Deep Learning Model Predictive Control Frameworks: Application to a Fluid Catalytic Cracker–Fractionator Process

The present study proposes two model predictive control (MPC) frameworks that incorporate deep learning models: (i) deep learning MPC (implements only deep learning models) and (ii) hybrid MPC (implements deep learning and linear models, which provide improved model-based interpretability). The prop...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 62; no. 27; pp. 10587 - 10600
Main Authors Santander, Omar, Kuppuraj, Vidyashankar, Harrison, Christopher A., Baldea, Michael
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study proposes two model predictive control (MPC) frameworks that incorporate deep learning models: (i) deep learning MPC (implements only deep learning models) and (ii) hybrid MPC (implements deep learning and linear models, which provide improved model-based interpretability). The proposed frameworks are successfully applied to a large-scale fluid catalytic cracker–fractionator process. The results demonstrate economic improvement (with respect to the current industrial MPC practice) under various disturbance scenarios. The solution time of the proposed frameworks is promising, particularly for hybrid MPC, which is expected to promote industrial implementation.
AbstractList The present study proposes two model predictive control (MPC) frameworks that incorporate deep learning models: (i) deep learning MPC (implements only deep learning models) and (ii) hybrid MPC (implements deep learning and linear models, which provide improved model-based interpretability). The proposed frameworks are successfully applied to a large-scale fluid catalytic cracker–fractionator process. The results demonstrate economic improvement (with respect to the current industrial MPC practice) under various disturbance scenarios. The solution time of the proposed frameworks is promising, particularly for hybrid MPC, which is expected to promote industrial implementation.
Author Harrison, Christopher A.
Baldea, Michael
Santander, Omar
Kuppuraj, Vidyashankar
AuthorAffiliation Marathon Petroleum Corporation
McKetta Department of Chemical Engineering
Oden Institute for Computational Engineering and Sciences
AuthorAffiliation_xml – name: Oden Institute for Computational Engineering and Sciences
– name: McKetta Department of Chemical Engineering
– name: Marathon Petroleum Corporation
Author_xml – sequence: 1
  givenname: Omar
  surname: Santander
  fullname: Santander, Omar
  organization: McKetta Department of Chemical Engineering
– sequence: 2
  givenname: Vidyashankar
  surname: Kuppuraj
  fullname: Kuppuraj, Vidyashankar
  organization: Marathon Petroleum Corporation
– sequence: 3
  givenname: Christopher A.
  surname: Harrison
  fullname: Harrison, Christopher A.
  organization: Marathon Petroleum Corporation
– sequence: 4
  givenname: Michael
  orcidid: 0000-0001-6400-0315
  surname: Baldea
  fullname: Baldea, Michael
  email: mbaldea@che.utexas.edu
  organization: Oden Institute for Computational Engineering and Sciences
BookMark eNp1kLFOwzAQhi1UJNrCzugHIOWc2NhhqwIFpCIYYI5cx0Fu0zg6u6BuvANvyJOQqF1Z7ob7v1-nb0JGrW8tIZcMZgxSdq1NmDlrcJYZYIzBCRkzkUIigIsRGYNSKhFKiTMyCWENAEJwPiZ4Z21Hl1Zj69oP-uwr29BXtJUz0X1aWvg2om_oAvXWfnnchFs677rGGR2db2n0VNNFs3MVLXTUzT46QwvUZmPx9_unx8yQ09FjX-uNDeGcnNa6CfbiuKfkfXH_Vjwmy5eHp2K-THSqICbZDZe11CsuNTO2MkbyjHMmcwG5ZDlImaWyHyspdVZzriqmoM6YULbKV6zOpgQOvQZ9CGjrskO31bgvGZSDs7J3Vg7OyqOzHrk6IMNl7XfY9g_-H_8DAzFzfg
CitedBy_id crossref_primary_10_1016_j_aej_2023_08_066
crossref_primary_10_1016_j_dche_2024_100161
crossref_primary_10_1021_acs_iecr_3c01835
Cites_doi 10.1016/j.compchemeng.2022.107900
10.23919/ACC.2017.7963782
10.1016/j.compchemeng.2020.106801
10.1002/aic.17436
10.1021/ie502271r
10.1007/978-0-85729-977-2
10.1073/pnas.1900654116
10.1021/acs.iecr.1c04251
10.1021/ie200743c
10.1016/j.compchemeng.2020.106834
10.1016/S0967-0661(02)00186-7
10.1016/S0255-2701(02)00017-X
10.1109/JSAC.2020.3036950
10.1021/acs.iecr.1c04339
10.1007/978-1-4842-4470-8_7
10.1016/j.compchemeng.2014.09.002
10.1021/acs.iecr.2c02715
10.1016/0098-1354(95)00030-5
10.1016/S1570-7946(00)80041-3
10.1016/j.cep.2004.08.008
10.1016/j.compchemeng.2019.04.003
10.1186/s40537-014-0007-7
10.1016/j.compchemeng.2019.106627
10.3390/math6110242
10.1016/j.ifacol.2018.11.038
10.1016/j.jprocont.2020.03.013
10.1016/j.compchemeng.2021.107360
10.1016/j.compchemeng.2017.10.008
10.1016/S0255-2701(02)00055-7
10.1016/j.compchemeng.2008.08.007
10.15607/RSS.2020.XVI.087
10.1016/j.jprocont.2014.03.010
10.1021/ie9603575
10.1016/S0098-1354(01)00756-6
10.1109/ICCUBEA.2018.8697857
10.1016/j.neucom.2020.07.061
10.1016/0005-1098(94)90230-5
10.1016/j.ifacol.2018.09.373
10.1016/j.compchemeng.2009.06.007
10.1109/TNNLS.2020.3015869
10.1002/aic.16734
10.1002/aic.690490213
10.1021/ie00036a022
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.iecr.3c01110
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 10600
ExternalDocumentID 10_1021_acs_iecr_3c01110
b644795615
GroupedDBID -~X
.DC
.K2
4.4
55A
5GY
5VS
6TJ
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFO
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
~02
53G
AAYXX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a280t-3647f7ab47a1cedcc74344179509719077327773b77a3f448d180f3158ed9b1f3
IEDL.DBID ACS
ISSN 0888-5885
IngestDate Fri Aug 23 02:14:29 EDT 2024
Fri Jul 14 08:04:35 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-3647f7ab47a1cedcc74344179509719077327773b77a3f448d180f3158ed9b1f3
ORCID 0000-0001-6400-0315
PageCount 14
ParticipantIDs crossref_primary_10_1021_acs_iecr_3c01110
acs_journals_10_1021_acs_iecr_3c01110
PublicationCentury 2000
PublicationDate 2023-07-12
PublicationDateYYYYMMDD 2023-07-12
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-12
  day: 12
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
Liu T. (ref42/cit42) 2012
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref37/cit37
ref20/cit20
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
Rosenthal R. (ref48/cit48) 2008
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
Gulli A. (ref34/cit34) 2017
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
– volume-title: GAMS: A User’s Guide
  year: 2008
  ident: ref48/cit48
  contributor:
    fullname: Rosenthal R.
– volume-title: Deep Learning with Keras
  year: 2017
  ident: ref34/cit34
  contributor:
    fullname: Gulli A.
– ident: ref39/cit39
  doi: 10.1016/j.compchemeng.2022.107900
– ident: ref40/cit40
  doi: 10.23919/ACC.2017.7963782
– ident: ref36/cit36
– ident: ref22/cit22
  doi: 10.1016/j.compchemeng.2020.106801
– ident: ref29/cit29
  doi: 10.1002/aic.17436
– ident: ref12/cit12
  doi: 10.1021/ie502271r
– volume-title: Industrial Process Identification and Control Design: Step-Test and Relay-Experiment-Based Methods
  year: 2012
  ident: ref42/cit42
  doi: 10.1007/978-0-85729-977-2
  contributor:
    fullname: Liu T.
– ident: ref33/cit33
– ident: ref38/cit38
  doi: 10.1073/pnas.1900654116
– ident: ref24/cit24
  doi: 10.1021/acs.iecr.1c04251
– ident: ref13/cit13
  doi: 10.1021/ie200743c
– ident: ref47/cit47
  doi: 10.1016/j.compchemeng.2020.106834
– ident: ref15/cit15
  doi: 10.1016/S0967-0661(02)00186-7
– ident: ref9/cit9
  doi: 10.1016/S0255-2701(02)00017-X
– ident: ref46/cit46
  doi: 10.1109/JSAC.2020.3036950
– ident: ref28/cit28
  doi: 10.1021/acs.iecr.1c04339
– ident: ref35/cit35
  doi: 10.1007/978-1-4842-4470-8_7
– ident: ref1/cit1
  doi: 10.1016/j.compchemeng.2014.09.002
– ident: ref41/cit41
  doi: 10.1021/acs.iecr.2c02715
– ident: ref7/cit7
  doi: 10.1016/0098-1354(95)00030-5
– ident: ref30/cit30
  doi: 10.1016/S1570-7946(00)80041-3
– ident: ref32/cit32
  doi: 10.1016/j.cep.2004.08.008
– ident: ref17/cit17
  doi: 10.1016/j.compchemeng.2019.04.003
– ident: ref18/cit18
  doi: 10.1186/s40537-014-0007-7
– ident: ref2/cit2
  doi: 10.1016/j.compchemeng.2019.106627
– ident: ref20/cit20
  doi: 10.3390/math6110242
– ident: ref25/cit25
  doi: 10.1016/j.ifacol.2018.11.038
– ident: ref37/cit37
  doi: 10.1016/j.jprocont.2020.03.013
– ident: ref3/cit3
  doi: 10.1016/j.compchemeng.2021.107360
– ident: ref16/cit16
  doi: 10.1016/j.compchemeng.2017.10.008
– ident: ref8/cit8
  doi: 10.1016/S0255-2701(02)00055-7
– ident: ref10/cit10
  doi: 10.1016/j.compchemeng.2008.08.007
– ident: ref26/cit26
  doi: 10.15607/RSS.2020.XVI.087
– ident: ref45/cit45
– ident: ref5/cit5
  doi: 10.1016/j.jprocont.2014.03.010
– ident: ref11/cit11
  doi: 10.1021/ie9603575
– ident: ref31/cit31
  doi: 10.1016/S0098-1354(01)00756-6
– ident: ref19/cit19
  doi: 10.1109/ICCUBEA.2018.8697857
– ident: ref43/cit43
  doi: 10.1016/j.neucom.2020.07.061
– ident: ref44/cit44
  doi: 10.1016/0005-1098(94)90230-5
– ident: ref27/cit27
  doi: 10.1016/j.ifacol.2018.09.373
– ident: ref4/cit4
  doi: 10.1016/j.compchemeng.2009.06.007
– ident: ref23/cit23
  doi: 10.1109/TNNLS.2020.3015869
– ident: ref21/cit21
  doi: 10.1002/aic.16734
– ident: ref49/cit49
  doi: 10.1002/aic.690490213
– ident: ref6/cit6
  doi: 10.1021/ie00036a022
SSID ssj0005544
Score 2.496079
Snippet The present study proposes two model predictive control (MPC) frameworks that incorporate deep learning models: (i) deep learning MPC (implements only deep...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 10587
SubjectTerms Process Systems Engineering
Title Deep Learning Model Predictive Control Frameworks: Application to a Fluid Catalytic Cracker–Fractionator Process
URI http://dx.doi.org/10.1021/acs.iecr.3c01110
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA4yL3rwW5xf5KAHD61Lsq6Jt1EtQ1AEHexWkjSR4dhG2x305H_wH_pLzNt2bPgBXnooJS1pkvfreZ8HobNUSOEsm_JsKrjXtkR5ggHIkTtjKTqGcQv5jrv7Tq_fvh0EgwVNzvcKPiWXUuf-0LlQPtOgi-7C81UKAEJwg6LHBZwjKIVb3aaBTiIe1CXJ30YAQ6TzJUO0ZFHizUqaKC-JCAFI8uLPCuXrt580jf_42C20UTuWuFuthG20YsY7aH2JbnAXZdfGTHHNqPqMQQZthB8yKNXAoYejCraO4zlgK7_C3UWBGxcTLHE8mg1THEHW59W9CkeZBGTG5_tHnFVNEhDG47oBYQ_145unqOfVmguepLxVeEAnb0Op2qEk2qRaOw-jVCkLgGzKRdIho6G7qDCUzLrYLiW8ZRkJuEmFIpbto8Z4MjYHCIfUEKkVHCocWNykUIpyLZWljIlUNNG5m66k3jN5UpbDKUngJsxhUs9hE13Mf1QyrSg4_nz28J9jHqE10I2HJC2hx6hRZDNz4ryLQp2Wy-oLtMzKqg
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8IHtSD30b87EEPHoZ0Zaz1RqYLKhCjkHBb2q01RAJkGwc9-T_4H_qX2DeGEKOJXnZolreXt7bv-_cQOo244EazSUtHnFlVTaTFKRQ5MqMseU1RpiHe0WrXGt3qbc_pFRCZ9cIYJhJDKcmS-HN0AXIBa31jSZVpCOPRjZe-5LjGHQdryHucV3U42fxWc3agoYg5eWbyJwqgj8JkQR8tKBZ_HT18sZTVkzyXJ6ksh6_f0Br_xfMGWsvNTFyf7otNVFDDLbS6AD64jeIrpcY4x1d9wjAUbYDvY0jcwBWIvWkRO_Zn5VvJJa7P0904HWGB_cGkH2EPYkAv5lPYiwXUaXy8vfvxtGUCnHqctyPsoK5_3fEaVj6BwRI2q6QWgMtrV8iqK0ioojA09kY2s8wB6CnjV7vUds1Duq6g2nh6EWEVTYnDVMQl0XQXFYejodpD2LUVEaGEK4YBppvgUtosFFLblPKIl9CZEVeQn6AkyJLjNglgEWQY5DIsofPZ_wrGU0COX9_d_yPNE7Tc6LSaQfOmfXeAVmCiPIRviX2Iimk8UUfG7kjlcbbTPgHYcNMV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5jgujBb3F-5qAHD52mWdfE2-gs82sMdLJbSdpEhmMbbXfQk__Bf-gvMW_buSEKeukhlPQlTfJ-Pw9CxxEX3Gg2aemIM6umibQ4hSJHZpQlryvKNMQ77tr1Vrd23XN6JeRMe2GMEImZKcmS-HCqx5EuEAbIGYz3jTVVpSFQpBtPfcEB_m6wiLz7WWWHk3G4mvMDTUXMKbKTP80AOilM5nTSnHLxV9Hjl1hZTclzdZLKavj6DbHx33KvoZXC3MSNfH-so5IabqDlORDCTRQ3lRrjAmf1CQM52gB3YkjgwFWIvbyYHfvTMq7kAjdmaW-cjrDA_mDSj7AHsaAX8ynsxQLqNT7e3v04b50A5x4XbQlbqOtfPngtq2BisITNzlMLQOa1K2TNFSRUURgauyPjLnMAgsr41y61XfOQriuoNh5fRNi5psRhKuKSaLqNysPRUO0g7NqKiFDCVcMA201wKW0WCqltSnnEK-jELFdQnKQkyJLkNglgENYwKNawgk6n_ywY58Acv767-8c5j9Bip-kHt1ftmz20BMTyEMUl9j4qp_FEHRjzI5WH2Wb7BLQK1Y8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Model+Predictive+Control+Frameworks%3A+Application+to+a+Fluid+Catalytic+Cracker%E2%80%93Fractionator+Process&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Santander%2C+Omar&rft.au=Kuppuraj%2C+Vidyashankar&rft.au=Harrison%2C+Christopher+A.&rft.au=Baldea%2C+Michael&rft.date=2023-07-12&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=62&rft.issue=27&rft.spage=10587&rft.epage=10600&rft_id=info:doi/10.1021%2Facs.iecr.3c01110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_iecr_3c01110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon