Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions
Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g., 2-chloroethyl ethyl sulfide or CEES) by selectively oxidizing these toxic organic sulfides to less toxic sulfoxide products under visible or ultravio...
Saved in:
Published in | ACS catalysis Vol. 12; no. 1; pp. 363 - 371 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
07.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g., 2-chloroethyl ethyl sulfide or CEES) by selectively oxidizing these toxic organic sulfides to less toxic sulfoxide products under visible or ultraviolet (UV) light. However, these reactions must be conducted in specific solvents (e.g., methanol) to achieve satisfactory selectivity of sulfoxide, which limits the use of MOFs in protective gears. Our mechanistic study shows that during the photooxidation of CEES, the stabilization of a putative persulfoxide intermediate with hydrogen-bond donors was crucial for the formation of sulfoxide. Based on this discovery, we developed a series of MOF/textile composites containing various hydrogen-bond donor additives for selective photooxidation of organic sulfides under solvent-free conditions. With a 3 mol % catalyst loading, our best-performing composite degraded all CEES within 15 min in oxygen under blue LEDs without solvents, featuring a reaction half-life of 4.4 min and a sulfoxide selectivity of 91%. Under the same condition, the pristine MOF-525 powders only converted 30% CEES after 15 min and showed a 58% sulfoxide selectivity in the final products. Remarkably, this composite also achieved rapid, selective, and solvent-free degradation of CEES utilizing air and simulated sunlight with excellent stability and reusability. This work demonstrates that selective photooxidation of organic sulfides can be achieved without organic solvents under near-practical conditions. The MOF textile composites developed here can be potentially implemented in protective masks and suits against mustard gas. |
---|---|
AbstractList | Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g., 2-chloroethyl ethyl sulfide or CEES) by selectively oxidizing these toxic organic sulfides to less toxic sulfoxide products under visible or ultraviolet (UV) light. However, these reactions must be conducted in specific solvents (e.g., methanol) to achieve satisfactory selectivity of sulfoxide, which limits the use of MOFs in protective gears. Our mechanistic study shows that during the photooxidation of CEES, the stabilization of a putative persulfoxide intermediate with hydrogen-bond donors was crucial for the formation of sulfoxide. Based on this discovery, we developed a series of MOF/textile composites containing various hydrogen-bond donor additives for selective photooxidation of organic sulfides under solvent-free conditions. With a 3 mol % catalyst loading, our best-performing composite degraded all CEES within 15 min in oxygen under blue LEDs without solvents, featuring a reaction half-life of 4.4 min and a sulfoxide selectivity of 91%. Under the same condition, the pristine MOF-525 powders only converted 30% CEES after 15 min and showed a 58% sulfoxide selectivity in the final products. Remarkably, this composite also achieved rapid, selective, and solvent-free degradation of CEES utilizing air and simulated sunlight with excellent stability and reusability. This work demonstrates that selective photooxidation of organic sulfides can be achieved without organic solvents under near-practical conditions. The MOF textile composites developed here can be potentially implemented in protective masks and suits against mustard gas. |
Author | Hao, Yajiao Liu, Yangyang Ba, Yong Papazyan, Edgar K |
AuthorAffiliation | Department of Chemistry and Biochemistry California State University, Los Angeles |
AuthorAffiliation_xml | – name: California State University, Los Angeles – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Yajiao orcidid: 0000-0003-2950-1055 surname: Hao fullname: Hao, Yajiao – sequence: 2 givenname: Edgar K surname: Papazyan fullname: Papazyan, Edgar K – sequence: 3 givenname: Yong surname: Ba fullname: Ba, Yong – sequence: 4 givenname: Yangyang orcidid: 0000-0002-3913-5979 surname: Liu fullname: Liu, Yangyang email: yliu114@calstatela.edu |
BookMark | eNp9kM9KAzEQxoNUsGrvHvMAbk32f49SbRVaKqjnZZrMaupuIkm26s130Cf0SYxWQQSdywzM9_uY-XZJTxuNhBxwNuQs5kcgnAAPzZALlhZZtkX6Mc-yKEuTrPdj3iED51YsVJrlZcH65HWO4ha0cm007ZRESU_QqRtNTU3nGCzfnl8W9iYoBJ1YaPHB2Ds6Nu29ccqjo7Wx9BIbFF6tkV7cGm_Mo5Lglfk0ATrvnAcr6RQcvVRt14D2tNMSA2iaNWofTSxiMNVSfWBun2zX0DgcfPU9cj05vRqfRbPF9Hx8PIsgLpmPSimXWIzkUnKe1kkxwhhFmQtMeQhBjFIEhDwXMYszTMRSpkUJSVEs8xKgTlmyR_KNr7DGOYt1JZT_vNxbUE3FWfURb_Udb_UVbwDZL_Deqhbs03_I4QYJm2plOqvDZ3_L3wEYnZXV |
CitedBy_id | crossref_primary_10_1002_open_202300246 crossref_primary_10_1039_D4CC03890H crossref_primary_10_1007_s12598_023_02435_5 crossref_primary_10_1021_acsaenm_3c00560 crossref_primary_10_1039_D2TA01864K crossref_primary_10_1002_ejic_202300221 crossref_primary_10_3390_ijms232416121 crossref_primary_10_1002_smll_202407980 crossref_primary_10_1039_D1CS00968K crossref_primary_10_1021_acs_chemmater_3c02470 crossref_primary_10_1039_D2CS00289B crossref_primary_10_1016_j_ccr_2023_215289 crossref_primary_10_1021_acs_inorgchem_3c02212 crossref_primary_10_1039_D3GC01149F crossref_primary_10_1039_D3TA02467A crossref_primary_10_1021_acsami_2c19039 crossref_primary_10_3390_nano14131108 crossref_primary_10_1002_ange_202207130 crossref_primary_10_1039_D4SC04551C crossref_primary_10_1039_D2DT03606A crossref_primary_10_1021_acs_macromol_2c02014 crossref_primary_10_1016_j_apenergy_2023_122508 crossref_primary_10_1021_acs_cgd_3c00120 crossref_primary_10_1021_acsanm_3c03262 crossref_primary_10_1016_j_micromeso_2024_113163 crossref_primary_10_1002_cplu_202400469 crossref_primary_10_3390_gels10070428 crossref_primary_10_1016_j_isci_2024_110042 crossref_primary_10_1021_acs_inorgchem_3c04362 crossref_primary_10_1016_j_ccr_2024_216324 crossref_primary_10_1021_acsami_3c06032 crossref_primary_10_1016_j_ccr_2024_216068 crossref_primary_10_1039_D4QM00358F crossref_primary_10_1016_j_jcat_2022_12_007 crossref_primary_10_1002_anie_202207130 crossref_primary_10_1016_j_envadv_2022_100255 crossref_primary_10_1021_acssuschemeng_3c07186 crossref_primary_10_1002_adfm_202315714 crossref_primary_10_1016_j_cclet_2024_109936 crossref_primary_10_1039_D3CS00251A crossref_primary_10_1021_acs_chemmater_4c02959 crossref_primary_10_3390_nano13152178 |
Cites_doi | 10.1021/jacs.1c08576 10.1039/c6cs00250a 10.1039/d0gc01142h 10.1038/s41467-020-16339-w 10.1021/jacs.0c07784 10.1021/acsami.6b05817 10.1021/ja2038003 10.1021/acsami.5b01946 10.1021/ja0033133 10.1021/acsami.7b05494 10.1016/j.molliq.2021.115946 10.1002/anie.201503741 10.1039/c6cs00930a 10.1021/acs.jpcc.1c00310 10.1016/j.tox.2005.06.014 10.1016/j.biomaterials.2019.119619 10.1021/acsami.7b07055 10.1021/acs.chemmater.1c00917 10.1038/s42004-021-00465-7 10.1021/ic300825s 10.1021/acs.inorgchem.8b00106 10.1021/acs.accounts.8b00521 10.1021/jp000101j 10.1021/acs.chemrev.9b00223 10.1039/c6ta05903a 10.1021/acsami.9b17569 10.1021/ja973782d 10.1021/acsanm.9b02176 10.1002/chem.201604972 10.1016/j.jhazmat.2008.11.073 10.1021/acsami.0c17022 10.1021/acsami.8b04576 10.1021/acs.inorgchem.9b00200 10.1021/am402897b 10.1016/j.ccr.2019.03.005 10.1016/s0040-4039(99)01304-0 10.1021/jp030489t 10.1080/10889869809380377 10.1002/anie.201204475 10.1016/j.ccr.2017.10.026 10.3109/08958378.2015.1092184 10.1093/nsr/nwz147 10.1021/acsnano.5b05660 10.1021/acsami.8b05792 10.1021/acsami.9b10958 10.1021/ic00100a028 10.1039/c6ce00465b 10.1021/ja8056166 10.1039/c7cs00153c 10.1007/s10532-012-9564-7 10.1016/j.matt.2019.11.005 10.1016/j.chempr.2019.04.013 10.1021/jp984689u 10.1007/s11356-012-0997-7 10.1021/acs.inorgchem.8b03511 10.1067/mem.2001.114322 10.1021/jacs.9b05952 10.1016/j.chempr.2020.11.023 10.1021/ja408959g 10.1021/ja510525s 10.1002/adma.202001592 10.1021/acsanm.8b02014 10.26434/chemrxiv.9729494 10.1021/ja3055639 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acscatal.1c04755 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 371 |
ExternalDocumentID | 10_1021_acscatal_1c04755 a072081456 |
GroupedDBID | 55A 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED GGK GNL IH9 JG K2 RNS ROL UI2 VF5 VG9 W1F .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV BAANH CITATION CUPRZ ED~ JG~ |
ID | FETCH-LOGICAL-a280t-8ddbe79dbd114f379e2ec86ce41475c94eaea66c2025e3cbd478a377b68aaf403 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Tue Jul 01 02:04:10 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 Tue Jan 11 05:26:09 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | singlet oxygen textile composites metal−organic frameworks mechanism of sulfide oxidation selective photooxidation mustard gas simulant solvent-free |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-8ddbe79dbd114f379e2ec86ce41475c94eaea66c2025e3cbd478a377b68aaf403 |
ORCID | 0000-0003-2950-1055 0000-0002-3913-5979 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1021_acscatal_1c04755 crossref_primary_10_1021_acscatal_1c04755 acs_journals_10_1021_acscatal_1c04755 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220107 2022-01-07 |
PublicationDateYYYYMMDD | 2022-01-07 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220107 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1021/jacs.1c08576 – ident: ref43/cit43 doi: 10.1039/c6cs00250a – ident: ref55/cit55 doi: 10.1039/d0gc01142h – ident: ref49/cit49 doi: 10.1038/s41467-020-16339-w – ident: ref17/cit17 doi: 10.1021/jacs.0c07784 – ident: ref52/cit52 doi: 10.1021/acsami.6b05817 – ident: ref51/cit51 doi: 10.1021/ja2038003 – ident: ref61/cit61 doi: 10.1021/acsami.5b01946 – ident: ref11/cit11 doi: 10.1021/ja0033133 – ident: ref47/cit47 doi: 10.1021/acsami.7b05494 – ident: ref14/cit14 doi: 10.1016/j.molliq.2021.115946 – ident: ref21/cit21 doi: 10.1002/anie.201503741 – ident: ref41/cit41 doi: 10.1039/c6cs00930a – ident: ref53/cit53 doi: 10.1021/acs.jpcc.1c00310 – ident: ref1/cit1 doi: 10.1016/j.tox.2005.06.014 – ident: ref40/cit40 doi: 10.1016/j.biomaterials.2019.119619 – ident: ref24/cit24 doi: 10.1021/acsami.7b07055 – ident: ref32/cit32 doi: 10.1021/acs.chemmater.1c00917 – ident: ref56/cit56 doi: 10.1038/s42004-021-00465-7 – ident: ref57/cit57 doi: 10.1021/ic300825s – ident: ref25/cit25 doi: 10.1021/acs.inorgchem.8b00106 – ident: ref35/cit35 doi: 10.1021/acs.accounts.8b00521 – ident: ref5/cit5 doi: 10.1021/jp000101j – ident: ref36/cit36 doi: 10.1021/acs.chemrev.9b00223 – ident: ref23/cit23 doi: 10.1039/c6ta05903a – ident: ref30/cit30 doi: 10.1021/acsami.9b17569 – ident: ref64/cit64 doi: 10.1021/ja973782d – ident: ref48/cit48 doi: 10.1021/acsanm.9b02176 – ident: ref50/cit50 doi: 10.1002/chem.201604972 – ident: ref10/cit10 doi: 10.1016/j.jhazmat.2008.11.073 – ident: ref31/cit31 doi: 10.1021/acsami.0c17022 – ident: ref13/cit13 doi: 10.1021/acsami.8b04576 – ident: ref60/cit60 doi: 10.1021/acs.inorgchem.9b00200 – ident: ref12/cit12 doi: 10.1021/am402897b – ident: ref37/cit37 doi: 10.1016/j.ccr.2019.03.005 – ident: ref54/cit54 doi: 10.1016/s0040-4039(99)01304-0 – ident: ref16/cit16 doi: 10.1021/jp030489t – ident: ref7/cit7 doi: 10.1080/10889869809380377 – ident: ref58/cit58 doi: 10.1002/anie.201204475 – ident: ref39/cit39 doi: 10.1016/j.ccr.2017.10.026 – ident: ref3/cit3 doi: 10.3109/08958378.2015.1092184 – ident: ref44/cit44 doi: 10.1093/nsr/nwz147 – ident: ref22/cit22 doi: 10.1021/acsnano.5b05660 – ident: ref26/cit26 doi: 10.1021/acsami.8b05792 – ident: ref19/cit19 doi: 10.1021/acsami.9b10958 – ident: ref8/cit8 doi: 10.1021/ic00100a028 – ident: ref62/cit62 doi: 10.1039/c6ce00465b – ident: ref15/cit15 doi: 10.1021/ja8056166 – ident: ref38/cit38 doi: 10.1039/c7cs00153c – ident: ref6/cit6 doi: 10.1007/s10532-012-9564-7 – ident: ref27/cit27 doi: 10.1016/j.matt.2019.11.005 – ident: ref42/cit42 doi: 10.1016/j.chempr.2019.04.013 – ident: ref4/cit4 doi: 10.1021/jp984689u – ident: ref9/cit9 doi: 10.1007/s11356-012-0997-7 – ident: ref28/cit28 doi: 10.1021/acs.inorgchem.8b03511 – ident: ref2/cit2 doi: 10.1067/mem.2001.114322 – ident: ref33/cit33 doi: 10.1021/jacs.9b05952 – ident: ref45/cit45 doi: 10.1016/j.chempr.2020.11.023 – ident: ref63/cit63 doi: 10.1021/ja408959g – ident: ref59/cit59 doi: 10.1021/ja510525s – ident: ref18/cit18 doi: 10.1002/adma.202001592 – ident: ref29/cit29 doi: 10.1021/acsanm.8b02014 – ident: ref20/cit20 doi: 10.26434/chemrxiv.9729494 – ident: ref46/cit46 doi: 10.1021/ja3055639 |
SSID | ssj0000456870 |
Score | 2.5170093 |
Snippet | Photoactive metal–organic frameworks (MOFs) and their derivatives have shown great promise for the degradation of mustard gas and its simulants (e.g.,... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 363 |
Title | Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions |
URI | http://dx.doi.org/10.1021/acscatal.1c04755 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKPZQL0Jd4ywd66MFL4jiJc0QLC6q0qNIWiVvkx6y6YtmgTVZCnPgP8Av5JcwkWUClIO7xyPFrPntmvo-xXRU5xL3aCSvjSCicZaFjRRoawyiJs9BKUyfIniTHp-rXWXz2RJPzbwRfhnvGlfVLRid0gUrjeIF9lIlO6aK13x08vqcQNNG1Nhw6sVjECAPaqOT_jJAvcuUzX_TMqfRWGnWisuYipFyS886ssh13_ZKp8R39XWXLLbbk-81i-Mw-wOQL-9SdS7p9ZXd9oELfUXkhjmYjD54f1AkcvBjyPqC1-5vbpjjT8d48a4vTkUGpXVByRLh8UCvn4CHJf_8tqqK4GjWyTGTE8D4VZE09PzIlH4wuZmOcOU6FatiwGFNypehNAdAoxcppzX9jp73DP91j0coyCCN1UAntvYU089bjXWoYpRlIcDpxoEL8X5cpMGCSxEmEUxA561WqTZSmNtHGDFUQfWeLk2ICa4wH3msAo31iIkVkZNYhIMSzmygLgkyusx84nHm7rcq8jpjLMJ-Pcd6O8Trbm09k7lpuc5LYGL_R4udji8uG1-PVbzfe2YtNtiSpOIIeaNIttlhNZ7CNkKWyO_VafQBCdepA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKOZRL-Rfl1wd64OBt4jiJc-BQbdluabdC2lbqLTj2rFh1u0GbrPg59R3KC_AqPApPwow3WSoEiEslrlE8GnnGns_2NzOMPVeRRdyrrShkHAmFVhY6VtRDYxQlcRYW0niC7GHSP1avT-KTFfa1zYVBJSqUVPlH_J_VBcIt_OYvNDqhDVQatzzKffj0AU9p1cu9HTTpppS9V0fdvmgaCQgjdVAL7VwBaeYKh-h_FKUZSLA6saBCFGUzBQZMkliJAAAiWziVahOlaZFoY0YqiFDuNXYdsY-k8912d7i8xiFEpH1LOoydsYgRfTSPob9TmkKgrS6FwEuxrHeTfVvOgqewnHbmddGxn38pEPlfT9Mttt4gab69cP3bbAWmd9hat21gd5d9GQClNY-rM7E7HztwfMfTVXg54gNA7b-fXyxSUS3vtRw1ThskEdmg4ojn-dD3CcKQwN-8K-uy_DheNKEiIYYPKP1s5viuqfhwfDafoJ9ySsvDgeWEqKSiNwNAocQMoBV-jx1fyaTcZ6vTcgoPGA-c0wBGu8REikqvFRbhL0YqKtAQZHKDbaL58mYTqXLPD5Bh3to0b2y6wbZa_8ltU8mdGopM_jLixXLE-0UVkz_--_AftXjG1vpHg4P8YO9w_xG7ISkthK6m0sdstZ7N4QmCtbp46pcLZ2-v2vF-AKTATuY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKkYAL5a-i_PpADxyyTRwncQ4cql3SlrJVpaVSb8E_E7Fiu6k2WQE99R3gFfoqPAhPwkw2WVUIEJdKXKN4NPJ4PJ_tb2YYeyFDi7hXWc-IKPQkWtlTkaQeGkUYR2lghG4Isgfx7pF8cxwdr7CLLhcGlahQUtU84pNXn7qirTAQbOH35lKjF1hfJlHHpdyHL5_wpFa92hugWTeFyF6_6-96bTMBTwvl155yzkCSOuPwBFCESQoCrIotyABF2VSCBh3HViAIgNAaJxOlwyQxsdK6kH6Icq-x6_RKSGe87f5oeZVDqEg1bekwfkZehAikfRD9ndIUBm11KQxeimfZGvu-nImGxvKxN69Nz579UiTyv5-qO-x2i6j59sIF7rIVmN5jN_tdI7v77NsQKL15XJ14O_OxA8cHDW2FlwUfAmr_4_zrIiXV8qzjqnHaKInQBhVHXM9HTb8gDA388ENZl-Xn8aIZFQnRfEhpaDPHd3TFR-OT-QTXK6f0PBxYTohS6mUzABRKDAHy9Afs6EomZZ2tTsspPGTcd04BaOViHUoqwWYswmCMWFSowU_FBttE8-XtZlLlDU9ABHln07y16Qbb6tZQbtuK7tRYZPKXES-XI04X1Uz--O-jf9TiObtxOMjyt3sH-4_ZLUHZIXRDlTxhq_VsDk8Rs9XmWeMxnL2_6nX3E4RYUWk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism-Guided+Design+of+Metal%E2%80%93Organic+Framework+Composites+for+Selective+Photooxidation+of+a+Mustard+Gas+Simulant+under+Solvent-Free+Conditions&rft.jtitle=ACS+catalysis&rft.au=Hao%2C+Yajiao&rft.au=Papazyan%2C+Edgar+K&rft.au=Ba%2C+Yong&rft.au=Liu%2C+Yangyang&rft.date=2022-01-07&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=12&rft.issue=1&rft.spage=363&rft.epage=371&rft_id=info:doi/10.1021%2Facscatal.1c04755&rft.externalDocID=a072081456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |