Tuning the Electronic and Mechanical Properties of Kagome Graphene via Hydrogenation

Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three hydrocarbons with high stability for the first time via hydrogenation on the Kagome graphene, namely, C6H4, C6H6-I, and C6H6-II. Unlike the K...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 126; no. 50; pp. 21426 - 21437
Main Authors Cui, Hanli, Yuan, Jun-Hui, Xue, Kan-Hao, Miao, Xiangshui
Format Journal Article
LanguageEnglish
Published American Chemical Society 22.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three hydrocarbons with high stability for the first time via hydrogenation on the Kagome graphene, namely, C6H4, C6H6-I, and C6H6-II. Unlike the Kagome graphene, which is metallic, all these 2D monolayers are wide-bandgap semiconductors (4.06–4.81 eV). Among them, C6H4 is an indirect bandgap semiconductor, but both C6H6-I and C6H6-II possess the direct bandgap feature. Considerable carrier mobilities (102 to 103 cm2 V–1 s–1) have been further confirmed in the three hydrocarbons on the basis of modified deformation potential theory. Specifically, for C6H4, the hole mobilities are as high as 104 to 105 cm2 V–1 s–1, comparable to those of graphene and black phosphorus. The intrinsic vertical electric field induced by the asymmetric crystal structures in C6H4 and C6H6-I will be beneficial to the spatial separation of electrons and holes in semiconductors, promising in the field of optoelectronics. In addition, hydrogenation has a great influence on the mechanical properties of Kagome graphene, no matter whether it is Young’s modulus, Poisson’s ratio, or ideal tensile strength. Particularly, in-plane axial negative Poisson’s ratios (−0.011/–0.018 along the a-/b-direction) were found in C6H6-I, mainly originated from the interaction of carbon pentagons and octagons. These interesting findings in our work may pave the way for the application of hydrogenated Kagome graphene in the future.
AbstractList Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three hydrocarbons with high stability for the first time via hydrogenation on the Kagome graphene, namely, C6H4, C6H6-I, and C6H6-II. Unlike the Kagome graphene, which is metallic, all these 2D monolayers are wide-bandgap semiconductors (4.06–4.81 eV). Among them, C6H4 is an indirect bandgap semiconductor, but both C6H6-I and C6H6-II possess the direct bandgap feature. Considerable carrier mobilities (102 to 103 cm2 V–1 s–1) have been further confirmed in the three hydrocarbons on the basis of modified deformation potential theory. Specifically, for C6H4, the hole mobilities are as high as 104 to 105 cm2 V–1 s–1, comparable to those of graphene and black phosphorus. The intrinsic vertical electric field induced by the asymmetric crystal structures in C6H4 and C6H6-I will be beneficial to the spatial separation of electrons and holes in semiconductors, promising in the field of optoelectronics. In addition, hydrogenation has a great influence on the mechanical properties of Kagome graphene, no matter whether it is Young’s modulus, Poisson’s ratio, or ideal tensile strength. Particularly, in-plane axial negative Poisson’s ratios (−0.011/–0.018 along the a-/b-direction) were found in C6H6-I, mainly originated from the interaction of carbon pentagons and octagons. These interesting findings in our work may pave the way for the application of hydrogenated Kagome graphene in the future.
Author Xue, Kan-Hao
Miao, Xiangshui
Yuan, Jun-Hui
Cui, Hanli
AuthorAffiliation School of Integrated Circuits and School of Optical and Electronic Information
Hubei Yangtze Memory Laboratories
AuthorAffiliation_xml – name: School of Integrated Circuits and School of Optical and Electronic Information
– name: Hubei Yangtze Memory Laboratories
Author_xml – sequence: 1
  givenname: Hanli
  surname: Cui
  fullname: Cui, Hanli
  organization: School of Integrated Circuits and School of Optical and Electronic Information
– sequence: 2
  givenname: Jun-Hui
  orcidid: 0000-0002-3892-604X
  surname: Yuan
  fullname: Yuan, Jun-Hui
  email: yuanjh90@163.com
  organization: Hubei Yangtze Memory Laboratories
– sequence: 3
  givenname: Kan-Hao
  orcidid: 0000-0002-2894-7912
  surname: Xue
  fullname: Xue, Kan-Hao
  organization: Hubei Yangtze Memory Laboratories
– sequence: 4
  givenname: Xiangshui
  surname: Miao
  fullname: Miao, Xiangshui
  organization: Hubei Yangtze Memory Laboratories
BookMark eNp9kE1PwzAMQCM0JLbBnWN-AC1xsrTrEU1jQwzBYZwrz023TF1SpR3S_j3dhzggwcm27GfZb8B6zjvD2D2IGISER6Qm3tZEsSSRaJlcsT5kSkbpSOveTz5Kb9igabZCaCVA9dlyuXfWrXm7MXxaGWqDd5Y4uoK_GdpgV2DFP4KvTWitabgv-Suu_c7wWcB6Y5zhXxb5_FAEvzYOW-vdLbsusWrM3SUO2efzdDmZR4v32cvkaRGhHIs2AjXGFYGW2mSQJQmUIpVilKUpKsx0BiSgBJMUOhsXq0IggUxFQkArRUqhGjJx3kvBN00wZV4Hu8NwyEHkRyt5ZyU_WskvVjok-YWQbU9HtwFt9R_4cAZPHb8Prvvs7_FvATp6mg
CitedBy_id crossref_primary_10_1021_acsaelm_3c00753
crossref_primary_10_1039_D4TA01373E
Cites_doi 10.7240/marufbd.399357
10.1021/acs.jpcc.8b03421
10.1063/1.458517
10.1103/physrevlett.77.3865
10.1039/c8nr08046a
10.1038/nnano.2014.35
10.1038/nature04233
10.1021/ja4109787
10.1039/d0cp03191g
10.1021/am504452a
10.1002/cnma.201900645
10.1039/d0cp04547k
10.1038/s41598-019-56738-8
10.1103/physrevb.54.11169
10.1103/physrevb.78.134106
10.1021/acs.jpcc.8b12205
10.1038/ncomms11488
10.1088/0953-8984/29/3/035003
10.1126/science.1102896
10.1021/ja907528a
10.1103/physrev.136.b864
10.1103/physrevb.13.5188
10.1039/c6cp01092j
10.1039/c6tc04692d
10.1021/acs.nanolett.8b04761
10.1038/s41929-018-0181-7
10.1016/0927-0256(96)00008-0
10.1021/acs.jpcc.7b02413
10.1039/C4CS00102H
10.1039/c2cp43360e
10.1016/j.carbon.2018.11.018
10.1016/j.cplett.2020.138006
10.1016/j.matchemphys.2020.123470
10.1103/physrev.80.72
10.1021/acs.jpclett.9b01611
10.1103/physrevb.75.153401
10.1103/physrevb.76.064120
10.1073/pnas.1416591112
10.1038/nnano.2014.207
10.1103/physrevb.94.235306
10.1103/physrevb.98.035135
10.1038/nnano.2008.268
10.1080/14786435.2017.1418096
10.1039/d1cp03069h
10.1039/c6nr08550d
10.1002/anie.199201871
10.1039/c6ra28454j
10.1103/physrevapplied.13.034065
10.1103/physrevb.85.125428
10.1063/1.3353968
10.1016/j.carbon.2017.03.067
10.1103/physrev.140.a1133
10.1063/1.4792142
10.1039/C0NR00323A
10.1103/physrevb.82.195436
10.1103/physrevb.80.195411
10.1126/science.1167130
10.1039/C7CS00210F
10.1038/nature04235
10.1016/j.apsusc.2020.147885
10.1016/j.comptc.2021.113155
10.1063/1.2404663
10.1039/d0nr03869e
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.2c06526
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 21437
ExternalDocumentID 10_1021_acs_jpcc_2c06526
c080658934
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
ID FETCH-LOGICAL-a280t-138abc1525e919661f07204977a3a9591c01f1e6d598dbd0ac12706c1cb3c33a3
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 02:50:50 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Sat Dec 24 11:30:46 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-138abc1525e919661f07204977a3a9591c01f1e6d598dbd0ac12706c1cb3c33a3
ORCID 0000-0002-2894-7912
0000-0002-3892-604X
PageCount 12
ParticipantIDs crossref_primary_10_1021_acs_jpcc_2c06526
crossref_citationtrail_10_1021_acs_jpcc_2c06526
acs_journals_10_1021_acs_jpcc_2c06526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221222
2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 20221222
  day: 22
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
Born M. (ref42/cit42) 1954
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref12/cit12
  doi: 10.7240/marufbd.399357
– ident: ref11/cit11
  doi: 10.1021/acs.jpcc.8b03421
– ident: ref43/cit43
  doi: 10.1063/1.458517
– ident: ref35/cit35
  doi: 10.1103/physrevlett.77.3865
– ident: ref48/cit48
  doi: 10.1039/c8nr08046a
– ident: ref51/cit51
  doi: 10.1038/nnano.2014.35
– ident: ref14/cit14
  doi: 10.1038/nature04233
– ident: ref46/cit46
  doi: 10.1021/ja4109787
– ident: ref40/cit40
  doi: 10.1039/d0cp03191g
– ident: ref54/cit54
  doi: 10.1021/am504452a
– ident: ref16/cit16
  doi: 10.1002/cnma.201900645
– ident: ref20/cit20
  doi: 10.1039/d0cp04547k
– ident: ref27/cit27
  doi: 10.1038/s41598-019-56738-8
– ident: ref33/cit33
  doi: 10.1103/physrevb.54.11169
– ident: ref38/cit38
  doi: 10.1103/physrevb.78.134106
– ident: ref18/cit18
  doi: 10.1021/acs.jpcc.8b12205
– ident: ref62/cit62
  doi: 10.1038/ncomms11488
– ident: ref53/cit53
  doi: 10.1088/0953-8984/29/3/035003
– ident: ref1/cit1
  doi: 10.1126/science.1102896
– ident: ref50/cit50
  doi: 10.1021/ja907528a
– ident: ref31/cit31
  doi: 10.1103/physrev.136.b864
– ident: ref37/cit37
  doi: 10.1103/physrevb.13.5188
– ident: ref55/cit55
  doi: 10.1039/c6cp01092j
– ident: ref49/cit49
  doi: 10.1039/c6tc04692d
– ident: ref63/cit63
  doi: 10.1021/acs.nanolett.8b04761
– ident: ref6/cit6
  doi: 10.1038/s41929-018-0181-7
– ident: ref34/cit34
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref60/cit60
  doi: 10.1021/acs.jpcc.7b02413
– ident: ref5/cit5
  doi: 10.1039/C4CS00102H
– ident: ref30/cit30
  doi: 10.1039/c2cp43360e
– ident: ref9/cit9
  doi: 10.1016/j.carbon.2018.11.018
– ident: ref26/cit26
  doi: 10.1016/j.cplett.2020.138006
– ident: ref10/cit10
  doi: 10.1016/j.matchemphys.2020.123470
– ident: ref45/cit45
  doi: 10.1103/physrev.80.72
– ident: ref56/cit56
  doi: 10.1021/acs.jpclett.9b01611
– ident: ref28/cit28
  doi: 10.1103/physrevb.75.153401
– ident: ref58/cit58
  doi: 10.1103/physrevb.76.064120
– ident: ref21/cit21
  doi: 10.1073/pnas.1416591112
– ident: ref4/cit4
  doi: 10.1038/nnano.2014.207
– ident: ref47/cit47
  doi: 10.1103/physrevb.94.235306
– ident: ref25/cit25
  doi: 10.1103/physrevb.98.035135
– ident: ref15/cit15
  doi: 10.1038/nnano.2008.268
– ident: ref8/cit8
  doi: 10.1080/14786435.2017.1418096
– ident: ref41/cit41
  doi: 10.1039/d1cp03069h
– ident: ref61/cit61
  doi: 10.1039/c6nr08550d
– ident: ref44/cit44
  doi: 10.1002/anie.199201871
– ident: ref64/cit64
  doi: 10.1039/c6ra28454j
– ident: ref19/cit19
  doi: 10.1103/physrevapplied.13.034065
– ident: ref59/cit59
  doi: 10.1103/physrevb.85.125428
– ident: ref39/cit39
  doi: 10.1063/1.3353968
– ident: ref22/cit22
  doi: 10.1016/j.carbon.2017.03.067
– ident: ref32/cit32
  doi: 10.1103/physrev.140.a1133
– ident: ref52/cit52
  doi: 10.1063/1.4792142
– ident: ref2/cit2
  doi: 10.1039/C0NR00323A
– ident: ref24/cit24
  doi: 10.1103/physrevb.82.195436
– ident: ref29/cit29
  doi: 10.1103/physrevb.80.195411
– volume-title: Dynamical Theory of Crystal Lattices
  year: 1954
  ident: ref42/cit42
– ident: ref23/cit23
  doi: 10.1126/science.1167130
– ident: ref3/cit3
  doi: 10.1039/C7CS00210F
– ident: ref13/cit13
  doi: 10.1038/nature04235
– ident: ref17/cit17
  doi: 10.1016/j.apsusc.2020.147885
– ident: ref7/cit7
  doi: 10.1016/j.comptc.2021.113155
– ident: ref36/cit36
  doi: 10.1063/1.2404663
– ident: ref57/cit57
  doi: 10.1039/d0nr03869e
SSID ssj0053013
Score 2.4229827
Snippet Surface passivation is proved to be an effective way to adjust material properties or to explore new two-dimensional (2D) materials. Herein, we proposed three...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 21426
SubjectTerms C: Physical Properties of Materials and Interfaces
Title Tuning the Electronic and Mechanical Properties of Kagome Graphene via Hydrogenation
URI http://dx.doi.org/10.1021/acs.jpcc.2c06526
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHODCjiibfIADh6SxnaTNEVUtFagIiVbqLXLGDmJLqy5I8PXMpGmp2MQ1iiNrFs-Lx36PsdMgqaJbw8BJqkY5vg-JE2GhdzyQdI5NGZuT6bRvwlbXv-oFvU-anK8dfCkqGkbu4wDAlYDlUobLbEWGmMMEg-p3s1U3wEBV0w4yIkbfrxYtyZ--QIUIRguFaKGiNDem0kSjnIiQDpI8uZNx4sL7d5rGf0x2k60XwJJfTCNhiy3ZbJut1md6bjus05nQHghHxMcbc_EbrjPD25bu_5K7-C1tzg-JZZX3U36t7_svll8SqzUuivz1QfPWmxn2Mexyl-6ybrPRqbecQlPB0bLmkfJ8TSdAokc2wuQLReqRTA2iQK10FEQCPJEKG5ogqpnEeBqoNR2CgESBUlrtsVLWz-w-4woMkY1p_EW0PogUgY42iAaUSqvWpqrMztAccZETozhvd0sR5w_RRnFhozKrzBwRQ0FMTvoYz3-MOJ-PGExJOX599-Cfszhka5JuNgjpSHnESuPhxB4j3hgnJ3mgfQCS988k
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VcigXdkRZfYADh5TYTtLmiKqWQilCUCRukWM7iK2tuiDB1zOTpqVCgOAUyYqtkWfsecnY7wEc-HEZ3Rr4Tlw20vE8HTshJnrH1YLOsUljUzKd1mXQuPXO7_y7HPDJXRg0YoAjDdIi_ie7AD-mtsee1iWhMWuKYA7mfXoSGqreTDZfH-NVjgvJCBw9r5xVJr8bgfKRHszko5nEUl-C66lJ6XmSp9JoGJf0-xe2xn_ZvAyLGcxkJ-O4WIGc7axCoTpRd1uDdntEf0QY4j9Wm0rhMNUxrGXpNjA5j13Rr_o-ca6ybsKa6r77YtkpcVzjFsleHxRrvJl-F4MwdfA63NZr7WrDyRQWHCUqLunQV1SsSQLJhrgUA564JFqDmFBJFfoh1y5PuA2MH1ZMbFylqVAdaK5jqaVUcgPynW7HbgKT2hD1mMIPRutpniDsUQaxgZRJ2dpEFuEQpyPKVsggSovfgkdpI85RlM1REY4n_oh0RlNOahnPv_Q4mvbojSk6fnx3649W7EOh0W5dRBdnl81tWBB054ELR4gdyA_7I7uLSGQY76Wx9wEy0deF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qgnrxLdZnDnrwsO0m2Uf3KLW1WhXBKt6WbJIVX23pQ9Bf78x2W0RU9Bo2YchMMt9mku8D2PeTEN0a-E4SGul4nk6cCBO942pB99iksRmZzsVl0Ljxzu78uwL447cwaEQfR-pnRXxa1V2T5gwDvEztj12tS0Jj5hTBFMxQ1Y4C-6h6Pd6AfYxZOSomI3j0vDCvTn43AuUk3f-Ukz4ll_oi3E7Myu6UPJWGg6Sk378wNv7b7iVYyOEmOxrFxzIUbHsF5qpjlbdVaLWGdDLCEAey2kQSh6m2YReWXgWTE9kVHdn3iHuVdVLWVPedF8tOiOsat0r2-qBY4830OhiMmaPX4KZea1UbTq604ChRcUmPvqISTVJINsIlGfDUJfEaxIZKqsiPuHZ5ym1g_KhiEuMqTQXrQHOdSC2lkusw3e607QYwqQ1RkCn8cbSe5inCH2UQI0iZhtamsggHOB1xvlL6cVYEFzzOGnGO4nyOilAe-yTWOV05qWY8_9LjcNKjO6Lq-PHbzT9asQezV8f1-Pz0srkF84KePnDhCLEN04Pe0O4gIBkku1n4fQBRhdoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Electronic+and+Mechanical+Properties+of+Kagome+Graphene+via+Hydrogenation&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Cui%2C+Hanli&rft.au=Yuan%2C+Jun-Hui&rft.au=Xue%2C+Kan-Hao&rft.au=Miao%2C+Xiangshui&rft.date=2022-12-22&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=126&rft.issue=50&rft.spage=21426&rft.epage=21437&rft_id=info:doi/10.1021%2Facs.jpcc.2c06526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_2c06526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon