Adsorbed Hydroxide Does Not Participate in the Volmer Step of Alkaline Hydrogen Electrocatalysis

The sluggish kinetics of the alkaline hydrogen electrode have been attributed to the need to adsorb both H and OH optimally. In this work, single-crystal voltammetry and microkinetic modeling show that an OH-mediated mechanism is not viable on Pt(110). Only a direct Volmer step can explain observed...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 7; no. 12; pp. 8314 - 8319
Main Authors Intikhab, Saad, Snyder, Joshua D, Tang, Maureen H
Format Journal Article
LanguageEnglish
Published American Chemical Society 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sluggish kinetics of the alkaline hydrogen electrode have been attributed to the need to adsorb both H and OH optimally. In this work, single-crystal voltammetry and microkinetic modeling show that an OH-mediated mechanism is not viable on Pt(110). Only a direct Volmer step can explain observed kinetic trends with OH adsorption strength in KOH and LiOH electrolytes. Instead, OH behaves as a rapidly equilibrated spectator species that decreases available surface sites and slows hydrogen kinetics. These results identify kinetic barriers from interfacial water structure, not adsorption energies, as key to explaining changes in hydrogen kinetics with pH.
AbstractList The sluggish kinetics of the alkaline hydrogen electrode have been attributed to the need to adsorb both H and OH optimally. In this work, single-crystal voltammetry and microkinetic modeling show that an OH-mediated mechanism is not viable on Pt(110). Only a direct Volmer step can explain observed kinetic trends with OH adsorption strength in KOH and LiOH electrolytes. Instead, OH behaves as a rapidly equilibrated spectator species that decreases available surface sites and slows hydrogen kinetics. These results identify kinetic barriers from interfacial water structure, not adsorption energies, as key to explaining changes in hydrogen kinetics with pH.
Author Tang, Maureen H
Snyder, Joshua D
Intikhab, Saad
AuthorAffiliation Drexel University
Chemical and Biological Engineering
AuthorAffiliation_xml – name: Chemical and Biological Engineering
– name: Drexel University
Author_xml – sequence: 1
  givenname: Saad
  surname: Intikhab
  fullname: Intikhab, Saad
– sequence: 2
  givenname: Joshua D
  orcidid: 0000-0003-3162-4126
  surname: Snyder
  fullname: Snyder, Joshua D
– sequence: 3
  givenname: Maureen H
  orcidid: 0000-0003-0037-4814
  surname: Tang
  fullname: Tang, Maureen H
  email: mhtang@drexel.edu
BookMark eNp9kE1LAzEQQIMoWGvvHvMD3JrsbjbJsdRqhaKCH9d1NslqaropSQT7711tBRF0LjMw84aZd4T2O98ZhE4oGVOS0zNQUUECN-YNybnge2iQU8YyVhZs_0d9iEYxLkkfJasEJwP0NNHRh8ZoPN_o4N-tNvjcm4ivfcK3EJJVdg3JYNvh9GLwo3crE_BdMmvsWzxxr-BsZ7b0s-nwzBmVgv86ZxNtPEYHLbhoRrs8RA8Xs_vpPFvcXF5NJ4sMckFSJmmTSyFBtQ2vuBAgmaGyIaosgcpK6LYtgBNTSFkwCg0njGmiBdeirTTLiyGqtntV8DEG09bKJkjWdymAdTUl9aeq-ltVvVPVg-QXuA52BWHzH3K6RfpOvfRvoes_-3v8A41RgGM
CitedBy_id crossref_primary_10_1016_j_commatsci_2023_112397
crossref_primary_10_1016_j_jcis_2025_137423
crossref_primary_10_1021_acsaem_8b01642
crossref_primary_10_1021_acsenergylett_2c02500
crossref_primary_10_1016_j_cej_2022_135186
crossref_primary_10_1007_s12274_023_5868_7
crossref_primary_10_1016_j_coelec_2022_101121
crossref_primary_10_1002_cssc_202402780
crossref_primary_10_1021_acscatal_0c03801
crossref_primary_10_1038_s41467_024_52131_w
crossref_primary_10_1002_advs_202200307
crossref_primary_10_1039_D1CY01584B
crossref_primary_10_1039_D3EE04251K
crossref_primary_10_1002_adma_202310699
crossref_primary_10_1016_j_mattod_2019_12_003
crossref_primary_10_1088_2752_5724_acc51d
crossref_primary_10_1002_celc_202001082
crossref_primary_10_1021_jacs_3c09128
crossref_primary_10_1016_j_jcat_2018_09_030
crossref_primary_10_1021_jacs_9b13694
crossref_primary_10_1038_s41467_022_33216_w
crossref_primary_10_1016_j_scib_2020_06_007
crossref_primary_10_1016_j_jcat_2021_04_008
crossref_primary_10_1016_j_cis_2022_102811
crossref_primary_10_1038_s41560_020_00710_8
crossref_primary_10_1002_elsa_202300016
crossref_primary_10_1021_acscatal_3c00803
crossref_primary_10_1016_j_cej_2021_129741
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1039_D3SC03300G
crossref_primary_10_1002_anie_201909697
crossref_primary_10_1016_j_joule_2024_06_002
crossref_primary_10_1016_j_coelec_2023_101268
crossref_primary_10_1021_jacs_4c00948
crossref_primary_10_1016_j_electacta_2019_135016
crossref_primary_10_1039_D0TA02549F
crossref_primary_10_1016_j_apcata_2025_120148
crossref_primary_10_1016_j_apsusc_2021_152021
crossref_primary_10_1002_adma_202417516
crossref_primary_10_1021_acs_chemrev_3c00735
crossref_primary_10_1016_j_scib_2020_09_014
crossref_primary_10_1016_j_electacta_2022_140425
crossref_primary_10_1021_acscatal_0c01635
crossref_primary_10_1002_cssc_202402150
crossref_primary_10_1016_j_coelec_2021_100882
crossref_primary_10_1002_anie_202215585
crossref_primary_10_1016_j_electacta_2022_140709
crossref_primary_10_1016_j_jcat_2024_115725
crossref_primary_10_1039_C9TA07123G
crossref_primary_10_1021_acsami_3c17258
crossref_primary_10_1149_2_0271815jes
crossref_primary_10_1016_j_jechem_2021_07_015
crossref_primary_10_1149_1945_7111_ac4fed
crossref_primary_10_1002_celc_202200999
crossref_primary_10_1021_acscatal_9b00268
crossref_primary_10_1021_acs_jpcc_3c03217
crossref_primary_10_1021_jacsau_1c00281
crossref_primary_10_1039_D3SC02144K
crossref_primary_10_3390_molecules25081965
crossref_primary_10_1021_acs_jpcc_4c02854
crossref_primary_10_1002_ange_202215585
crossref_primary_10_1016_j_jcis_2024_03_073
crossref_primary_10_1016_j_nanoen_2019_103963
crossref_primary_10_1039_D2CP00644H
crossref_primary_10_1016_j_jcat_2019_10_028
crossref_primary_10_1021_acs_jpclett_9b03728
crossref_primary_10_1016_j_electacta_2024_145174
crossref_primary_10_1021_acs_jpclett_0c00185
crossref_primary_10_1002_ange_201909697
crossref_primary_10_1039_C8SC04589E
crossref_primary_10_1038_s41467_025_56966_9
crossref_primary_10_1021_jacs_8b13228
crossref_primary_10_1021_acs_jpcc_2c05169
crossref_primary_10_1039_D4CS00370E
crossref_primary_10_1063_5_0073313
crossref_primary_10_1021_acscatal_4c04874
crossref_primary_10_1016_j_apsusc_2022_153900
crossref_primary_10_1016_j_joule_2023_06_011
crossref_primary_10_1007_s12613_022_2443_2
crossref_primary_10_1016_j_mtcomm_2024_110088
crossref_primary_10_1002_chem_202400838
crossref_primary_10_1021_acs_jpcc_3c05416
crossref_primary_10_1021_acs_chemrev_3c00806
crossref_primary_10_1021_acsami_2c18021
crossref_primary_10_1021_acs_chemrev_4c00133
crossref_primary_10_1002_ange_202401453
crossref_primary_10_1021_jacs_3c02604
crossref_primary_10_3390_hydrogen4040049
crossref_primary_10_1038_s41929_021_00663_5
crossref_primary_10_1039_D1CY00712B
crossref_primary_10_1021_jacs_9b13915
crossref_primary_10_1039_D0EE01754J
crossref_primary_10_1016_j_watres_2021_117259
crossref_primary_10_1021_acscatal_8b03990
crossref_primary_10_1039_C9EE02910A
crossref_primary_10_1016_j_jcat_2019_01_037
crossref_primary_10_1021_acscatal_4c06469
crossref_primary_10_1021_acscatal_0c02254
crossref_primary_10_1016_j_ijhydene_2021_06_064
crossref_primary_10_1016_j_apcatb_2021_120220
crossref_primary_10_1039_D1QM00183C
crossref_primary_10_1016_j_coelec_2020_100667
crossref_primary_10_1016_j_jcis_2025_03_004
crossref_primary_10_1021_acs_chemrev_1c00331
crossref_primary_10_1038_s41929_022_00846_8
crossref_primary_10_1007_s11426_022_1371_x
crossref_primary_10_1002_cnma_202300338
crossref_primary_10_1039_C9SC03831K
crossref_primary_10_1002_anie_202401453
crossref_primary_10_1038_s41467_019_12773_7
crossref_primary_10_1021_acscatal_0c02762
crossref_primary_10_1038_s41560_023_01302_y
Cites_doi 10.1021/acs.jpcc.5b10979
10.1038/nenergy.2017.31
10.1039/B700099E
10.1016/S0022-0728(79)80167-9
10.1021/acs.jpcc.5b08137
10.1016/j.cattod.2012.04.059
10.1149/1.3483106
10.1038/ncomms6848
10.1021/jp0631735
10.1039/c0cp00104j
10.1021/jp1048887
10.1016/j.nanoen.2016.01.027
10.1021/ja308899g
10.1002/anie.201204842
10.1021/ac60210a007
10.1021/jz301476w
10.1103/PhysRevLett.99.126101
10.1126/science.1211934
10.1038/nchem.1574
10.1016/S0022-0728(79)80216-8
10.1038/nmat3313
10.1021/ja106389k
10.1039/c3ee00045a
10.1016/S0022-0728(77)80071-5
10.1016/S0022-0728(73)80494-2
10.1002/celc.201600731
10.1016/S0022-0728(74)80449-3
10.1039/FT9969203719
10.1073/pnas.1301596110
10.1021/jp970930d
10.1039/C4EE00440J
10.1021/jp1088146
10.1038/nchem.330
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acscatal.7b02787
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 8319
ExternalDocumentID 10_1021_acscatal_7b02787
d264393114
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a280t-91b2989acfb76788a95e19b0c44a1968dff3a70e399351ab7055d0d87d8f6d523
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Tue Jul 01 01:35:01 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Thu Aug 27 13:42:32 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Volmer step
electrocatalysis
microkinetic modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-91b2989acfb76788a95e19b0c44a1968dff3a70e399351ab7055d0d87d8f6d523
ORCID 0000-0003-0037-4814
0000-0003-3162-4126
PageCount 6
ParticipantIDs crossref_citationtrail_10_1021_acscatal_7b02787
crossref_primary_10_1021_acscatal_7b02787
acs_journals_10_1021_acscatal_7b02787
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171201
2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 20171201
  day: 01
PublicationDecade 2010
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.1021/acs.jpcc.5b10979
– ident: ref7/cit7
  doi: 10.1038/nenergy.2017.31
– ident: ref27/cit27
  doi: 10.1039/B700099E
– ident: ref25/cit25
  doi: 10.1016/S0022-0728(79)80167-9
– ident: ref34/cit34
  doi: 10.1021/acs.jpcc.5b08137
– ident: ref10/cit10
  doi: 10.1016/j.cattod.2012.04.059
– ident: ref3/cit3
  doi: 10.1149/1.3483106
– ident: ref4/cit4
  doi: 10.1038/ncomms6848
– ident: ref30/cit30
  doi: 10.1021/jp0631735
– ident: ref17/cit17
  doi: 10.1039/c0cp00104j
– ident: ref28/cit28
  doi: 10.1021/jp1048887
– ident: ref9/cit9
  doi: 10.1016/j.nanoen.2016.01.027
– ident: ref31/cit31
  doi: 10.1021/ja308899g
– ident: ref32/cit32
  doi: 10.1016/j.cattod.2012.04.059
– ident: ref15/cit15
  doi: 10.1002/anie.201204842
– ident: ref21/cit21
  doi: 10.1021/ac60210a007
– ident: ref29/cit29
  doi: 10.1021/jz301476w
– ident: ref26/cit26
  doi: 10.1103/PhysRevLett.99.126101
– ident: ref13/cit13
  doi: 10.1126/science.1211934
– ident: ref14/cit14
  doi: 10.1038/nchem.1574
– ident: ref23/cit23
  doi: 10.1016/S0022-0728(79)80216-8
– ident: ref16/cit16
  doi: 10.1038/nmat3313
– ident: ref18/cit18
  doi: 10.1021/ja106389k
– ident: ref8/cit8
  doi: 10.1039/c3ee00045a
– ident: ref22/cit22
  doi: 10.1016/S0022-0728(77)80071-5
– ident: ref1/cit1
  doi: 10.1016/S0022-0728(73)80494-2
– ident: ref20/cit20
  doi: 10.1002/celc.201600731
– ident: ref24/cit24
  doi: 10.1016/S0022-0728(74)80449-3
– ident: ref2/cit2
  doi: 10.1039/FT9969203719
– ident: ref33/cit33
  doi: 10.1073/pnas.1301596110
– ident: ref6/cit6
  doi: 10.1021/jp970930d
– ident: ref5/cit5
  doi: 10.1039/C4EE00440J
– ident: ref11/cit11
  doi: 10.1021/jp1088146
– ident: ref19/cit19
  doi: 10.1038/nchem.330
SSID ssj0000456870
Score 2.5246706
Snippet The sluggish kinetics of the alkaline hydrogen electrode have been attributed to the need to adsorb both H and OH optimally. In this work, single-crystal...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 8314
Title Adsorbed Hydroxide Does Not Participate in the Volmer Step of Alkaline Hydrogen Electrocatalysis
URI http://dx.doi.org/10.1021/acscatal.7b02787
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oPejFt7G-sgc9eKCF5bFwbGqbxsTGRGt6w32RNG3AFHrQX-_sArXxld4ZGGZnmG93hm8QupaKU-om0rIj4lte5LgWi7htKdcVLg05F4ad_2EYDEbe_dgff9HkfK_gE6fNRG5OMlqU6yoZ3URbJIAY1jCo-7Q8T9HQJDSz4SCJ-ZYPMKCqSv52E52LRL6Si1aSSn-vnE6UGy5C3UsybS0K3hIfP5ka19B3H-1W2BJ3Smc4QBsqPUTb3Xqk2xF67cg8m3Ml8eBdwjMnUuG7TOV4mBX4kdUd1gpPUgzAEL_o_xXmWHeC4SzBndmUaVRaSoPn4V45RMdooqlNjtGo33vuDqxqxILFSGgX8KnjmoKdiYRTSFshi3zlwFoJz2MQm6FMEpdRW2kY4zuMa-4dacuQyjAJJGxiT1AjzVJ1ijDhDk8AD3rSizzlOvAyARMMNsCEC6JYE92AaeIqRPLYVL-JE9f2iit7NVG7XpRYVDzlelzG7B-J26XEW8nR8ee1Z2tqcY52iE7gpnHlAjWK-UJdAvwo-JXxu08Y6Na9
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGcrCG1GeHmBgSJtnk4xRaVWgVAha1C34FQlRNahJB_j1nN2kIAQI1ii2L-dz7rPv_B3AqZDM951EGGZoe4YbWo5BQ2Ya0nG44weMcc3Of9Nvdofu1cgbLYFV3oVBITLsKdNB_A92AauBz_SBRt1nKljmL8MKYhFbGXXUul8cqyiEEugScejLPMNDNFAEJ7_rRLkknn1ySZ98S2cd7hZS6ZSS5_osZ3X-9oWw8V9ib8BagTRJNDeNTViSky2otsoCb9vwGIksnTIpSPdV4NBPQpKLVGakn-bklpb51pI8TQjCRPKgbi9MicoLI2lCovEzVRh13hrtkLTnJXW0JIroZAeGnfag1TWKggsGtQMzxx8fU4TslCfMRycW0NCTFs4cd12KKzUQSeJQ35QK1HgWZYqJR5gi8EWQNAVuaXehMkkncg-IzSyWIDp0hRu60rHwY5qUU9wO24zbktbgDFUTFwsmi3Us3LbiUl9xoa8aNMq5iXnBWq6KZ4x_aXG-aPEyZ-z48d39P0pxAtXu4KYX9y771wewaivXrlNaDqGST2fyCIFJzo61Kb4Db0vfHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gJurFtxGfe9CDh0KftD02IMEXMVEIt7qvJkZCCS0H_fXOLi0hRo1em-7udHa28-3O7DcAF0Iy33cSYZih7RluaDkGDZlpSMfhjh8wxjU7_0Ov2e27t0NvWAGvvAuDQmTYU6aD-GpVT0RSMAxYDXyuDzXqPlMBM38FVlXUThl21HpaHK0olBLoMnHozzzDQ0RQBCi_60S5JZ4tuaUl_9LZgsFCMp1W8laf5azOP76QNv5b9G3YLBAnieYmsgMVOd6F9VZZ6G0PXiKRpVMmBem-Cxz-VUjSTmVGemlOHmmZdy3J65ggXCQDdYthSlR-GEkTEo3eqMKq89Zoj-R6XlpHS6IIT_ah37l-bnWNovCCQe3AzPEHyBQxO-UJ89GZBTT0pIUzyF2X4ooNRJI41DelAjeeRZli5BGmCHwRJE2BW9sDqI7TsTwEYjOLJYgSXeGGrnQs_Jgm5RS3xTbjtqQ1uETVxMXCyWIdE7etuNRXXOirBo1yfmJesJerIhqjX1pcLVpM5swdP7579EcpzmHtsd2J7296d8ewYSsPrzNbTqCaT2fyFPFJzs60NX4Ct0nhoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorbed+Hydroxide+Does+Not+Participate+in+the+Volmer+Step+of+Alkaline+Hydrogen+Electrocatalysis&rft.jtitle=ACS+catalysis&rft.au=Intikhab%2C+Saad&rft.au=Snyder%2C+Joshua+D.&rft.au=Tang%2C+Maureen+H.&rft.date=2017-12-01&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=12&rft.spage=8314&rft.epage=8319&rft_id=info:doi/10.1021%2Facscatal.7b02787&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acscatal_7b02787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon