clastic reservoirs consequences for porosity and overpressure prediction publication-title: Mar. Pet. Geol. doi: 10.1016/S0264-8172(98)00043-9 – volume: 60 start-page: 105 year: 2015 ident: 10.1016/j.chemgeo.2024.122122_bb0220 article-title: Selective dissolution of feldspars in the presence of carbonates: the way to generate secondary pores in buried sandstones by organic CO2 publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2014.11.001 – volume: 137 start-page: 189 year: 1980 ident: 10.1016/j.chemgeo.2024.122122_bb0045 article-title: Diagenetic alteration in black shales publication-title: J. Geol. Soc. Lond. doi: 10.1144/gsjgs.137.2.0189 – volume: 61 start-page: 329 year: 1992 ident: 10.1016/j.chemgeo.2024.122122_bb0075 article-title: The fate of feldspar in Brent Group reservoirs, North Sea: a regional synthesis of diagenesis in shallow, intermediate, and deep burial environments publication-title: Geol. Soc. Lond. Spec. Publ. doi: 10.1144/GSL.SP.1992.061.01.17 – volume: 112 year: 2020 ident: 10.1016/j.chemgeo.2024.122122_bb0195 article-title: Effect of burial history on diagenetic and reservoir-forming process of the Oligocene sandstone in Xihu sag, East China Sea Basin publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.104034 – volume: 110 start-page: 162 year: 2019 ident: 10.1016/j.chemgeo.2024.122122_bb0120 article-title: Origin of abnormal pressure in the Upper Paleozoic shale of the Ordos Basin, China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2019.07.016 – volume: 86 start-page: 301 year: 2002 ident: 10.1016/j.chemgeo.2024.122122_bb0025 article-title: Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability publication-title: AAPG Bull. – volume: 19 start-page: 39 year: 2002 ident: 10.1016/j.chemgeo.2024.122122_bb0040 article-title: Porosity loss in sand by grain crushing—experimental evidence and relevance to reservoir quality publication-title: Mar. Pet. Geol. doi: 10.1016/S0264-8172(01)00049-6 – volume: 28 start-page: 155 year: 2016 ident: 10.1016/j.chemgeo.2024.122122_bb0175 article-title: Fluid overpressure as a control on sandstone reservoir quality in a mechanical compaction dominated setting: Magnolia Field, Gulf of Mexico publication-title: Terra Nova doi: 10.1111/ter.12203 – volume: 33 start-page: 2725 year: 2021 ident: 10.1016/j.chemgeo.2024.122122_bb0080 article-title: Chlorite coating patterns and reservoir quality in deep marine depositional systems – example from the cretaceous Agat Formation, Northern North Sea, Norway publication-title: Basin Res. doi: 10.1111/bre.12581 – volume: 207 start-page: 232 year: 2017 ident: 10.1016/j.chemgeo.2024.122122_bb0235 article-title: Reactive transport modeling of coupled feldspar dissolution and secondary mineral precipitation and its implication for diagenetic interaction in sandstones publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.03.022 – volume: 218 year: 2022 ident: 10.1016/j.chemgeo.2024.122122_bb0065 article-title: Implications of lithofacies and diagenetic evolution for reservoir quality: a case study of the Upper Triassic chang 6 tight sandstone, southeastern Ordos Basin, China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.111051 – volume: 70 start-page: 1713 year: 1986 ident: 10.1016/j.chemgeo.2024.122122_bb0110 article-title: Porosity reduction in sandstone by Quartz overgrowth publication-title: AAPG Bull. – volume: 142 year: 2022 ident: 10.1016/j.chemgeo.2024.122122_bb0135 article-title: Simulation experiment of fluid-feldspar sandstone interactions and their implications for tight oil and gas exploration of the Yanchang Formation, Ordos Basin, China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2022.105737 – volume: 82 start-page: 444 year: 2017 ident: 10.1016/j.chemgeo.2024.122122_bb0230 article-title: Diagenesis and reservoir quality of sandstones with ancient “deep” incursion of meteoric freshwater—an example in the Nanpu Sag, Bohai Bay Basin, East China publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2017.02.027 – volume: 12 start-page: 391 year: 2015 ident: 10.1016/j.chemgeo.2024.122122_bb0210 article-title: Factors influencing physical property evolution in sandstone mechanical compaction: the evidence from diagenetic simulation experiments publication-title: Pet. Sci. doi: 10.1007/s12182-015-0045-6 – volume: 100 start-page: 148 year: 2019 ident: 10.1016/j.chemgeo.2024.122122_bb0005 article-title: Effects of progressive burial on matrix porosity and permeability of dolostones in the foreland basin of the Alpine Orogen, Switzerland publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2018.10.055 – volume: 40 start-page: 742 year: 2013 ident: 10.1016/j.chemgeo.2024.122122_bb0115 article-title: Control factors on tight sandstone reservoirs below source rocks in the Rangzijing slope zone of southern Songliao Basin, East China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(13)60099-3 – volume: 99 start-page: 2121 year: 2015 ident: 10.1016/j.chemgeo.2024.122122_bb0225 article-title: Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: typical examples from two sags in Bohai Bay Basin, East China publication-title: AAPG Bull. doi: 10.1306/07101514004 – volume: 48 start-page: 798 year: 2021 ident: 10.1016/j.chemgeo.2024.122122_bb0190 article-title: Formation, preservation and connectivity control of organic pores in shale publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(21)60067-8 – volume: 96 start-page: 2193 year: 2012 ident: 10.1016/j.chemgeo.2024.122122_bb0020 article-title: Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs publication-title: AAPG Bull. doi: 10.1306/04301211139 – volume: 192 year: 2020 ident: 10.1016/j.chemgeo.2024.122122_bb0090 article-title: Effects of pore structures on the movable fluid saturation in tight sandstones: a He8 formation example in Sulige Gasfield, Ordos Basin, China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107295 – volume: 191 start-page: 114 year: 2019 ident: 10.1016/j.chemgeo.2024.122122_bb0240 article-title: A review of feldspar alteration and its geological significance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2019.02.004 – volume: 4 start-page: 188 year: 1987 ident: 10.1016/j.chemgeo.2024.122122_bb0070 article-title: Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs publication-title: Mar. Pet. Geol. doi: 10.1016/0264-8172(87)90044-4 – volume: 47 start-page: 901 year: 2020 ident: 10.1016/j.chemgeo.2024.122122_bb0130 article-title: Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(20)60105-7 – volume: 40 start-page: 687 year: 2013 ident: 10.1016/j.chemgeo.2024.122122_bb0180 article-title: Formation, distribution and potential of deep hydrocarbon resources in China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(13)60093-2 – volume: 87 start-page: 1073 year: 2003 ident: 10.1016/j.chemgeo.2024.122122_bb0060 article-title: Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America publication-title: AAPG Bull. doi: 10.1306/02260301071 – volume: 27 start-page: 610 year: 2002 ident: 10.1016/j.chemgeo.2024.122122_bb0085 article-title: Evolution of overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation publication-title: Earth Sci. – volume: 99 start-page: 1745 year: 2015 ident: 10.1016/j.chemgeo.2024.122122_bb0015 article-title: Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia) publication-title: AAPG Bull. doi: 10.1306/04061514181 – volume: 73 start-page: 707 year: 1989 ident: 10.1016/j.chemgeo.2024.122122_bb0050 article-title: Diagenesis and preservation of porosity in norphlet formation (Upper Jurassic), Southern Alabama publication-title: AAPG Bull. – volume: 436 year: 2022 ident: 10.1016/j.chemgeo.2024.122122_bb0165 article-title: Controls on near-surface and burial diagenesis of a syn-rift siliciclastic rock succession: a study from Permian Barren measures formation, Southern India publication-title: Sediment. Geol. doi: 10.1016/j.sedgeo.2022.106170 – volume: 184 year: 2021 ident: 10.1016/j.chemgeo.2024.122122_bb0170 article-title: Source rock evaluation and burial history modeling of cretaceous rocks at the Khalda Concession of Abu Gharadig Basin, Western Desert, Egypt publication-title: J. Afr. Earth Sci. doi: 10.1016/j.jafrearsci.2021.104372 – volume: 94 start-page: 1161 year: 2010 ident: 10.1016/j.chemgeo.2024.122122_bb0105 article-title: A model for fibrous illite nucleation and growth in sandstones publication-title: AAPG Bull. doi: 10.1306/04211009121 – volume: 172 start-page: 143 year: 2019 ident: 10.1016/j.chemgeo.2024.122122_bb0155 article-title: Diagenesis, burial history, and hydrocarbon potential of Cambrian sandstone in the northern continental margin of Gondwana: a case study of the Lalun Formation of Central Iran publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2018.09.003 – volume: 49 start-page: 1251 year: 2022 ident: 10.1016/j.chemgeo.2024.122122_bb0185 article-title: Origin and diagenetic evolution of dolomites in Paleogene Shahejie Formation lacustrine organic shale of Jiyang Depression, Bohai Bay Basin, East China publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(23)60347-7 – volume: 64 start-page: 1303 year: 2016 ident: 10.1016/j.chemgeo.2024.122122_bb0215 article-title: Fluid–rock interactions during continuous diagenesis of sandstone reservoirs and their effects on reservoir porosity publication-title: Sedimentology doi: 10.1111/sed.12354 – volume: 146 start-page: 61 year: 2016 ident: 10.1016/j.chemgeo.2024.122122_bb0100 article-title: A bulk kinetic, burial history and thermal modeling study of the Albian Kazhdumi and the Eocene-Oligocene Pabdeh formations in the Ahvaz anticline, Dezful Embayment, Iran publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.04.015 – volume: 94 start-page: 1267 year: 2010 ident: 10.1016/j.chemgeo.2024.122122_bb0140 article-title: The impact of diagenesis on he heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy publication-title: AAPG Bull. doi: 10.1306/04211009178 – volume: 13 start-page: 1022 year: 2020 ident: 10.1016/j.chemgeo.2024.122122_bb0160 article-title: Physical simulation experiment on porosity evolution and controlling factors of Miocene reservoir in Ledong-Lingshui Depression, Qiongdongnan Basin, South China Sea publication-title: Arab. J. Geosci. doi: 10.1007/s12517-020-05956-w |
SSID | ssj0001355 |
Score | 2.4520574 |
Snippet | The study conducted physical simulation experiments on sandstone samples from the Junggar Basin to investigate how burial rates influence sandstone diagenesis... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 122122 |
SubjectTerms | Burial rate Diagenesis Overpressure Physical simulation experiment Sandstone reservoirs |
Title | How does the burial rate control the diagenesis of sandstone? Insights from a diagenetic physical simulation experiment |
URI | https://dx.doi.org/10.1016/j.chemgeo.2024.122122 |
Volume | 658 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhpdCl9EmfQUNXO3rYlj2VEJo6Lc3UQDYjyVZIIA_qlNClv70nWyYtlA4dLSRbfHd8ujP36RC6gzQ60nAOeaFQlSSHeFKCQajQCZEJN7wqHn8ZRek4eJqEkxbqN1oYW1bpuL_m9Iqt3UjXodldz2ZW40sSSG-orYKEFH5iFeyBsF7uf-7KPCgPw6abmp29U_F05z7gsphWGkAW-JQBjbPfz6dvZ87gCB26YBH36v0co1axPEH7j1Uz3o9TtE1XW5yvihJDFIcBHfAlbK9-wK4AvRoHB5haQpuVeGVwaaW99gLuezxcljYzL7GVmGDZTIRv4bWzHi5nC9ffC-96AZyh8eDhtZ96rpGCJ1lMNl5iRB4KrYzkYcyLgjNDpSZcUhnkNBJCR4ZJkkDwUiSCCK1jGuRRFMRKchUKfo7aS9jZBcLGaKo4vIuJIgB-UHkEjCGMVlEgZcIukd_Al63r-zKyppBsnjm8M4t3VuN9ieIG5OyH4TPg9L-XXv1_6TU6sE_2Jy0jN6i9eXsvbiG62KhO5T4dtNcbPqejL0IX0CU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCMEFsYqy-gDHtLGdxMkBIQSUlu0EUm_BceKqlbqIFFW98FP8IOPUUUFCHJB6dWInejN647HmeQBOMY0OFMYhxxdJIclxHSnRIFSoyJUR17woHn98Chov3l3Lby3AZ6mFMWWVlvunnF6wtR2pWTRrw07HaHzdCNMbaqogMYVv2crK-2wyxrwtP29eo5HPGKvfPF81HNtawJEsdEdOpEXqC5Voyf2QZxlnmkrlckmll9JACBVoJjHbD6MsEq5QKqReGgRemEie-ILjuouw7CFdmLYJ1Y9ZXQnlvl-2bzO_N5MN1bpVNESvXYgOmVelDOMG-z0gfgty9Q1Yt7tTcjkFYBMWsv4WrNwW3X8n2zBuDMYkHWQ5wW0jQXOg8xJz1wSxFe_FOHpc2zBoJycDTXKjJTY3fl-QZj83RwE5MZoWIssX8VtkaN2F5J2ebShGZs0HduBlLvDuwlIf_2wPiNaKJhzXYiLzkJCSNECKElolgSdlxCpQLeGLh9MLOuKycq0bW7xjg3c8xbsCYQly_MPTYgwif0_d___UE1htPD8-xA_Np_sDWDNPzAkxcw9hafT2nh3h1maUHBeuROB13r77Ba5LC6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+does+the+burial+rate+control+the+diagenesis+of+sandstone%3F+Insights+from+a+diagenetic+physical+simulation+experiment&rft.jtitle=Chemical+geology&rft.au=Chen%2C+Sirui&rft.au=Xian%2C+Benzhong&rft.au=Ji%2C+Youliang&rft.au=Li%2C+Jiaqi&rft.date=2024-07-20&rft.issn=0009-2541&rft.volume=658&rft.spage=122122&rft_id=info:doi/10.1016%2Fj.chemgeo.2024.122122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemgeo_2024_122122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2541&client=summon |