Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions

Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g., 2-chloroethyl ethyl sulfide or CEES) by selectively oxidizing these toxic organic sulfides to less toxic sulfoxide products under visible or ultravio...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 12; no. 1; pp. 363 - 371
Main Authors Hao, Yajiao, Papazyan, Edgar K, Ba, Yong, Liu, Yangyang
Format Journal Article
LanguageEnglish
Published American Chemical Society 07.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g., 2-chloroethyl ethyl sulfide or CEES) by selectively oxidizing these toxic organic sulfides to less toxic sulfoxide products under visible or ultraviolet (UV) light. However, these reactions must be conducted in specific solvents (e.g., methanol) to achieve satisfactory selectivity of sulfoxide, which limits the use of MOFs in protective gears. Our mechanistic study shows that during the photooxidation of CEES, the stabilization of a putative persulfoxide intermediate with hydrogen-bond donors was crucial for the formation of sulfoxide. Based on this discovery, we developed a series of MOF/textile composites containing various hydrogen-bond donor additives for selective photooxidation of organic sulfides under solvent-free conditions. With a 3 mol % catalyst loading, our best-performing composite degraded all CEES within 15 min in oxygen under blue LEDs without solvents, featuring a reaction half-life of 4.4 min and a sulfoxide selectivity of 91%. Under the same condition, the pristine MOF-525 powders only converted 30% CEES after 15 min and showed a 58% sulfoxide selectivity in the final products. Remarkably, this composite also achieved rapid, selective, and solvent-free degradation of CEES utilizing air and simulated sunlight with excellent stability and reusability. This work demonstrates that selective photooxidation of organic sulfides can be achieved without organic solvents under near-practical conditions. The MOF textile composites developed here can be potentially implemented in protective masks and suits against mustard gas.
AbstractList Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g., 2-chloroethyl ethyl sulfide or CEES) by selectively oxidizing these toxic organic sulfides to less toxic sulfoxide products under visible or ultraviolet (UV) light. However, these reactions must be conducted in specific solvents (e.g., methanol) to achieve satisfactory selectivity of sulfoxide, which limits the use of MOFs in protective gears. Our mechanistic study shows that during the photooxidation of CEES, the stabilization of a putative persulfoxide intermediate with hydrogen-bond donors was crucial for the formation of sulfoxide. Based on this discovery, we developed a series of MOF/textile composites containing various hydrogen-bond donor additives for selective photooxidation of organic sulfides under solvent-free conditions. With a 3 mol % catalyst loading, our best-performing composite degraded all CEES within 15 min in oxygen under blue LEDs without solvents, featuring a reaction half-life of 4.4 min and a sulfoxide selectivity of 91%. Under the same condition, the pristine MOF-525 powders only converted 30% CEES after 15 min and showed a 58% sulfoxide selectivity in the final products. Remarkably, this composite also achieved rapid, selective, and solvent-free degradation of CEES utilizing air and simulated sunlight with excellent stability and reusability. This work demonstrates that selective photooxidation of organic sulfides can be achieved without organic solvents under near-practical conditions. The MOF textile composites developed here can be potentially implemented in protective masks and suits against mustard gas.
Author Hao, Yajiao
Liu, Yangyang
Ba, Yong
Papazyan, Edgar K
AuthorAffiliation Department of Chemistry and Biochemistry
California State University, Los Angeles
AuthorAffiliation_xml – name: California State University, Los Angeles
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Yajiao
  orcidid: 0000-0003-2950-1055
  surname: Hao
  fullname: Hao, Yajiao
– sequence: 2
  givenname: Edgar K
  surname: Papazyan
  fullname: Papazyan, Edgar K
– sequence: 3
  givenname: Yong
  surname: Ba
  fullname: Ba, Yong
– sequence: 4
  givenname: Yangyang
  orcidid: 0000-0002-3913-5979
  surname: Liu
  fullname: Liu, Yangyang
  email: yliu114@calstatela.edu
BookMark eNp9kM9KAzEQxoNUsGrvHvMAbk32f49SbRVaKqjnZZrMaupuIkm26s130Cf0SYxWQQSdywzM9_uY-XZJTxuNhBxwNuQs5kcgnAAPzZALlhZZtkX6Mc-yKEuTrPdj3iED51YsVJrlZcH65HWO4ha0cm007ZRESU_QqRtNTU3nGCzfnl8W9iYoBJ1YaPHB2Ds6Nu29ccqjo7Wx9BIbFF6tkV7cGm_Mo5Lglfk0ATrvnAcr6RQcvVRt14D2tNMSA2iaNWofTSxiMNVSfWBun2zX0DgcfPU9cj05vRqfRbPF9Hx8PIsgLpmPSimXWIzkUnKe1kkxwhhFmQtMeQhBjFIEhDwXMYszTMRSpkUJSVEs8xKgTlmyR_KNr7DGOYt1JZT_vNxbUE3FWfURb_Udb_UVbwDZL_Deqhbs03_I4QYJm2plOqvDZ3_L3wEYnZXV
CitedBy_id crossref_primary_10_1002_open_202300246
crossref_primary_10_1039_D4CC03890H
crossref_primary_10_1007_s12598_023_02435_5
crossref_primary_10_1021_acsaenm_3c00560
crossref_primary_10_1039_D2TA01864K
crossref_primary_10_1002_ejic_202300221
crossref_primary_10_3390_ijms232416121
crossref_primary_10_1002_smll_202407980
crossref_primary_10_1039_D1CS00968K
crossref_primary_10_1021_acs_chemmater_3c02470
crossref_primary_10_1039_D2CS00289B
crossref_primary_10_1016_j_ccr_2023_215289
crossref_primary_10_1021_acs_inorgchem_3c02212
crossref_primary_10_1039_D3GC01149F
crossref_primary_10_1039_D3TA02467A
crossref_primary_10_1021_acsami_2c19039
crossref_primary_10_3390_nano14131108
crossref_primary_10_1002_ange_202207130
crossref_primary_10_1039_D4SC04551C
crossref_primary_10_1039_D2DT03606A
crossref_primary_10_1021_acs_macromol_2c02014
crossref_primary_10_1016_j_apenergy_2023_122508
crossref_primary_10_1021_acs_cgd_3c00120
crossref_primary_10_1021_acsanm_3c03262
crossref_primary_10_1016_j_micromeso_2024_113163
crossref_primary_10_1002_cplu_202400469
crossref_primary_10_3390_gels10070428
crossref_primary_10_1016_j_isci_2024_110042
crossref_primary_10_1021_acs_inorgchem_3c04362
crossref_primary_10_1016_j_ccr_2024_216324
crossref_primary_10_1021_acsami_3c06032
crossref_primary_10_1016_j_ccr_2024_216068
crossref_primary_10_1039_D4QM00358F
crossref_primary_10_1016_j_jcat_2022_12_007
crossref_primary_10_1002_anie_202207130
crossref_primary_10_1016_j_envadv_2022_100255
crossref_primary_10_1021_acssuschemeng_3c07186
crossref_primary_10_1002_adfm_202315714
crossref_primary_10_1016_j_cclet_2024_109936
crossref_primary_10_1039_D3CS00251A
crossref_primary_10_1021_acs_chemmater_4c02959
crossref_primary_10_3390_nano13152178
Cites_doi 10.1021/jacs.1c08576
10.1039/c6cs00250a
10.1039/d0gc01142h
10.1038/s41467-020-16339-w
10.1021/jacs.0c07784
10.1021/acsami.6b05817
10.1021/ja2038003
10.1021/acsami.5b01946
10.1021/ja0033133
10.1021/acsami.7b05494
10.1016/j.molliq.2021.115946
10.1002/anie.201503741
10.1039/c6cs00930a
10.1021/acs.jpcc.1c00310
10.1016/j.tox.2005.06.014
10.1016/j.biomaterials.2019.119619
10.1021/acsami.7b07055
10.1021/acs.chemmater.1c00917
10.1038/s42004-021-00465-7
10.1021/ic300825s
10.1021/acs.inorgchem.8b00106
10.1021/acs.accounts.8b00521
10.1021/jp000101j
10.1021/acs.chemrev.9b00223
10.1039/c6ta05903a
10.1021/acsami.9b17569
10.1021/ja973782d
10.1021/acsanm.9b02176
10.1002/chem.201604972
10.1016/j.jhazmat.2008.11.073
10.1021/acsami.0c17022
10.1021/acsami.8b04576
10.1021/acs.inorgchem.9b00200
10.1021/am402897b
10.1016/j.ccr.2019.03.005
10.1016/s0040-4039(99)01304-0
10.1021/jp030489t
10.1080/10889869809380377
10.1002/anie.201204475
10.1016/j.ccr.2017.10.026
10.3109/08958378.2015.1092184
10.1093/nsr/nwz147
10.1021/acsnano.5b05660
10.1021/acsami.8b05792
10.1021/acsami.9b10958
10.1021/ic00100a028
10.1039/c6ce00465b
10.1021/ja8056166
10.1039/c7cs00153c
10.1007/s10532-012-9564-7
10.1016/j.matt.2019.11.005
10.1016/j.chempr.2019.04.013
10.1021/jp984689u
10.1007/s11356-012-0997-7
10.1021/acs.inorgchem.8b03511
10.1067/mem.2001.114322
10.1021/jacs.9b05952
10.1016/j.chempr.2020.11.023
10.1021/ja408959g
10.1021/ja510525s
10.1002/adma.202001592
10.1021/acsanm.8b02014
10.26434/chemrxiv.9729494
10.1021/ja3055639
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acscatal.1c04755
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 371
ExternalDocumentID 10_1021_acscatal_1c04755
a072081456
GroupedDBID 55A
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
GGK
GNL
IH9
JG
K2
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
ID FETCH-LOGICAL-a280t-8ddbe79dbd114f379e2ec86ce41475c94eaea66c2025e3cbd478a377b68aaf403
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Tue Jul 01 02:04:10 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Tue Jan 11 05:26:09 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords singlet oxygen
textile composites
metal−organic frameworks
mechanism of sulfide oxidation
selective photooxidation
mustard gas simulant
solvent-free
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-8ddbe79dbd114f379e2ec86ce41475c94eaea66c2025e3cbd478a377b68aaf403
ORCID 0000-0003-2950-1055
0000-0002-3913-5979
PageCount 9
ParticipantIDs crossref_citationtrail_10_1021_acscatal_1c04755
crossref_primary_10_1021_acscatal_1c04755
acs_journals_10_1021_acscatal_1c04755
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220107
2022-01-07
PublicationDateYYYYMMDD 2022-01-07
PublicationDate_xml – month: 01
  year: 2022
  text: 20220107
  day: 07
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1021/jacs.1c08576
– ident: ref43/cit43
  doi: 10.1039/c6cs00250a
– ident: ref55/cit55
  doi: 10.1039/d0gc01142h
– ident: ref49/cit49
  doi: 10.1038/s41467-020-16339-w
– ident: ref17/cit17
  doi: 10.1021/jacs.0c07784
– ident: ref52/cit52
  doi: 10.1021/acsami.6b05817
– ident: ref51/cit51
  doi: 10.1021/ja2038003
– ident: ref61/cit61
  doi: 10.1021/acsami.5b01946
– ident: ref11/cit11
  doi: 10.1021/ja0033133
– ident: ref47/cit47
  doi: 10.1021/acsami.7b05494
– ident: ref14/cit14
  doi: 10.1016/j.molliq.2021.115946
– ident: ref21/cit21
  doi: 10.1002/anie.201503741
– ident: ref41/cit41
  doi: 10.1039/c6cs00930a
– ident: ref53/cit53
  doi: 10.1021/acs.jpcc.1c00310
– ident: ref1/cit1
  doi: 10.1016/j.tox.2005.06.014
– ident: ref40/cit40
  doi: 10.1016/j.biomaterials.2019.119619
– ident: ref24/cit24
  doi: 10.1021/acsami.7b07055
– ident: ref32/cit32
  doi: 10.1021/acs.chemmater.1c00917
– ident: ref56/cit56
  doi: 10.1038/s42004-021-00465-7
– ident: ref57/cit57
  doi: 10.1021/ic300825s
– ident: ref25/cit25
  doi: 10.1021/acs.inorgchem.8b00106
– ident: ref35/cit35
  doi: 10.1021/acs.accounts.8b00521
– ident: ref5/cit5
  doi: 10.1021/jp000101j
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.9b00223
– ident: ref23/cit23
  doi: 10.1039/c6ta05903a
– ident: ref30/cit30
  doi: 10.1021/acsami.9b17569
– ident: ref64/cit64
  doi: 10.1021/ja973782d
– ident: ref48/cit48
  doi: 10.1021/acsanm.9b02176
– ident: ref50/cit50
  doi: 10.1002/chem.201604972
– ident: ref10/cit10
  doi: 10.1016/j.jhazmat.2008.11.073
– ident: ref31/cit31
  doi: 10.1021/acsami.0c17022
– ident: ref13/cit13
  doi: 10.1021/acsami.8b04576
– ident: ref60/cit60
  doi: 10.1021/acs.inorgchem.9b00200
– ident: ref12/cit12
  doi: 10.1021/am402897b
– ident: ref37/cit37
  doi: 10.1016/j.ccr.2019.03.005
– ident: ref54/cit54
  doi: 10.1016/s0040-4039(99)01304-0
– ident: ref16/cit16
  doi: 10.1021/jp030489t
– ident: ref7/cit7
  doi: 10.1080/10889869809380377
– ident: ref58/cit58
  doi: 10.1002/anie.201204475
– ident: ref39/cit39
  doi: 10.1016/j.ccr.2017.10.026
– ident: ref3/cit3
  doi: 10.3109/08958378.2015.1092184
– ident: ref44/cit44
  doi: 10.1093/nsr/nwz147
– ident: ref22/cit22
  doi: 10.1021/acsnano.5b05660
– ident: ref26/cit26
  doi: 10.1021/acsami.8b05792
– ident: ref19/cit19
  doi: 10.1021/acsami.9b10958
– ident: ref8/cit8
  doi: 10.1021/ic00100a028
– ident: ref62/cit62
  doi: 10.1039/c6ce00465b
– ident: ref15/cit15
  doi: 10.1021/ja8056166
– ident: ref38/cit38
  doi: 10.1039/c7cs00153c
– ident: ref6/cit6
  doi: 10.1007/s10532-012-9564-7
– ident: ref27/cit27
  doi: 10.1016/j.matt.2019.11.005
– ident: ref42/cit42
  doi: 10.1016/j.chempr.2019.04.013
– ident: ref4/cit4
  doi: 10.1021/jp984689u
– ident: ref9/cit9
  doi: 10.1007/s11356-012-0997-7
– ident: ref28/cit28
  doi: 10.1021/acs.inorgchem.8b03511
– ident: ref2/cit2
  doi: 10.1067/mem.2001.114322
– ident: ref33/cit33
  doi: 10.1021/jacs.9b05952
– ident: ref45/cit45
  doi: 10.1016/j.chempr.2020.11.023
– ident: ref63/cit63
  doi: 10.1021/ja408959g
– ident: ref59/cit59
  doi: 10.1021/ja510525s
– ident: ref18/cit18
  doi: 10.1002/adma.202001592
– ident: ref29/cit29
  doi: 10.1021/acsanm.8b02014
– ident: ref20/cit20
  doi: 10.26434/chemrxiv.9729494
– ident: ref46/cit46
  doi: 10.1021/ja3055639
SSID ssj0000456870
Score 2.5170093
Snippet Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g.,...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 363
Title Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions
URI http://dx.doi.org/10.1021/acscatal.1c04755
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKPZQL0Jd4ywd66MFL4jiJc0QLC6q0qNIWiVvkx6y6YtmgTVZCnPgP8Av5JcwkWUClIO7xyPFrPntmvo-xXRU5xL3aCSvjSCicZaFjRRoawyiJs9BKUyfIniTHp-rXWXz2RJPzbwRfhnvGlfVLRid0gUrjeIF9lIlO6aK13x08vqcQNNG1Nhw6sVjECAPaqOT_jJAvcuUzX_TMqfRWGnWisuYipFyS886ssh13_ZKp8R39XWXLLbbk-81i-Mw-wOQL-9SdS7p9ZXd9oELfUXkhjmYjD54f1AkcvBjyPqC1-5vbpjjT8d48a4vTkUGpXVByRLh8UCvn4CHJf_8tqqK4GjWyTGTE8D4VZE09PzIlH4wuZmOcOU6FatiwGFNypehNAdAoxcppzX9jp73DP91j0coyCCN1UAntvYU089bjXWoYpRlIcDpxoEL8X5cpMGCSxEmEUxA561WqTZSmNtHGDFUQfWeLk2ICa4wH3msAo31iIkVkZNYhIMSzmygLgkyusx84nHm7rcq8jpjLMJ-Pcd6O8Trbm09k7lpuc5LYGL_R4udji8uG1-PVbzfe2YtNtiSpOIIeaNIttlhNZ7CNkKWyO_VafQBCdepA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKOZRL-Rfl1wd64OBt4jiJc-BQbdluabdC2lbqLTj2rFh1u0GbrPg59R3KC_AqPApPwow3WSoEiEslrlE8GnnGns_2NzOMPVeRRdyrrShkHAmFVhY6VtRDYxQlcRYW0niC7GHSP1avT-KTFfa1zYVBJSqUVPlH_J_VBcIt_OYvNDqhDVQatzzKffj0AU9p1cu9HTTpppS9V0fdvmgaCQgjdVAL7VwBaeYKh-h_FKUZSLA6saBCFGUzBQZMkliJAAAiWziVahOlaZFoY0YqiFDuNXYdsY-k8912d7i8xiFEpH1LOoydsYgRfTSPob9TmkKgrS6FwEuxrHeTfVvOgqewnHbmddGxn38pEPlfT9Mttt4gab69cP3bbAWmd9hat21gd5d9GQClNY-rM7E7HztwfMfTVXg54gNA7b-fXyxSUS3vtRw1ThskEdmg4ojn-dD3CcKQwN-8K-uy_DheNKEiIYYPKP1s5viuqfhwfDafoJ9ySsvDgeWEqKSiNwNAocQMoBV-jx1fyaTcZ6vTcgoPGA-c0wBGu8REikqvFRbhL0YqKtAQZHKDbaL58mYTqXLPD5Bh3to0b2y6wbZa_8ltU8mdGopM_jLixXLE-0UVkz_--_AftXjG1vpHg4P8YO9w_xG7ISkthK6m0sdstZ7N4QmCtbp46pcLZ2-v2vF-AKTATuY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkYAL5a-i_PpADxyyTRwncQ4cql3SlrJVpaVSb8E_E7Fiu6k2WQE99R3gFfoqPAhPwkw2WVUIEJdKXKN4NPJ4PJ_tb2YYeyFDi7hXWc-IKPQkWtlTkaQeGkUYR2lghG4Isgfx7pF8cxwdr7CLLhcGlahQUtU84pNXn7qirTAQbOH35lKjF1hfJlHHpdyHL5_wpFa92hugWTeFyF6_6-96bTMBTwvl155yzkCSOuPwBFCESQoCrIotyABF2VSCBh3HViAIgNAaJxOlwyQxsdK6kH6Icq-x6_RKSGe87f5oeZVDqEg1bekwfkZehAikfRD9ndIUBm11KQxeimfZGvu-nImGxvKxN69Nz579UiTyv5-qO-x2i6j59sIF7rIVmN5jN_tdI7v77NsQKL15XJ14O_OxA8cHDW2FlwUfAmr_4_zrIiXV8qzjqnHaKInQBhVHXM9HTb8gDA388ENZl-Xn8aIZFQnRfEhpaDPHd3TFR-OT-QTXK6f0PBxYTohS6mUzABRKDAHy9Afs6EomZZ2tTsspPGTcd04BaOViHUoqwWYswmCMWFSowU_FBttE8-XtZlLlDU9ABHln07y16Qbb6tZQbtuK7tRYZPKXES-XI04X1Uz--O-jf9TiObtxOMjyt3sH-4_ZLUHZIXRDlTxhq_VsDk8Rs9XmWeMxnL2_6nX3E4RYUWk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism-Guided+Design+of+Metal%E2%80%93Organic+Framework+Composites+for+Selective+Photooxidation+of+a+Mustard+Gas+Simulant+under+Solvent-Free+Conditions&rft.jtitle=ACS+catalysis&rft.au=Hao%2C+Yajiao&rft.au=Papazyan%2C+Edgar+K&rft.au=Ba%2C+Yong&rft.au=Liu%2C+Yangyang&rft.date=2022-01-07&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=12&rft.issue=1&rft.spage=363&rft.epage=371&rft_id=info:doi/10.1021%2Facscatal.1c04755&rft.externalDocID=a072081456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon