Nonlinear Optical Studies of Water at Gypsum–Air and Gypsum–Aqueous Interfaces

Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at the gypsum (CaSO4·2H2O)–air and gypsum–water interfaces under ambient thermal and atmospheric conditions. Results show that water structural...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 128; no. 5; pp. 2076 - 2085
Main Authors Yiyen, Galip, Sobolewski, Tess N., Walker, Robert A.
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.02.2024
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
DOI10.1021/acs.jpcc.3c04844

Cover

Loading…
Abstract Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at the gypsum (CaSO4·2H2O)–air and gypsum–water interfaces under ambient thermal and atmospheric conditions. Results show that water structurally embedded in the gypsum matrix consists of two different populations. One population has decoupled −OH bonds with one bond oriented in-plane, while the second water population has a more traditional, normal mode structure with the molecular C 2 symmetry axis aligned along the surface normal. Based on previously reported molecular dynamics simulations, we propose that surface water molecules having the decoupled −OH bonds (population 1) result from strong hydrogen bond donation to gypsum’s sulfate oxygens, whereas water molecules in the second population sample a more symmetric environment that shifts water’s vibrational frequencies to ∼3400 cm–1. Gypsum samples in contact with bulk water show significantly diminished VSFG signals with no observable new features. This result is attributed to loss of VSFG response due to the signal transmission into the bulk water and to an absence of surface-induced structure in the adjacent aqueous phase, consistent with a mineral surface near its point of zero charge. Removal of the bulk aqueous phase results in VSFG spectra that are very similar to those measured prior to water immersion, even when the aqueous phase consisted of D2O although relative intensities of individual bands change following exposure to D2O. These results imply that some fraction of gypsum’s surface structural water remains associated with the substrate and does not readily exchange with an adjacent phase. Furthermore, these findings provide direct molecular-level insight into previous force microscopy studies that proposed the existence of tightly bound surface waters at the gypsum/aqueous interface.
AbstractList Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at the gypsum (CaSO4·2H2O)–air and gypsum–water interfaces under ambient thermal and atmospheric conditions. Results show that water structurally embedded in the gypsum matrix consists of two different populations. One population has decoupled −OH bonds with one bond oriented in-plane, while the second water population has a more traditional, normal mode structure with the molecular C 2 symmetry axis aligned along the surface normal. Based on previously reported molecular dynamics simulations, we propose that surface water molecules having the decoupled −OH bonds (population 1) result from strong hydrogen bond donation to gypsum’s sulfate oxygens, whereas water molecules in the second population sample a more symmetric environment that shifts water’s vibrational frequencies to ∼3400 cm–1. Gypsum samples in contact with bulk water show significantly diminished VSFG signals with no observable new features. This result is attributed to loss of VSFG response due to the signal transmission into the bulk water and to an absence of surface-induced structure in the adjacent aqueous phase, consistent with a mineral surface near its point of zero charge. Removal of the bulk aqueous phase results in VSFG spectra that are very similar to those measured prior to water immersion, even when the aqueous phase consisted of D2O although relative intensities of individual bands change following exposure to D2O. These results imply that some fraction of gypsum’s surface structural water remains associated with the substrate and does not readily exchange with an adjacent phase. Furthermore, these findings provide direct molecular-level insight into previous force microscopy studies that proposed the existence of tightly bound surface waters at the gypsum/aqueous interface.
Author Yiyen, Galip
Walker, Robert A.
Sobolewski, Tess N.
AuthorAffiliation Department of Chemistry and Biochemistry
Montana State University
Montana Materials Science Program
AuthorAffiliation_xml – name: Montana Materials Science Program
– name: Montana State University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Galip
  surname: Yiyen
  fullname: Yiyen, Galip
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Tess N.
  surname: Sobolewski
  fullname: Sobolewski, Tess N.
  organization: Department of Chemistry and Biochemistry
– sequence: 3
  givenname: Robert A.
  orcidid: 0000-0002-0754-6298
  surname: Walker
  fullname: Walker, Robert A.
  email: rawalker@montana.edu
  organization: Montana State University
BookMark eNp9kMtKAzEUhoNUsK3uXeYBnJpMkpnpshSthWLBCy6HTOYMpEyTMcksuvMdfEOfxNQWEUFX5_Z_h3P-ERoYawChS0omlKT0Wio_2XRKTZgivOD8BA3plKVJzoUYfOc8P0Mj7zeECEYoG6KHe2tabUA6vO6CVrLFj6GvNXhsG_wiAzgsA17sOt9vP97eZzrWpv7ReO3B9h4vTZQ2UoE_R6eNbD1cHOMYPd_ePM3vktV6sZzPVolMCxKSrCK5IlIIVgPjNc3SGoSiAKRS03heQRtaUS7SooEaMmCKprmIc1UJGZVsjLLDXuWs9w6aUukgg7YmOKnbkpJy70wZnSn3zpRHZyJIfoGd01vpdv8hVwfka2J7Z-Jnf8s_ARADfQY
CitedBy_id crossref_primary_10_1016_j_surfin_2024_104901
crossref_primary_10_1021_acs_jpcc_4c01930
Cites_doi 10.1016/0016-7037(95)00116-6
10.2138/am-1999-0415
10.1038/s41467-018-04511-2
10.1021/ja01629a013
10.1002/adts.201900114
10.3133/ofr80336
10.1021/cr050358j
10.1144/qjegh2021-120
10.3390/ma13061427
10.1021/jacs.8b09907
10.1016/s0167-2738(01)00718-4
10.1021/acs.jpcb.5b07777
10.1021/acs.langmuir.1c02890
10.1021/acs.jpcc.0c07621
10.1007/BF00200324
10.1021/la502451f
10.1021/ja204714k
10.1126/science.264.5160.826
10.1016/j.apsusc.2023.156425
10.1021/jp8062993
10.1073/pnas.2001613117
10.1007/s10498-010-9112-1
10.1134/S0016702915070058
10.3390/min10020115
10.1021/acs.jpcc.0c00659
10.1063/1.1674832
10.2138/am.2008.2917
10.1021/jz500906d
10.1007/s002690100187
10.1007/s00269-011-0464-x
10.5038/1827-806X.25.3.2
10.1016/j.apgeochem.2022.105474
10.21577/0103-5053.20220057
10.1126/science.1059514
10.1021/jp0690401
10.1039/C6CP05836A
10.1016/j.molliq.2015.11.004
10.1039/d1cp03964d
10.1103/PhysRevLett.70.2313
10.1016/0584-8539(83)80160-3
10.1146/annurev.physchem.59.032607.093651
10.1080/10643389.2012.743270
10.1021/ja962277y
10.1146/annurev-physchem-032511-143811
10.1021/acs.jpcc.5b10995
10.1002/jrs.736
10.1029/2007JE002920
10.1021/cr990054v
10.1021/jp910977a
10.1016/j.cemconres.2019.105969
10.1080/01442350500225894
10.1021/acs.jpcc.1c06213
10.1016/j.cemconres.2023.107092
10.1016/j.cis.2012.06.004
10.1016/j.chemphys.2018.02.011
10.1016/0584-8539(71)80238-6
10.1016/j.jhazmat.2011.04.063
10.1016/j.partic.2019.08.003
10.1126/science.1058173
10.1007/s00269-006-0135-5
10.1016/S0169-4332(00)00030-1
10.1016/j.scitotenv.2023.161708
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.3c04844
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 2085
ExternalDocumentID 10_1021_acs_jpcc_3c04844
b061251463
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABBLG
ABLBI
CITATION
CUPRZ
ROL
ID FETCH-LOGICAL-a280t-6b07c0a553de34d162de5c1ee0bc905381f1b14528fede6e3c12751eecb5ae5c3
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 00:17:25 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Fri Feb 09 03:16:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-6b07c0a553de34d162de5c1ee0bc905381f1b14528fede6e3c12751eecb5ae5c3
ORCID 0000-0002-0754-6298
PageCount 10
ParticipantIDs crossref_citationtrail_10_1021_acs_jpcc_3c04844
crossref_primary_10_1021_acs_jpcc_3c04844
acs_journals_10_1021_acs_jpcc_3c04844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-08
PublicationDateYYYYMMDD 2024-02-08
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-08
  day: 08
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
Haynes W. M. (ref67/cit67) 2015
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
Chen L. (ref23/cit23) 2011
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1016/0016-7037(95)00116-6
– ident: ref5/cit5
  doi: 10.2138/am-1999-0415
– ident: ref9/cit9
  doi: 10.1038/s41467-018-04511-2
– ident: ref58/cit58
  doi: 10.1021/ja01629a013
– ident: ref13/cit13
  doi: 10.1002/adts.201900114
– ident: ref31/cit31
  doi: 10.3133/ofr80336
– ident: ref16/cit16
  doi: 10.1021/cr050358j
– ident: ref22/cit22
– volume-title: Gypsum as an Agricultural Amendment
  year: 2011
  ident: ref23/cit23
– ident: ref29/cit29
  doi: 10.1144/qjegh2021-120
– ident: ref37/cit37
  doi: 10.3390/ma13061427
– ident: ref38/cit38
  doi: 10.1021/jacs.8b09907
– ident: ref35/cit35
  doi: 10.1016/s0167-2738(01)00718-4
– ident: ref44/cit44
  doi: 10.1021/acs.jpcb.5b07777
– ident: ref46/cit46
  doi: 10.1021/acs.langmuir.1c02890
– ident: ref14/cit14
  doi: 10.1021/acs.jpcc.0c07621
– ident: ref60/cit60
  doi: 10.1007/BF00200324
– ident: ref64/cit64
– ident: ref32/cit32
  doi: 10.1021/la502451f
– ident: ref19/cit19
  doi: 10.1021/ja204714k
– ident: ref62/cit62
  doi: 10.1126/science.264.5160.826
– ident: ref8/cit8
  doi: 10.1016/j.apsusc.2023.156425
– ident: ref20/cit20
  doi: 10.1021/jp8062993
– ident: ref24/cit24
  doi: 10.1073/pnas.2001613117
– ident: ref6/cit6
  doi: 10.1007/s10498-010-9112-1
– ident: ref26/cit26
  doi: 10.1134/S0016702915070058
– ident: ref51/cit51
  doi: 10.3390/min10020115
– ident: ref61/cit61
  doi: 10.1021/acs.jpcc.0c00659
– volume-title: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
  year: 2015
  ident: ref67/cit67
– ident: ref47/cit47
  doi: 10.1063/1.1674832
– ident: ref65/cit65
  doi: 10.2138/am.2008.2917
– ident: ref43/cit43
  doi: 10.1021/jz500906d
– ident: ref49/cit49
  doi: 10.1007/s002690100187
– ident: ref56/cit56
  doi: 10.1007/s00269-011-0464-x
– ident: ref21/cit21
– ident: ref30/cit30
  doi: 10.5038/1827-806X.25.3.2
– ident: ref15/cit15
  doi: 10.1016/j.apgeochem.2022.105474
– ident: ref1/cit1
  doi: 10.21577/0103-5053.20220057
– ident: ref63/cit63
  doi: 10.1126/science.1059514
– ident: ref53/cit53
  doi: 10.1021/jp0690401
– ident: ref12/cit12
  doi: 10.1039/C6CP05836A
– ident: ref55/cit55
  doi: 10.1016/j.molliq.2015.11.004
– ident: ref33/cit33
  doi: 10.1039/d1cp03964d
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.70.2313
– ident: ref48/cit48
  doi: 10.1016/0584-8539(83)80160-3
– ident: ref39/cit39
  doi: 10.1146/annurev.physchem.59.032607.093651
– ident: ref27/cit27
  doi: 10.1080/10643389.2012.743270
– ident: ref52/cit52
  doi: 10.1021/ja962277y
– ident: ref40/cit40
  doi: 10.1146/annurev-physchem-032511-143811
– ident: ref10/cit10
  doi: 10.1021/acs.jpcc.5b10995
– ident: ref59/cit59
  doi: 10.1002/jrs.736
– ident: ref66/cit66
  doi: 10.1029/2007JE002920
– ident: ref54/cit54
  doi: 10.1021/cr990054v
– ident: ref17/cit17
  doi: 10.1021/jp910977a
– ident: ref25/cit25
  doi: 10.1016/j.cemconres.2019.105969
– ident: ref41/cit41
  doi: 10.1080/01442350500225894
– ident: ref36/cit36
  doi: 10.1021/acs.jpcc.1c06213
– ident: ref4/cit4
  doi: 10.1016/j.cemconres.2023.107092
– ident: ref11/cit11
  doi: 10.1016/j.cis.2012.06.004
– ident: ref45/cit45
  doi: 10.1016/j.chemphys.2018.02.011
– ident: ref50/cit50
  doi: 10.1016/0584-8539(71)80238-6
– ident: ref28/cit28
  doi: 10.1016/j.jhazmat.2011.04.063
– ident: ref2/cit2
  doi: 10.1016/j.partic.2019.08.003
– ident: ref3/cit3
  doi: 10.1126/science.1058173
– ident: ref57/cit57
  doi: 10.1007/s00269-006-0135-5
– ident: ref34/cit34
  doi: 10.1016/S0169-4332(00)00030-1
– ident: ref7/cit7
  doi: 10.1016/j.scitotenv.2023.161708
SSID ssj0053013
Score 2.4555917
Snippet Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 2076
SubjectTerms C: Physical Properties of Materials and Interfaces
Title Nonlinear Optical Studies of Water at Gypsum–Air and Gypsum–Aqueous Interfaces
URI http://dx.doi.org/10.1021/acs.jpcc.3c04844
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCjiibfIADh6SJtyTHqqJUSBQJqOgtsh1HokBaNekBTvwDf8iXMFkKFZt6jGNb1ngy8-yZvEHo2ONSGcK4pSWXFguEtiRYSCvmMjB-4IF5yP8dvuyKTo9d9Hn_iybnewSfuA2pU3sw0tqmGrSNsUW0RASg7BwGtW6mVpeDotIyggyIkTGvCkn-NkPuiHQ644hmPEp7rSxNlBZEhHkiyYM9yZStX37SNM6x2HW0WgFL3Cw1YQMtmGQTLbem9dy20HW3ZMWQY3w1Km6wcZVEiIcxvgPMOcYyw-fPcG5-en99a97DcxLNNIALGU5SXFwixnkq1zbqtc9uWx2rqqgAG-A7mSWU42lHck4jQ1nkChIZrl1jHKUDkKHvxq5yGSd-bCIjDNU5_zu814pL6El3UC0ZJmYXYaJFrAhlMY8kE7CzIuASziZCwlyMmjo6AWGE1ReRhkWwm7hh0QgSCisJ1VFjug2hrmjJ8-oYj_-MOP0cMSopOf7suzfnKvbRCgG0UqRj-weolo0n5hDQRqaOCjX7ANfA0rI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzBrjMC68EeOZAxw4dKxtkrbHaWIM2IY0NrFblaapxGub1u4AJ_6BP-RLcF9jQoDgWDeJLNuxndixAY4sJjxlUKZJwYRGHS41gRpSC5hwlO1YqB7it8PtDm_26eWADQqg529hEIkQVwqTIP5ndQH9NIbdj6WsmBKFjtIFWERfxIiz-Gr1m1z5MpRXMw0ko-NIqZVFJr9bIbZHMpyzR3OGpbEC3RlKST7JQ2UaeRX58qVa479wXoXlzM0ktVQu1qCghutQqufd3Tag20lrZIgJuR4n99kkSykko4Dcogc6ISIi5894in56f32r3eH30J8DoEEZTUOSXCkGcWLXJvQbZ716U8v6KyA77Gqkca9qyapgzPSVSX2dG75iUleq6kkHSWnrge7plBl2oHzFlSnjavD4X3pM4EhzC4rD0VBtAzEkDzzDpAHzBeXIZ-4wgScVLnAtaqoyHCMx3Gx_hG4S-jZ0NwEihdyMQmU4zbnhyqxIedwr4_GXGSezGeO0QMePY3f-iMUhlJq9dsttXXSudmHJQD8mSdS296AYTaZqH_2QyDtIJO8DpjfbEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzBpDAi68EeOZAxw4dFvbJGuP02CM10DAgFuVpqnEq5vW7gAn_oE_5Etw2m6aECA41k0iy3ZsJ3ZsgJ0aE76yKDOkYMKgLpeGQA1phEy4ynFrqB702-GzNm916PEduysAG76FQSRiXClOg_h6V_eCMK8wYFY0_KEnZdmWKHiUTsCkjtrpTL5642qogBnKrJ0Fk9F5pLSWRye_W0HbJBmP2aQx49Kcg5sRWmlOyWN5kPhl-fqlYuO_8Z6H2dzdJPVMPhagoKJFmG4Mu7wtwWU7q5Uh-uS8l95rkzy1kHRDcoueaJ-IhBy-4Gn6-ePtvX6P31EwBkDD0h3EJL1aDHWC1zJ0mgfXjZaR91lAtjjVxOB-tSargjE7UDYNTG4FiklTqaovXSSnY4amb1JmOaEKFFe21FXh8b_0mcCR9goUo26kVoFYkoe-ZdOQBYJy5Dd3mcATCxe4FrVVCXaRGF6-T2IvDYFbppcCkUJeTqESVIYc8WRerFz3zHj6ZcbeaEYvK9Tx49i1P2KxDVMX-03v9Kh9sg4zFrozab62swHFpD9Qm-iOJP5WKnyfxEjdlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Optical+Studies+of+Water+at+Gypsum%E2%80%93Air+and+Gypsum%E2%80%93Aqueous+Interfaces&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Yiyen%2C+Galip&rft.au=Sobolewski%2C+Tess+N.&rft.au=Walker%2C+Robert+A.&rft.date=2024-02-08&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=128&rft.issue=5&rft.spage=2076&rft.epage=2085&rft_id=info:doi/10.1021%2Facs.jpcc.3c04844&rft.externalDocID=b061251463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon