Nonlinear Optical Studies of Water at Gypsum–Air and Gypsum–Aqueous Interfaces
Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at the gypsum (CaSO4·2H2O)–air and gypsum–water interfaces under ambient thermal and atmospheric conditions. Results show that water structural...
Saved in:
Published in | Journal of physical chemistry. C Vol. 128; no. 5; pp. 2076 - 2085 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
08.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-7447 1932-7455 |
DOI | 10.1021/acs.jpcc.3c04844 |
Cover
Loading…
Abstract | Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at the gypsum (CaSO4·2H2O)–air and gypsum–water interfaces under ambient thermal and atmospheric conditions. Results show that water structurally embedded in the gypsum matrix consists of two different populations. One population has decoupled −OH bonds with one bond oriented in-plane, while the second water population has a more traditional, normal mode structure with the molecular C 2 symmetry axis aligned along the surface normal. Based on previously reported molecular dynamics simulations, we propose that surface water molecules having the decoupled −OH bonds (population 1) result from strong hydrogen bond donation to gypsum’s sulfate oxygens, whereas water molecules in the second population sample a more symmetric environment that shifts water’s vibrational frequencies to ∼3400 cm–1. Gypsum samples in contact with bulk water show significantly diminished VSFG signals with no observable new features. This result is attributed to loss of VSFG response due to the signal transmission into the bulk water and to an absence of surface-induced structure in the adjacent aqueous phase, consistent with a mineral surface near its point of zero charge. Removal of the bulk aqueous phase results in VSFG spectra that are very similar to those measured prior to water immersion, even when the aqueous phase consisted of D2O although relative intensities of individual bands change following exposure to D2O. These results imply that some fraction of gypsum’s surface structural water remains associated with the substrate and does not readily exchange with an adjacent phase. Furthermore, these findings provide direct molecular-level insight into previous force microscopy studies that proposed the existence of tightly bound surface waters at the gypsum/aqueous interface. |
---|---|
AbstractList | Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at the gypsum (CaSO4·2H2O)–air and gypsum–water interfaces under ambient thermal and atmospheric conditions. Results show that water structurally embedded in the gypsum matrix consists of two different populations. One population has decoupled −OH bonds with one bond oriented in-plane, while the second water population has a more traditional, normal mode structure with the molecular C 2 symmetry axis aligned along the surface normal. Based on previously reported molecular dynamics simulations, we propose that surface water molecules having the decoupled −OH bonds (population 1) result from strong hydrogen bond donation to gypsum’s sulfate oxygens, whereas water molecules in the second population sample a more symmetric environment that shifts water’s vibrational frequencies to ∼3400 cm–1. Gypsum samples in contact with bulk water show significantly diminished VSFG signals with no observable new features. This result is attributed to loss of VSFG response due to the signal transmission into the bulk water and to an absence of surface-induced structure in the adjacent aqueous phase, consistent with a mineral surface near its point of zero charge. Removal of the bulk aqueous phase results in VSFG spectra that are very similar to those measured prior to water immersion, even when the aqueous phase consisted of D2O although relative intensities of individual bands change following exposure to D2O. These results imply that some fraction of gypsum’s surface structural water remains associated with the substrate and does not readily exchange with an adjacent phase. Furthermore, these findings provide direct molecular-level insight into previous force microscopy studies that proposed the existence of tightly bound surface waters at the gypsum/aqueous interface. |
Author | Yiyen, Galip Walker, Robert A. Sobolewski, Tess N. |
AuthorAffiliation | Department of Chemistry and Biochemistry Montana State University Montana Materials Science Program |
AuthorAffiliation_xml | – name: Montana Materials Science Program – name: Montana State University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Galip surname: Yiyen fullname: Yiyen, Galip organization: Department of Chemistry and Biochemistry – sequence: 2 givenname: Tess N. surname: Sobolewski fullname: Sobolewski, Tess N. organization: Department of Chemistry and Biochemistry – sequence: 3 givenname: Robert A. orcidid: 0000-0002-0754-6298 surname: Walker fullname: Walker, Robert A. email: rawalker@montana.edu organization: Montana State University |
BookMark | eNp9kMtKAzEUhoNUsK3uXeYBnJpMkpnpshSthWLBCy6HTOYMpEyTMcksuvMdfEOfxNQWEUFX5_Z_h3P-ERoYawChS0omlKT0Wio_2XRKTZgivOD8BA3plKVJzoUYfOc8P0Mj7zeECEYoG6KHe2tabUA6vO6CVrLFj6GvNXhsG_wiAzgsA17sOt9vP97eZzrWpv7ReO3B9h4vTZQ2UoE_R6eNbD1cHOMYPd_ePM3vktV6sZzPVolMCxKSrCK5IlIIVgPjNc3SGoSiAKRS03heQRtaUS7SooEaMmCKprmIc1UJGZVsjLLDXuWs9w6aUukgg7YmOKnbkpJy70wZnSn3zpRHZyJIfoGd01vpdv8hVwfka2J7Z-Jnf8s_ARADfQY |
CitedBy_id | crossref_primary_10_1016_j_surfin_2024_104901 crossref_primary_10_1021_acs_jpcc_4c01930 |
Cites_doi | 10.1016/0016-7037(95)00116-6 10.2138/am-1999-0415 10.1038/s41467-018-04511-2 10.1021/ja01629a013 10.1002/adts.201900114 10.3133/ofr80336 10.1021/cr050358j 10.1144/qjegh2021-120 10.3390/ma13061427 10.1021/jacs.8b09907 10.1016/s0167-2738(01)00718-4 10.1021/acs.jpcb.5b07777 10.1021/acs.langmuir.1c02890 10.1021/acs.jpcc.0c07621 10.1007/BF00200324 10.1021/la502451f 10.1021/ja204714k 10.1126/science.264.5160.826 10.1016/j.apsusc.2023.156425 10.1021/jp8062993 10.1073/pnas.2001613117 10.1007/s10498-010-9112-1 10.1134/S0016702915070058 10.3390/min10020115 10.1021/acs.jpcc.0c00659 10.1063/1.1674832 10.2138/am.2008.2917 10.1021/jz500906d 10.1007/s002690100187 10.1007/s00269-011-0464-x 10.5038/1827-806X.25.3.2 10.1016/j.apgeochem.2022.105474 10.21577/0103-5053.20220057 10.1126/science.1059514 10.1021/jp0690401 10.1039/C6CP05836A 10.1016/j.molliq.2015.11.004 10.1039/d1cp03964d 10.1103/PhysRevLett.70.2313 10.1016/0584-8539(83)80160-3 10.1146/annurev.physchem.59.032607.093651 10.1080/10643389.2012.743270 10.1021/ja962277y 10.1146/annurev-physchem-032511-143811 10.1021/acs.jpcc.5b10995 10.1002/jrs.736 10.1029/2007JE002920 10.1021/cr990054v 10.1021/jp910977a 10.1016/j.cemconres.2019.105969 10.1080/01442350500225894 10.1021/acs.jpcc.1c06213 10.1016/j.cemconres.2023.107092 10.1016/j.cis.2012.06.004 10.1016/j.chemphys.2018.02.011 10.1016/0584-8539(71)80238-6 10.1016/j.jhazmat.2011.04.063 10.1016/j.partic.2019.08.003 10.1126/science.1058173 10.1007/s00269-006-0135-5 10.1016/S0169-4332(00)00030-1 10.1016/j.scitotenv.2023.161708 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.jpcc.3c04844 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 2085 |
ExternalDocumentID | 10_1021_acs_jpcc_3c04844 b061251463 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABBLG ABLBI CITATION CUPRZ ROL |
ID | FETCH-LOGICAL-a280t-6b07c0a553de34d162de5c1ee0bc905381f1b14528fede6e3c12751eecb5ae5c3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 00:17:25 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Fri Feb 09 03:16:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-6b07c0a553de34d162de5c1ee0bc905381f1b14528fede6e3c12751eecb5ae5c3 |
ORCID | 0000-0002-0754-6298 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_acs_jpcc_3c04844 crossref_primary_10_1021_acs_jpcc_3c04844 acs_journals_10_1021_acs_jpcc_3c04844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-08 |
PublicationDateYYYYMMDD | 2024-02-08 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 Haynes W. M. (ref67/cit67) 2015 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 Chen L. (ref23/cit23) 2011 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1016/0016-7037(95)00116-6 – ident: ref5/cit5 doi: 10.2138/am-1999-0415 – ident: ref9/cit9 doi: 10.1038/s41467-018-04511-2 – ident: ref58/cit58 doi: 10.1021/ja01629a013 – ident: ref13/cit13 doi: 10.1002/adts.201900114 – ident: ref31/cit31 doi: 10.3133/ofr80336 – ident: ref16/cit16 doi: 10.1021/cr050358j – ident: ref22/cit22 – volume-title: Gypsum as an Agricultural Amendment year: 2011 ident: ref23/cit23 – ident: ref29/cit29 doi: 10.1144/qjegh2021-120 – ident: ref37/cit37 doi: 10.3390/ma13061427 – ident: ref38/cit38 doi: 10.1021/jacs.8b09907 – ident: ref35/cit35 doi: 10.1016/s0167-2738(01)00718-4 – ident: ref44/cit44 doi: 10.1021/acs.jpcb.5b07777 – ident: ref46/cit46 doi: 10.1021/acs.langmuir.1c02890 – ident: ref14/cit14 doi: 10.1021/acs.jpcc.0c07621 – ident: ref60/cit60 doi: 10.1007/BF00200324 – ident: ref64/cit64 – ident: ref32/cit32 doi: 10.1021/la502451f – ident: ref19/cit19 doi: 10.1021/ja204714k – ident: ref62/cit62 doi: 10.1126/science.264.5160.826 – ident: ref8/cit8 doi: 10.1016/j.apsusc.2023.156425 – ident: ref20/cit20 doi: 10.1021/jp8062993 – ident: ref24/cit24 doi: 10.1073/pnas.2001613117 – ident: ref6/cit6 doi: 10.1007/s10498-010-9112-1 – ident: ref26/cit26 doi: 10.1134/S0016702915070058 – ident: ref51/cit51 doi: 10.3390/min10020115 – ident: ref61/cit61 doi: 10.1021/acs.jpcc.0c00659 – volume-title: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data year: 2015 ident: ref67/cit67 – ident: ref47/cit47 doi: 10.1063/1.1674832 – ident: ref65/cit65 doi: 10.2138/am.2008.2917 – ident: ref43/cit43 doi: 10.1021/jz500906d – ident: ref49/cit49 doi: 10.1007/s002690100187 – ident: ref56/cit56 doi: 10.1007/s00269-011-0464-x – ident: ref21/cit21 – ident: ref30/cit30 doi: 10.5038/1827-806X.25.3.2 – ident: ref15/cit15 doi: 10.1016/j.apgeochem.2022.105474 – ident: ref1/cit1 doi: 10.21577/0103-5053.20220057 – ident: ref63/cit63 doi: 10.1126/science.1059514 – ident: ref53/cit53 doi: 10.1021/jp0690401 – ident: ref12/cit12 doi: 10.1039/C6CP05836A – ident: ref55/cit55 doi: 10.1016/j.molliq.2015.11.004 – ident: ref33/cit33 doi: 10.1039/d1cp03964d – ident: ref42/cit42 doi: 10.1103/PhysRevLett.70.2313 – ident: ref48/cit48 doi: 10.1016/0584-8539(83)80160-3 – ident: ref39/cit39 doi: 10.1146/annurev.physchem.59.032607.093651 – ident: ref27/cit27 doi: 10.1080/10643389.2012.743270 – ident: ref52/cit52 doi: 10.1021/ja962277y – ident: ref40/cit40 doi: 10.1146/annurev-physchem-032511-143811 – ident: ref10/cit10 doi: 10.1021/acs.jpcc.5b10995 – ident: ref59/cit59 doi: 10.1002/jrs.736 – ident: ref66/cit66 doi: 10.1029/2007JE002920 – ident: ref54/cit54 doi: 10.1021/cr990054v – ident: ref17/cit17 doi: 10.1021/jp910977a – ident: ref25/cit25 doi: 10.1016/j.cemconres.2019.105969 – ident: ref41/cit41 doi: 10.1080/01442350500225894 – ident: ref36/cit36 doi: 10.1021/acs.jpcc.1c06213 – ident: ref4/cit4 doi: 10.1016/j.cemconres.2023.107092 – ident: ref11/cit11 doi: 10.1016/j.cis.2012.06.004 – ident: ref45/cit45 doi: 10.1016/j.chemphys.2018.02.011 – ident: ref50/cit50 doi: 10.1016/0584-8539(71)80238-6 – ident: ref28/cit28 doi: 10.1016/j.jhazmat.2011.04.063 – ident: ref2/cit2 doi: 10.1016/j.partic.2019.08.003 – ident: ref3/cit3 doi: 10.1126/science.1058173 – ident: ref57/cit57 doi: 10.1007/s00269-006-0135-5 – ident: ref34/cit34 doi: 10.1016/S0169-4332(00)00030-1 – ident: ref7/cit7 doi: 10.1016/j.scitotenv.2023.161708 |
SSID | ssj0053013 |
Score | 2.4555917 |
Snippet | Vibrational sum frequency generation (VSFG), Fourier transform infrared (FTIR) absorbance, and Raman scattering were used to investigate the water structure at... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2076 |
SubjectTerms | C: Physical Properties of Materials and Interfaces |
Title | Nonlinear Optical Studies of Water at Gypsum–Air and Gypsum–Aqueous Interfaces |
URI | http://dx.doi.org/10.1021/acs.jpcc.3c04844 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCjiibfIADh6SJtyTHqqJUSBQJqOgtsh1HokBaNekBTvwDf8iXMFkKFZt6jGNb1ngy8-yZvEHo2ONSGcK4pSWXFguEtiRYSCvmMjB-4IF5yP8dvuyKTo9d9Hn_iybnewSfuA2pU3sw0tqmGrSNsUW0RASg7BwGtW6mVpeDotIyggyIkTGvCkn-NkPuiHQ644hmPEp7rSxNlBZEhHkiyYM9yZStX37SNM6x2HW0WgFL3Cw1YQMtmGQTLbem9dy20HW3ZMWQY3w1Km6wcZVEiIcxvgPMOcYyw-fPcG5-en99a97DcxLNNIALGU5SXFwixnkq1zbqtc9uWx2rqqgAG-A7mSWU42lHck4jQ1nkChIZrl1jHKUDkKHvxq5yGSd-bCIjDNU5_zu814pL6El3UC0ZJmYXYaJFrAhlMY8kE7CzIuASziZCwlyMmjo6AWGE1ReRhkWwm7hh0QgSCisJ1VFjug2hrmjJ8-oYj_-MOP0cMSopOf7suzfnKvbRCgG0UqRj-weolo0n5hDQRqaOCjX7ANfA0rI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzBrjMC68EeOZAxw4dKxtkrbHaWIM2IY0NrFblaapxGub1u4AJ_6BP-RLcF9jQoDgWDeJLNuxndixAY4sJjxlUKZJwYRGHS41gRpSC5hwlO1YqB7it8PtDm_26eWADQqg529hEIkQVwqTIP5ndQH9NIbdj6WsmBKFjtIFWERfxIiz-Gr1m1z5MpRXMw0ko-NIqZVFJr9bIbZHMpyzR3OGpbEC3RlKST7JQ2UaeRX58qVa479wXoXlzM0ktVQu1qCghutQqufd3Tag20lrZIgJuR4n99kkSykko4Dcogc6ISIi5894in56f32r3eH30J8DoEEZTUOSXCkGcWLXJvQbZ716U8v6KyA77Gqkca9qyapgzPSVSX2dG75iUleq6kkHSWnrge7plBl2oHzFlSnjavD4X3pM4EhzC4rD0VBtAzEkDzzDpAHzBeXIZ-4wgScVLnAtaqoyHCMx3Gx_hG4S-jZ0NwEihdyMQmU4zbnhyqxIedwr4_GXGSezGeO0QMePY3f-iMUhlJq9dsttXXSudmHJQD8mSdS296AYTaZqH_2QyDtIJO8DpjfbEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzBpDAi68EeOZAxw4dFvbJGuP02CM10DAgFuVpqnEq5vW7gAn_oE_5Etw2m6aECA41k0iy3ZsJ3ZsgJ0aE76yKDOkYMKgLpeGQA1phEy4ynFrqB702-GzNm916PEduysAG76FQSRiXClOg_h6V_eCMK8wYFY0_KEnZdmWKHiUTsCkjtrpTL5642qogBnKrJ0Fk9F5pLSWRye_W0HbJBmP2aQx49Kcg5sRWmlOyWN5kPhl-fqlYuO_8Z6H2dzdJPVMPhagoKJFmG4Mu7wtwWU7q5Uh-uS8l95rkzy1kHRDcoueaJ-IhBy-4Gn6-ePtvX6P31EwBkDD0h3EJL1aDHWC1zJ0mgfXjZaR91lAtjjVxOB-tSargjE7UDYNTG4FiklTqaovXSSnY4amb1JmOaEKFFe21FXh8b_0mcCR9goUo26kVoFYkoe-ZdOQBYJy5Dd3mcATCxe4FrVVCXaRGF6-T2IvDYFbppcCkUJeTqESVIYc8WRerFz3zHj6ZcbeaEYvK9Tx49i1P2KxDVMX-03v9Kh9sg4zFrozab62swHFpD9Qm-iOJP5WKnyfxEjdlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Optical+Studies+of+Water+at+Gypsum%E2%80%93Air+and+Gypsum%E2%80%93Aqueous+Interfaces&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Yiyen%2C+Galip&rft.au=Sobolewski%2C+Tess+N.&rft.au=Walker%2C+Robert+A.&rft.date=2024-02-08&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=128&rft.issue=5&rft.spage=2076&rft.epage=2085&rft_id=info:doi/10.1021%2Facs.jpcc.3c04844&rft.externalDocID=b061251463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |