Tuning the Electronic and Mechanical Properties of Kagome Graphene via Hydrogenation
Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three hydrocarbons with high stability for the first time via hydrogenation on the Kagome graphene, namely, C6H4, C6H6-I, and C6H6-II. Unlike the K...
Saved in:
Published in | Journal of physical chemistry. C Vol. 126; no. 50; pp. 21426 - 21437 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
22.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three hydrocarbons with high stability for the first time via hydrogenation on the Kagome graphene, namely, C6H4, C6H6-I, and C6H6-II. Unlike the Kagome graphene, which is metallic, all these 2D monolayers are wide-bandgap semiconductors (4.06–4.81 eV). Among them, C6H4 is an indirect bandgap semiconductor, but both C6H6-I and C6H6-II possess the direct bandgap feature. Considerable carrier mobilities (102 to 103 cm2 V–1 s–1) have been further confirmed in the three hydrocarbons on the basis of modified deformation potential theory. Specifically, for C6H4, the hole mobilities are as high as 104 to 105 cm2 V–1 s–1, comparable to those of graphene and black phosphorus. The intrinsic vertical electric field induced by the asymmetric crystal structures in C6H4 and C6H6-I will be beneficial to the spatial separation of electrons and holes in semiconductors, promising in the field of optoelectronics. In addition, hydrogenation has a great influence on the mechanical properties of Kagome graphene, no matter whether it is Young’s modulus, Poisson’s ratio, or ideal tensile strength. Particularly, in-plane axial negative Poisson’s ratios (−0.011/–0.018 along the a-/b-direction) were found in C6H6-I, mainly originated from the interaction of carbon pentagons and octagons. These interesting findings in our work may pave the way for the application of hydrogenated Kagome graphene in the future. |
---|---|
AbstractList | Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three hydrocarbons with high stability for the first time via hydrogenation on the Kagome graphene, namely, C6H4, C6H6-I, and C6H6-II. Unlike the Kagome graphene, which is metallic, all these 2D monolayers are wide-bandgap semiconductors (4.06–4.81 eV). Among them, C6H4 is an indirect bandgap semiconductor, but both C6H6-I and C6H6-II possess the direct bandgap feature. Considerable carrier mobilities (102 to 103 cm2 V–1 s–1) have been further confirmed in the three hydrocarbons on the basis of modified deformation potential theory. Specifically, for C6H4, the hole mobilities are as high as 104 to 105 cm2 V–1 s–1, comparable to those of graphene and black phosphorus. The intrinsic vertical electric field induced by the asymmetric crystal structures in C6H4 and C6H6-I will be beneficial to the spatial separation of electrons and holes in semiconductors, promising in the field of optoelectronics. In addition, hydrogenation has a great influence on the mechanical properties of Kagome graphene, no matter whether it is Young’s modulus, Poisson’s ratio, or ideal tensile strength. Particularly, in-plane axial negative Poisson’s ratios (−0.011/–0.018 along the a-/b-direction) were found in C6H6-I, mainly originated from the interaction of carbon pentagons and octagons. These interesting findings in our work may pave the way for the application of hydrogenated Kagome graphene in the future. |
Author | Xue, Kan-Hao Miao, Xiangshui Yuan, Jun-Hui Cui, Hanli |
AuthorAffiliation | School of Integrated Circuits and School of Optical and Electronic Information Hubei Yangtze Memory Laboratories |
AuthorAffiliation_xml | – name: School of Integrated Circuits and School of Optical and Electronic Information – name: Hubei Yangtze Memory Laboratories |
Author_xml | – sequence: 1 givenname: Hanli surname: Cui fullname: Cui, Hanli organization: School of Integrated Circuits and School of Optical and Electronic Information – sequence: 2 givenname: Jun-Hui orcidid: 0000-0002-3892-604X surname: Yuan fullname: Yuan, Jun-Hui email: yuanjh90@163.com organization: Hubei Yangtze Memory Laboratories – sequence: 3 givenname: Kan-Hao orcidid: 0000-0002-2894-7912 surname: Xue fullname: Xue, Kan-Hao organization: Hubei Yangtze Memory Laboratories – sequence: 4 givenname: Xiangshui surname: Miao fullname: Miao, Xiangshui organization: Hubei Yangtze Memory Laboratories |
BookMark | eNp9kE1PwzAMQCM0JLbBnWN-AC1xsrTrEU1jQwzBYZwrz023TF1SpR3S_j3dhzggwcm27GfZb8B6zjvD2D2IGISER6Qm3tZEsSSRaJlcsT5kSkbpSOveTz5Kb9igabZCaCVA9dlyuXfWrXm7MXxaGWqDd5Y4uoK_GdpgV2DFP4KvTWitabgv-Suu_c7wWcB6Y5zhXxb5_FAEvzYOW-vdLbsusWrM3SUO2efzdDmZR4v32cvkaRGhHIs2AjXGFYGW2mSQJQmUIpVilKUpKsx0BiSgBJMUOhsXq0IggUxFQkArRUqhGjJx3kvBN00wZV4Hu8NwyEHkRyt5ZyU_WskvVjok-YWQbU9HtwFt9R_4cAZPHb8Prvvs7_FvATp6mg |
CitedBy_id | crossref_primary_10_1021_acsaelm_3c00753 crossref_primary_10_1039_D4TA01373E |
Cites_doi | 10.7240/marufbd.399357 10.1021/acs.jpcc.8b03421 10.1063/1.458517 10.1103/physrevlett.77.3865 10.1039/c8nr08046a 10.1038/nnano.2014.35 10.1038/nature04233 10.1021/ja4109787 10.1039/d0cp03191g 10.1021/am504452a 10.1002/cnma.201900645 10.1039/d0cp04547k 10.1038/s41598-019-56738-8 10.1103/physrevb.54.11169 10.1103/physrevb.78.134106 10.1021/acs.jpcc.8b12205 10.1038/ncomms11488 10.1088/0953-8984/29/3/035003 10.1126/science.1102896 10.1021/ja907528a 10.1103/physrev.136.b864 10.1103/physrevb.13.5188 10.1039/c6cp01092j 10.1039/c6tc04692d 10.1021/acs.nanolett.8b04761 10.1038/s41929-018-0181-7 10.1016/0927-0256(96)00008-0 10.1021/acs.jpcc.7b02413 10.1039/C4CS00102H 10.1039/c2cp43360e 10.1016/j.carbon.2018.11.018 10.1016/j.cplett.2020.138006 10.1016/j.matchemphys.2020.123470 10.1103/physrev.80.72 10.1021/acs.jpclett.9b01611 10.1103/physrevb.75.153401 10.1103/physrevb.76.064120 10.1073/pnas.1416591112 10.1038/nnano.2014.207 10.1103/physrevb.94.235306 10.1103/physrevb.98.035135 10.1038/nnano.2008.268 10.1080/14786435.2017.1418096 10.1039/d1cp03069h 10.1039/c6nr08550d 10.1002/anie.199201871 10.1039/c6ra28454j 10.1103/physrevapplied.13.034065 10.1103/physrevb.85.125428 10.1063/1.3353968 10.1016/j.carbon.2017.03.067 10.1103/physrev.140.a1133 10.1063/1.4792142 10.1039/C0NR00323A 10.1103/physrevb.82.195436 10.1103/physrevb.80.195411 10.1126/science.1167130 10.1039/C7CS00210F 10.1038/nature04235 10.1016/j.apsusc.2020.147885 10.1016/j.comptc.2021.113155 10.1063/1.2404663 10.1039/d0nr03869e |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.jpcc.2c06526 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 21437 |
ExternalDocumentID | 10_1021_acs_jpcc_2c06526 c080658934 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ |
ID | FETCH-LOGICAL-a280t-138abc1525e919661f07204977a3a9591c01f1e6d598dbd0ac12706c1cb3c33a3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 02:50:50 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Sat Dec 24 11:30:46 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-138abc1525e919661f07204977a3a9591c01f1e6d598dbd0ac12706c1cb3c33a3 |
ORCID | 0000-0002-2894-7912 0000-0002-3892-604X |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_acs_jpcc_2c06526 crossref_citationtrail_10_1021_acs_jpcc_2c06526 acs_journals_10_1021_acs_jpcc_2c06526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221222 2022-12-22 |
PublicationDateYYYYMMDD | 2022-12-22 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221222 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 Born M. (ref42/cit42) 1954 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref12/cit12 doi: 10.7240/marufbd.399357 – ident: ref11/cit11 doi: 10.1021/acs.jpcc.8b03421 – ident: ref43/cit43 doi: 10.1063/1.458517 – ident: ref35/cit35 doi: 10.1103/physrevlett.77.3865 – ident: ref48/cit48 doi: 10.1039/c8nr08046a – ident: ref51/cit51 doi: 10.1038/nnano.2014.35 – ident: ref14/cit14 doi: 10.1038/nature04233 – ident: ref46/cit46 doi: 10.1021/ja4109787 – ident: ref40/cit40 doi: 10.1039/d0cp03191g – ident: ref54/cit54 doi: 10.1021/am504452a – ident: ref16/cit16 doi: 10.1002/cnma.201900645 – ident: ref20/cit20 doi: 10.1039/d0cp04547k – ident: ref27/cit27 doi: 10.1038/s41598-019-56738-8 – ident: ref33/cit33 doi: 10.1103/physrevb.54.11169 – ident: ref38/cit38 doi: 10.1103/physrevb.78.134106 – ident: ref18/cit18 doi: 10.1021/acs.jpcc.8b12205 – ident: ref62/cit62 doi: 10.1038/ncomms11488 – ident: ref53/cit53 doi: 10.1088/0953-8984/29/3/035003 – ident: ref1/cit1 doi: 10.1126/science.1102896 – ident: ref50/cit50 doi: 10.1021/ja907528a – ident: ref31/cit31 doi: 10.1103/physrev.136.b864 – ident: ref37/cit37 doi: 10.1103/physrevb.13.5188 – ident: ref55/cit55 doi: 10.1039/c6cp01092j – ident: ref49/cit49 doi: 10.1039/c6tc04692d – ident: ref63/cit63 doi: 10.1021/acs.nanolett.8b04761 – ident: ref6/cit6 doi: 10.1038/s41929-018-0181-7 – ident: ref34/cit34 doi: 10.1016/0927-0256(96)00008-0 – ident: ref60/cit60 doi: 10.1021/acs.jpcc.7b02413 – ident: ref5/cit5 doi: 10.1039/C4CS00102H – ident: ref30/cit30 doi: 10.1039/c2cp43360e – ident: ref9/cit9 doi: 10.1016/j.carbon.2018.11.018 – ident: ref26/cit26 doi: 10.1016/j.cplett.2020.138006 – ident: ref10/cit10 doi: 10.1016/j.matchemphys.2020.123470 – ident: ref45/cit45 doi: 10.1103/physrev.80.72 – ident: ref56/cit56 doi: 10.1021/acs.jpclett.9b01611 – ident: ref28/cit28 doi: 10.1103/physrevb.75.153401 – ident: ref58/cit58 doi: 10.1103/physrevb.76.064120 – ident: ref21/cit21 doi: 10.1073/pnas.1416591112 – ident: ref4/cit4 doi: 10.1038/nnano.2014.207 – ident: ref47/cit47 doi: 10.1103/physrevb.94.235306 – ident: ref25/cit25 doi: 10.1103/physrevb.98.035135 – ident: ref15/cit15 doi: 10.1038/nnano.2008.268 – ident: ref8/cit8 doi: 10.1080/14786435.2017.1418096 – ident: ref41/cit41 doi: 10.1039/d1cp03069h – ident: ref61/cit61 doi: 10.1039/c6nr08550d – ident: ref44/cit44 doi: 10.1002/anie.199201871 – ident: ref64/cit64 doi: 10.1039/c6ra28454j – ident: ref19/cit19 doi: 10.1103/physrevapplied.13.034065 – ident: ref59/cit59 doi: 10.1103/physrevb.85.125428 – ident: ref39/cit39 doi: 10.1063/1.3353968 – ident: ref22/cit22 doi: 10.1016/j.carbon.2017.03.067 – ident: ref32/cit32 doi: 10.1103/physrev.140.a1133 – ident: ref52/cit52 doi: 10.1063/1.4792142 – ident: ref2/cit2 doi: 10.1039/C0NR00323A – ident: ref24/cit24 doi: 10.1103/physrevb.82.195436 – ident: ref29/cit29 doi: 10.1103/physrevb.80.195411 – volume-title: Dynamical Theory of Crystal Lattices year: 1954 ident: ref42/cit42 – ident: ref23/cit23 doi: 10.1126/science.1167130 – ident: ref3/cit3 doi: 10.1039/C7CS00210F – ident: ref13/cit13 doi: 10.1038/nature04235 – ident: ref17/cit17 doi: 10.1016/j.apsusc.2020.147885 – ident: ref7/cit7 doi: 10.1016/j.comptc.2021.113155 – ident: ref36/cit36 doi: 10.1063/1.2404663 – ident: ref57/cit57 doi: 10.1039/d0nr03869e |
SSID | ssj0053013 |
Score | 2.4229827 |
Snippet | Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 21426 |
SubjectTerms | C: Physical Properties of Materials and Interfaces |
Title | Tuning the Electronic and Mechanical Properties of Kagome Graphene via Hydrogenation |
URI | http://dx.doi.org/10.1021/acs.jpcc.2c06526 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCjiibfIADh6SxnaTNEVUtFagIiVbqLXLGDmJLqy5I8PXMpGmp2MQ1iiNrFs-Lx36PsdMgqaJbw8BJqkY5vg-JE2GhdzyQdI5NGZuT6bRvwlbXv-oFvU-anK8dfCkqGkbu4wDAlYDlUobLbEWGmMMEg-p3s1U3wEBV0w4yIkbfrxYtyZ--QIUIRguFaKGiNDem0kSjnIiQDpI8uZNx4sL7d5rGf0x2k60XwJJfTCNhiy3ZbJut1md6bjus05nQHghHxMcbc_EbrjPD25bu_5K7-C1tzg-JZZX3U36t7_svll8SqzUuivz1QfPWmxn2Mexyl-6ybrPRqbecQlPB0bLmkfJ8TSdAokc2wuQLReqRTA2iQK10FEQCPJEKG5ogqpnEeBqoNR2CgESBUlrtsVLWz-w-4woMkY1p_EW0PogUgY42iAaUSqvWpqrMztAccZETozhvd0sR5w_RRnFhozKrzBwRQ0FMTvoYz3-MOJ-PGExJOX599-Cfszhka5JuNgjpSHnESuPhxB4j3hgnJ3mgfQCS988k |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VcigXdkRZfYADh5TYTtLmiKqWQilCUCRukWM7iK2tuiDB1zOTpqVCgOAUyYqtkWfsecnY7wEc-HEZ3Rr4Tlw20vE8HTshJnrH1YLOsUljUzKd1mXQuPXO7_y7HPDJXRg0YoAjDdIi_ie7AD-mtsee1iWhMWuKYA7mfXoSGqreTDZfH-NVjgvJCBw9r5xVJr8bgfKRHszko5nEUl-C66lJ6XmSp9JoGJf0-xe2xn_ZvAyLGcxkJ-O4WIGc7axCoTpRd1uDdntEf0QY4j9Wm0rhMNUxrGXpNjA5j13Rr_o-ca6ybsKa6r77YtkpcVzjFsleHxRrvJl-F4MwdfA63NZr7WrDyRQWHCUqLunQV1SsSQLJhrgUA564JFqDmFBJFfoh1y5PuA2MH1ZMbFylqVAdaK5jqaVUcgPynW7HbgKT2hD1mMIPRutpniDsUQaxgZRJ2dpEFuEQpyPKVsggSovfgkdpI85RlM1REY4n_oh0RlNOahnPv_Q4mvbojSk6fnx3649W7EOh0W5dRBdnl81tWBB054ELR4gdyA_7I7uLSGQY76Wx9wEy0deF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qgnrxLdZnDnrwsO0m2Uf3KLW1WhXBKt6WbJIVX23pQ9Bf78x2W0RU9Bo2YchMMt9mku8D2PeTEN0a-E4SGul4nk6cCBO942pB99iksRmZzsVl0Ljxzu78uwL447cwaEQfR-pnRXxa1V2T5gwDvEztj12tS0Jj5hTBFMxQ1Y4C-6h6Pd6AfYxZOSomI3j0vDCvTn43AuUk3f-Ukz4ll_oi3E7Myu6UPJWGg6Sk378wNv7b7iVYyOEmOxrFxzIUbHsF5qpjlbdVaLWGdDLCEAey2kQSh6m2YReWXgWTE9kVHdn3iHuVdVLWVPedF8tOiOsat0r2-qBY4830OhiMmaPX4KZea1UbTq604ChRcUmPvqISTVJINsIlGfDUJfEaxIZKqsiPuHZ5ym1g_KhiEuMqTQXrQHOdSC2lkusw3e607QYwqQ1RkCn8cbSe5inCH2UQI0iZhtamsggHOB1xvlL6cVYEFzzOGnGO4nyOilAe-yTWOV05qWY8_9LjcNKjO6Lq-PHbzT9asQezV8f1-Pz0srkF84KePnDhCLEN04Pe0O4gIBkku1n4fQBRhdoI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Electronic+and+Mechanical+Properties+of+Kagome+Graphene+via+Hydrogenation&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Cui%2C+Hanli&rft.au=Yuan%2C+Jun-Hui&rft.au=Xue%2C+Kan-Hao&rft.au=Miao%2C+Xiangshui&rft.date=2022-12-22&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=126&rft.issue=50&rft.spage=21426&rft.epage=21437&rft_id=info:doi/10.1021%2Facs.jpcc.2c06526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_2c06526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |